
Operational Research in Engineering Sciences: Theory and Applications
Vol. 6, Issue 1, 2023, pp. 322-331
ISSN: 2620-1607
eISSN: 2620-1747

 DOI: https://doi.org/10.31181/oresta/0601131

COMPARATIVE ANALYSIS OF BIT-PARALLEL STRING
PATTERN MATCHING ALGORITHMS FOR BIOLOGICAL

SEQUENCES

Muhammad Yusuf Muhammad1*, Mathias Fonkam1, Salu George
Thandekatu1, Sandip Rakshit1, Rao Narasimha Vajjhala1

1American University of Nigeria, PMB 2250 Yola, Adamawa State, Nigeria

Received: 17 January 2023
Accepted: 26 March 2023
First Online: 15 April 2023

Research Paper

Abstract: The inherent parallelism in a bit operation like AND/OR inside a computer
word is known as bit parallelism. It plays a greater role in string pattern matching
and has good application in the analysis of biological data. The use of recently
developed bit parallel string matching algorithms approaches help in improving the
efficiency of the other string pattern matching algorithms. This paper discusses the
working of some of these bit parallel string matching algorithms and their
application on biological sequences. It also shows how bit-parallelism can be
efficiently used to address various matching problems in Bioinformatics to analyze
biological sequences such as Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA)
and Protein with examples. It can also serve as greater tool for the researchers when
looking for the appropriate method to us on Biological sequences.

Keywords: Bit-parallelism, Automaton, Pattern matching, Ribonucleic acid,
Parameterized matching.

*Corresponding author: Muhammad.muhammad@aun.edu.ng (M. Y. Muhammad)
m.fonkam@aun.edu.ng (M. Fonkam), George.thandekkattu@aun.edu.ng (S. G. Thandekatu),
Sandip.rakshit@aun.edu.ng. (S. Rakshit), narasimharao@gmail.com. (R. N. Vajjhala)

mailto:Muhammad.muhammad@aun.edu.ng
mailto:m.fonkam@aun.edu.ng
mailto:George.thandekkattu@aun.edu.ng
mailto:Sandip.rakshit@aun.edu.ng
mailto:narasimharao@gmail.com

Muhammad Yusuf Muhammad, Mathias Fonkam, Salu George Thandekatu, Sandip Rakshit, Rao
Narasimha Vajjhala/ Oper. Res. Eng. Sci. Theor. Appl. 6(1)2023 322-331

323

1. Introduction

String pattern is one of the important components of Bioinformatics that plays a
greater role in the analysis of biological sequences. It is a technique that finds copies of
one or more string pattern(s) (query string) from larger string text (Reference string).
This method has been a greater tool used by computer science researchers in analyzing
biological sequences such as finding homology between the query sequence
(uncharacterized) and larger sequences (Fully characterized) in a sequence-database
that help in inferring the function of newly discovered biological sequence this is
because, homologous sequences tends to haves similar structure hence similar functions
(Amir & Nor, 2007). Since these biological sequences are presented in the form of strings
sequence i.e. DNA is presented as a string of four alphabets {A, C, G, T} each representing
the first letter of each nucleotide base in DNA molecule (A for adenine, G for guanine, C
for cytosine, T for thymine), RNA also is presented as a string of alphabets {A, C, G, U} as
in DNA but RNA has Uracil (U) base instead of thymine and Protein is presented as string
of twenty (20) alphabets representing the 20 amino acids in the protein molecule, string
pattern matching approach tend to be most suitable in solving the problems of biological
sequence analysis. Therefore, the problem of string pattern matching on biological
sequence can be formally defined as:

Definition: Let T be a set of a large sting biological sequence [t1...tn] and P be a set of
a string patterns [p1…pm] where n and m are respectively length of T and P. Then, the
process is to locate all exact or approximate occurrences of a string pattern P in T (Allali
& Sagot, 2005; Baker, 1995).

Example, given two disjoint finite sets of alphabets ∑ and ∏, the problem is to for all
ti ∑ that exactly or approximately matched a pattern p ∏; where ∑ and ∏ may be
DNA, RNA or Protein alphabets.

Myriads of string pattern matching algorithms for biological sequences analysis. For
example, method for matching RNA secondary structure by finding the edit distance
between bases and their complementary pairs was proposed in Cantone and Faro
(2014). Another algorithm that finds the exact matching of RNA secondary structure
expression was proposed in Miao, Chang, and Wang (2010) in O(nm2) time complexity.
An indexing approaches discussed in Ďurian et al. (2010); Faro et al. (2012) uses a
bidirectional affix tree data structure for exact and inexact pattern matching of RNA
structure in O(nm) and O(n) worst- and best-case time. A more efficient data structures
called affix array with affix tree functionality and structural suffix tree was used for RNA
based pattern matching was studied in Grabowski and Fredriksson (2008). Hybrid
approach for determining the function of a protein by comparing Protein structure using
Suffix Array and Wavelet (PSISAW) was proposed in (Gharib et al., 2008). The Bit-
parallel approaches were also considered as an important string matching technique for
analyzing biological sequences. The process in this technique simulates non-
deterministic finite automata in performing parallel bit operations in a computer words
per clock cycle (Baker, 1993). These bits operations are scaled down to minimal level
thus, improving the performances of the string pattern matching process (Ďurian et al.,
2009; Hazay, 2004). This technique also helps to improve the efficiencies of the early
character based pattern matching algorithms like Knuth-Morris-Pratt algorithm (KMP),
Boyer-Moore (BM), BMH, BMHS etc. because of their incapacity to be efficiently applied
on biological sequence and their inability to cope with larger sequences.

Comparative Analysis of Bit-Parallel String Pattern Matching Algorithms for Biological
Sequences

324

Numerous bit-parallel string pattern matching algorithms were proposed for single
or multiple patterns and also for exact and inexact (approximate) pattern matching. In
exact pattern matching, we look for the exact occurrences of a given pattern in large body
of text while in an approximate pattern matching, we look for the occurrences of a
pattern with some modification in a large boy of text. For example, after the first
proposed method called Shift-OR algorithm, an approximate multi-pattern algorithm
was introduced in Salmela, Tarhio, and Kytöjoki (2007). An exact single pattern
matching algorithm using Backward non-deterministic machine (BNDM) where AND
and/or Shift operations are carried out concurrently was introduced by Mendivelso,
Thankachan, and Pinzón (2020). An advanced method named two- way non-
deterministic machine (TNDM) was introduced by Anderson-Lee et al. (2016), unlike in
BNDM forward operation is always carried out instead of shifting operation whenever a
mismatch occur at last position (Gupta & Rasool, 2014; Islam & Talukder, 2017). An
enhanced exact single pattern matching algorithm that combine wide window and bit
parallelism approaches was introduced in He, Fang, and Sui (2005). Hybrids approach
that reduces the number of false matches using Shift-OR algorithm with Q-gram
proposes an approximate multi-patterns matching algorithm that matches one
character at a time in Mauri and Pavesi (2005). Similarly, Peltola and Tarhio (2003)
proposes using Q-gram and BNDM to implement exact multi-pattern string matching
algorithms BNDMq and SBNDMq that read one character at a time at the beginning of
each alignment before testing the state variable. An efficient bit-parallel algorithm for
alpha and delta matching that combine both dynamic programming and bit-parallelism
approaches for music retrieval was proposed in Heyne et al. (2009). Although these
algorithms have achieved significant improvements on performance, the objective is to
have more efficient method that can optimize the performances of the previous methods
and be conveniently used to analyze biological data. Therefore, this paper shows how
bit-parallelism approach can be used achieve this objective. Therefore, this paper seek
to provide a comprehensive comparative analysis of bit-parallel string pattern matching
algorithms in order to assist the researchers in this area to easily select the most
appropriate method for a particular application area.

2. Bit-Parallel Pattern Matching Algorithms for Biological Sequence

Bit-parallel string pattern matching algorithms are proposed for exact or inexact
(approximate). In exact matching, the process finds all exact occurrences of a given n-
length pattern in an m-length text while in an approximate (inexact) pattern matching,
sometime referred to as matching with certain number of mismatches, the process is to
locate the occurrences of substring X in an m-length string T that are similar to a given
n-length pattern P with a limited number of say K different characters in similar matches.

Bit-parallel pattern matching can involve single or multiple patterns. In a single
pattern matching only one pattern is involved while in multi-patterns matching, the
process can be in either of these scenarios.

Classes of characters, here the text matches the character at position j in any of the
patterns. For example, let P1=CAGT and P2=AGTC be two distinct patterns of equal
length then we can form the supper pattern P’={CA}, {AG}, (He et al.), {TC} from P1 an
P2 that matches the text strings “CAGT”, “CGTC”, “AGTC” and “AGCT”. This approach is
more suitable for matching with large number of patterns or concatenating the 1st, 2nd,

Muhammad Yusuf Muhammad, Mathias Fonkam, Salu George Thandekatu, Sandip Rakshit, Rao
Narasimha Vajjhala/ Oper. Res. Eng. Sci. Theor. Appl. 6(1)2023 322-331

325

3rd etc. characters of each pattern to form a single pattern. For example, let P1=ACTG
and P2=GACT be two distinct patterns of equal length then we can form a single pattern
P’= AGCATCGT and concatenating the patterns. For example, Let P1=ACTG and P2=GACT
be two distinct patterns of equal length then we can form a single pattern P’=ACTGGACT.

In bit-parallel string-matching algorithm, the processes are done in pre-processing
and matching phases. At the pre-processing phase, bit mask B[c]=bm …b1. For each
symbol c in the text is computed as the ith bit of each character is set to 0 if the
character appears at position i else is set to 1 written from right-to-left and table B is
then constructed to store these bit masks. During the search process, the state of the
automaton is kept as state vector in a machine word D = dm…d1 and transit from state
i state i+1 when the ith bit of the bit mask B[C] of the character C is zero. The
automaton is then set active at state i if and only if the ith bit of the state vector D
matches the end of the string read up to the position i. The state vector is initially set
D=0m and for each new character tj input, the state vector is updated using the formula
D← ((D<<1) |0m-1 1) &B[tj], for m w where m is the pattern length and w is the
computer word length. A match occurs at position i whenever the main significant bit
of D is 0.

2.1 Shift-OR algorithms

Shift-And algorithm first build a table for each character of text in a bit mask bm…b1,
the mask has the ith set if and if P=C. the state of the search is kept in a machine word
D = dm…d1, d is set when p matches the text end up to current position. Match is
reported whenever dm is set. Initially the machine word is set to D=0m and then for
each new character tj, D is updated using the formula D= ((D≪ 1) | 0m-1 1) & B[tj].
This algorithm works only when m n where m and n are text length and pattern
length. Bit parallel shift-And algorithm is a simpler variant of shift-Or with some
further advantage of being easily extended to classes of characters i.e. it can be
extended to handle wild card character, regular expression approximate search.

In Shift-Or bit mask of table B are complemented and ≪ operator resulted in an empty
string ∅ to the right of D’ and the suffixes stemming from the empty string is already
in D’. The operator | is used instead of & thus the recursive becomes D’= (D≪ 1) | B[t]
and a match is reported when dm=∅.

2.2 Backward Non-deterministic Matching (BNDM)

Algorithms based on this approach simulate the suffix automaton of xR. The
process construct a table for each character c to stores the bit mask. The bit-mask
in Bc is set iff xi = c and the search state is kept in a word d = dm-1… d0. The bit di at
iteration k is set when x[m - i … m-1-i+k] = y[j + m-k .. j+m-1]. At iteration 0, d is set to
1m-1 and the vector is updated as d' = (d & B[yj]) << 1. Matched is reported only when
dm-1=1 after iteration m hence, pattern prefix matched in the current window
position j and the longest prefix matched gives the shift to the next position. This
algorithm is most efficient when the pattern length is not longer than the computer
word size.

2.3 Two-way modification of BNDM (TNDM)

This is the variant of BNDM algorithm that searches the text string so that, given an

Comparative Analysis of Bit-Parallel String Pattern Matching Algorithms for Biological
Sequences

326

m-length text T string and n-length string pattern P, comparison between T and P is
achieved if the sub-string ti T = Pn or Sub-string ti T exist in Pn and ti ≠ Pn and Sub-
string ti T does not exist in Pn. The algorithm works as in BNDM when the first and
third conditions hold while TNDM searches in the forward direction to get the next
occurrence when the second condition holds thus, decreasing the number of searched
characters. Therefore, TNDM algorithm searches the text string character by character
in the forward direction until it get to a character k such that:

I. Sub-string ti…tk does not exist in Pn or
II. Sub-string ti…tk forms a suffix of Pn

In case I, the shifting can go beyond the previous alignment of P while, in case II,
the algorithm continues to search backward from the text position i-1 i.e. reverting
back to BNDM algorithm.

2.4 Simplified BNDM algorithm (SBNDM)

This is another BNDM variant, the algorithm works as in BNDM during the shifting
process. Match is reported when the sub-string th…ti does not appear in P i.e. if h < j i
and t j…ti are the prefixes of P then the next alignment starts at j where j is the smallest
index in P then the next alignment starts at i+1 and the scanning of prefixes is skipped
so that the starting position of the next alignment is now set to h. This simplifies the
running of the inner loop of the algorithm and resulted in a reduced average shifting
length.

3. New trend in Bit-parallel string pattern matching

The use of Bit-parallel string pattern matching algorithms has been a greater tool for
solving problems of bio-sequence analysis. However, biological sequences such as that
of RNA and protein have the ability to fold and form some complex structures that are
critical to their functions. The complexities of these structures have made the
benchmark bit-parallel algorithms unable to efficiently make their functional inferences
(Prasad & Agarwal, 2008). This is because; their nucleotide strings are complementary
to one another. To deal with this, the parameterized string matching concept was first
introduced in (Das & Kapoor, 2017; Kumar, Prasad, & Agarwal, 2010). In this concept,
given two strings X and Y then we can say that the two strings are equivalent though not
identical if Y can be obtain by simply renaming some of the variables of X and vice vasa
(Prasad, 2016). This type matching will be unsuccessful with benchmark algorithms
because the two strings are not identical.

3.1 Parameterized Bit-Parallel pattern matching for biological sequences

This is an efficient method that was first used in software maintenance to find an
equivalency between two program codes and was later used as a tool to deal with
some problems in biological sequence analysis. In parameterized matching, the
process grouped the strings into set of fixed or constant alphabets ∑c (whose symbols
cannot be modified) and that of parameter alphabets (whose symbols can be
modified) i.e. two strings X and Y are said to be parameterized matched if and only if
some symbols in Y can be transformed or modified to make Y equal to X. In this type
of matching, the occurrences of a pattern P in a text string T is reported only when the

Muhammad Yusuf Muhammad, Mathias Fonkam, Salu George Thandekatu, Sandip Rakshit, Rao
Narasimha Vajjhala/ Oper. Res. Eng. Sci. Theor. Appl. 6(1)2023 322-331

327

constant symbols exactly matched and the parameter symbols are renamed or
modified.

For example, let = {A, B}, ={X, Y, Z, W} and P=XAYBX with parameter matching
where f(XZ; YW) then P matches the text T= ZAWBZ.

Therefore, we can define parameterize matching as:

Let ∑ and be two disjoint finite set of fixed and parameter alphabets respectively,
then two p-strings X and Y over an m-length alphabet (∑) are said to be p-matched
if there exist a bijective function say f: ∑ ∑ such that X[i] = f(Y[i]) where 1
i m and in particular f established an identity mapping for the symbols . For
parameterized matching for biological sequences, the set of constant alphabet is
empty (i.e. ∑= Ø).

The efficiency of the String pattern matching algorithms is greatly affected by the
string encoding used. For instance variable width encoding when used can slow down
the matching process. In this case the speed can be enhanced by searching the
sequence unit instead, though it may result in having false matches if not specifically
designed to avoid it (Prasad, 2016). The breakthrough on p-matching by Baker was
achieved with introduction of an encoding scheme called the previous encoding (prev-
encoding for short) as formally defined:

Prev-encoding: Given an n-length p-string T and non-negative integer F, the
mapping (∑)*→(∑F)* encodes each constant alphabets say C∑ with the same
symbol C and each parameter symbol say z to the distance from its previous z, here
∑ = Ø in case of biological sequences (Prasad et al., 2011).

There are variants of Parameterized Bit-parallel string matching algorithms that
proposed to handle exact or approximate bit-parallel matching with either single or
multiple patterns such as Parameterized shift-Or and shift-And as in Kumar et al.
(2010) and parameterized shift-Or and shift-And extended with super alphabet as in
Kesavaraj and Sukumaran (2013). Exact parameterized matching Beal and Adjeroh
(2015), approximate Hakak et al. (2019); Hakak et al. (2019), compressed Xu et al.
(2005) and multi-pattern matching Gharib et al. (2008) were also proposed.

3.2 Parameterized bit-parallel Shift-OR algorithm

The process is similar to that of standard shift-Or algorithm but in this case, the
previous encoding for the pattern and text are first computed at the pre-processing
stage and these encodings are considered for matching in at the searching phase.
During the matching, match is reported only when the previous encoding of the
pattern matched the previous encoding of the text suffixes i.e.

Let P be a p-string pattern and T a p-string text then P p-matches sub-sting of T at
position i if and only if prev(P) is a prefix of p-suffix(T, i).

For parameterized Shift-And set D=0m originally and, for each new character tj,

update D using the formula D’((D<<1)|0m-11) & B [tj]

3.3 Parameterized Bit-parallel BNDM Algorithm

The process is the same as that of the standard BNDM algorithm but the use

Comparative Analysis of Bit-Parallel String Pattern Matching Algorithms for Biological
Sequences

328

previous encoding is introduced as in Prasad et al. (2011). The encodings for both the
strings pattern and text are first computed at the pre-processing stage.

Other variant of BNDM algorithms that can be used to handle both parameterized,
exact or approximate bit parallel matching with either single or multiple patterns
include: Parameterized BNDM, TNDM (Two way modification of BNDM) and
Simplified BNDM (SBDM) as in Anderson-Lee et al. (2016) and BNDM with q-gram as
in Kumar et al. (2010) etc.

4. Performance Analysis of Bit-parallel String matching Algorithms

Many bit-parallel String pattern matching algorithms for similarity comparison on
biological sequences have been proposed each with its own area of application,
strength and weaknesses as shown in Table 1. Due to the rapid generation of the
biological sequences, choosing and understanding an appropriate string matching
algorithm to use in addressing challenges in a particular application area becomes
difficult as the process involves large amount of computations that consume a lot of
time (Zhong, Li, & Wu, 2010). Thus, choosing an appropriate algorithm to use should
be based on its applicability and complexity in the application area in question.
Though, the performances achieved with benchmark bi-parallel algorithms were
appreciable, the implementation of some of these algorithms on biological sequences
such as RNA without modification was theoretically bad. In general, optimal
performances can only be achieved with these algorithms when their development
focuses on the nature of the target biological sequence.

Table 1: Performances of Bit-parallel String matching Algorithms
Algorithms Performance Drawback Application Areas

Peltola and Tarhio
(2003)

O(n[m/w](w + m - 1))
worst case and O(δ x (w +

m - 1)) extra space

Limited to few data.
(Külekci, 2008)

Natural language, DNA
sequence, and binary

alphabet

Peltola and Tarhio
(2003)

O(n[m x w]) worst case
with (δ[m/w]) extra space.

Works well when
searching for a

complete match.

DNA and natural
English text

Grabowski and
Fredriksson

(2008)

Average and worst case:
O(n).

Total average time:
O(nlogδ(m/m))

Not good for shorter
patterns (Faro et al.,

2012)

DNA sequence, natural
text, binary input

Alqadi, Aqel, and
El Emary (2007) O(m / n) Not good for non-

uniform patterns. DNA sequence

Grabowski and
Fredriksson

(2008)
O (n⌈ m/w⌉) worst case Not good for long

sequence DNA and Text

Prasad and
Agarwal (2008) Linear For Parameterized

strings Text and DNA

Zhang et al. (2009) Pre-processing: O(mδ).
Searching: O(nm)

Performance degrades
with changes in
patterns length.

DNA sequence

Ďurian et al.
(2010) Not available Good for long pattern All Biosequences

Prasad et al.
(2011)

Not available Only for approximate
matching

All Biosequences

Faro et al. (2012) O(nm) and O(δ) for extra
space when O(m w)

Performance depends
on pattern length

English text, DNA
sequence and binary

data

Prasad (2016) Linear Good for parameterize
matching All Biosequences

Muhammad Yusuf Muhammad, Mathias Fonkam, Salu George Thandekatu, Sandip Rakshit, Rao
Narasimha Vajjhala/ Oper. Res. Eng. Sci. Theor. Appl. 6(1)2023 322-331

329

5. Conclusion

Bit-Parallelism plays a vital role in string comparison and pattern detection which
makes it a versatile tool that can be applied in any form of biological sequence analysis
such as, Characterization and/or annotation a newly discovered biological sequences,
finding sequence or structural homology between biological sequences etc. Though, it
has good application in biological sequence analysis, its application was mostly
hampered by the limitation on the pattern length that should be less than or equal to
the computer word length (Beal & Adjeroh, 2016). How to use the bit-parallel
approach to find structural similarities between Biological sequences such that RNA
whose characteristics differ from that of other biological sequences such as DNA could
be the task for future research.

References

Allali, J., & Sagot, M.-F. (2005). A new distance for high level RNA secondary structure
comparison. IEEE/ACM transactions on computational biology and bioinformatics,
2(1), 3-14. https://doi.org/10.1109/TCBB.2005.2
Alqadi, Z. A., Aqel, M., & El Emary, I. M. (2007). Multiple Skip Multiple Pattern Matching
Algorithm (MSMPMA). IAENG International Journal of Computer Science, 34(2), 03.
https://www.iaeng.org/IJCS/issues_v34/issue_2/IJCS_34_2_03.pdf
Amir, A., & Nor, I. (2007). Generalized function matching. Journal of Discrete
Algorithms, 5(3), 514-523. https://doi.org/10.1016/j.jda.2006.10.001
Anderson-Lee, J., Fisker, E., Kosaraju, V., Wu, M., Kong, J., Lee, J., Lee, M., Zada, M.,
Treuille, A., & Das, R. (2016). Principles for predicting RNA secondary structure design
difficulty. Journal of molecular biology, 428(5), 748-757.
https://doi.org/10.1016/j.jmb.2015.11.013
Baker, B. S. (1993). A theory of parameterized pattern matching: algorithms and
applications. In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing (pp. 71-80). http://softalytics.com/papers/STOC93.ps.gz
Baker, B. S. (1995). Parameterized pattern matching by Boyer-Moore-type algorithms.
In Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms (pp.
541-550). https://dl.acm.org/doi/pdf/10.5555/313651.313816
Beal, R., & Adjeroh, D. (2015). Efficient pattern matching for RNA secondary structures.
Theoretical Computer Science, 592, 59-71. https://doi.org/10.1016/j.tcs.2015.05.016
Beal, R., & Adjeroh, D. (2016). Compressed parameterized pattern matching.
Theoretical Computer Science, 609, 129-142.
https://doi.org/10.1016/j.tcs.2015.09.015
Cantone, D., & Faro, S. (2014). Efficient Online Abelian Pattern Matching in Strings by
Simulating Reactive Multi-Automata. In Stringology (pp. 30-42).
https://www.dmi.unict.it/faro/papers/conference/faro38.pdf
Das, S., & Kapoor, K. (2017). Weighted approximate parameterized string matching.
AKCE International Journal of Graphs and Combinatorics, 14(1), 1-12.
https://doi.org/10.1016/j.akcej.2016.11.010
Ďurian, B., Holub, J., Peltola, H., & Tarhio, J. (2009). Tuning BNDM with q-grams. In
2009 Proceedings of the Eleventh Workshop on Algorithm Engineering and
Experiments (ALENEX) (pp. 29-37). SIAM.
https://doi.org/10.1137/1.9781611972894.3
Ďurian, B., Peltola, H., Salmela, L., & Tarhio, J. (2010). Bit-parallel search algorithms for
long patterns. In International Symposium on Experimental Algorithms (pp. 129-140).

https://doi.org/10.1109/TCBB.2005.2
https://www.iaeng.org/IJCS/issues_v34/issue_2/IJCS_34_2_03.pdf
https://doi.org/10.1016/j.jda.2006.10.001
https://doi.org/10.1016/j.jmb.2015.11.013
http://softalytics.com/papers/STOC93.ps.gz
https://dl.acm.org/doi/pdf/10.5555/313651.313816
https://doi.org/10.1016/j.tcs.2015.05.016
https://doi.org/10.1016/j.tcs.2015.09.015
https://www.dmi.unict.it/faro/papers/conference/faro38.pdf
https://doi.org/10.1016/j.akcej.2016.11.010
https://doi.org/10.1137/1.9781611972894.3

Comparative Analysis of Bit-Parallel String Pattern Matching Algorithms for Biological
Sequences

330

Springer. https://doi.org/10.1007/978-3-642-13193-6_12
Faro, S., Lecroq, T., Holub, J., Watson, B., & Žďárek, J. (2012). Twenty years of bit-
parallelism in string matching. Festschrift for Borivoj Melichar, 72-101.
https://igm.univ-mlv.fr/~lecroq/articles/BM70.pdf
Gharib, T., Salah, A., El-henawy, I., & M. Salem, A.-B. (2008). Protein Structure Searching using
Suffix Arrays. In Proceedings of the 2008 International Conference on Bioinformatics and
Computational Biology, BIOCOMP 2008 (pp. 688-691).
https://www.researchgate.net/publication/221051767
Grabowski, S., & Fredriksson, K. (2008). Bit-parallel string matching under Hamming
distance in O (n⌈ m/w⌉) worst case time. Information Processing Letters, 105(5),
182-187. https://doi.org/10.1016/j.ipl.2007.08.021
Gupta, S., & Rasool, A. (2014). Bit Parallel String Matching Algorithms: A Survey.
International Journal of Computer Applications, 95(10), 27-32.
https://doi.org/10.5120/16632-6501
Hakak, S. I., Kamsin, A., Shivakumara, P., Gilkar, G. A., Khan, W. Z., & Imran, M. (2019).
Exact string matching algorithms: survey, issues, and future research directions. IEEE
access, 7, 69614-69637. https://doi.org/10.1109/ACCESS.2019.2914071
Hazay, C. (2004). Parameterized Matching. In String Processing and Information
Retrieval, 15th International Symposium, SPIRE 2008, Melbourne, Australia. Bar-Ilan
University. http://dx.doi.org/10.1007/978-3-540-89097-3_23
He, L., Fang, B., & Sui, J. (2005). The wide window string matching algorithm.
Theoretical Computer Science, 332(1-3), 391-404.
https://doi.org/10.1016/j.tcs.2004.12.002
Heyne, S., Will, S., Beckstette, M., & Backofen, R. (2009). Lightweight comparison of
RNAs based on exact sequence–structure matches. Bioinformatics, 25(16), 2095-
2102. https://doi.org/10.1093/bioinformatics/btp065
Islam, T., & Talukder, K. H. (2017). An improved algorithm for string matching using
index based shifting approach. In 2017 20th International Conference of Computer
and Information Technology (ICCIT) (pp. 1-4). IEEE.
https://doi.org/10.1109/ICCITECHN.2017.8281772
Kesavaraj, G., & Sukumaran, S. (2013). A study on classification techniques in data
mining. In fourth international conference on computing, communications and
networking technologies (ICCCNT) (pp. 1-7). IEEE.
https://doi.org/10.1109/ICCCNT.2013.6726842
Külekci, M. O. (2008). A method to overcome computer word size limitation in bit-
parallel pattern matching. In Algorithms and Computation: 19th International
Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008. Proceedings
19 (pp. 496-506). Springer. https://doi.org/10.1007/978-3-540-92182-0_45
Kumar, K., Prasad, R., & Agarwal, S. (2010). Software maintenance by multi-patterns
parameterized string matching with q-gram. ACM SIGSOFT Software Engineering
Notes, 35(3), 1-5. https://doi.org/10.1145/1764810.1764822
Mauri, G., & Pavesi, G. (2005). Algorithms for pattern matching and discovery in RNA
secondary structure. Theoretical Computer Science, 335(1), 29-51.
https://doi.org/10.1016/j.tcs.2004.12.015
Mendivelso, J., Thankachan, S. V., & Pinzón, Y. (2020). A brief history of parameterized
matching problems. Discrete Applied Mathematics, 274, 103-115.
https://doi.org/10.1016/j.dam.2018.07.017
Miao, C., Chang, G., & Wang, X. (2010). Filtering based multiple string matching
algorithm combining q-grams and BNDM. In Fourth International Conference on

https://doi.org/10.1007/978-3-642-13193-6_12
https://igm.univ-mlv.fr/~lecroq/articles/BM70.pdf
https://www.researchgate.net/publication/221051767
https://doi.org/10.1016/j.ipl.2007.08.021
https://doi.org/10.5120/16632-6501
https://doi.org/10.1109/ACCESS.2019.2914071
http://dx.doi.org/10.1007/978-3-540-89097-3_23
https://doi.org/10.1016/j.tcs.2004.12.002
https://doi.org/10.1093/bioinformatics/btp065
https://doi.org/10.1109/ICCITECHN.2017.8281772
https://doi.org/10.1109/ICCCNT.2013.6726842
https://doi.org/10.1007/978-3-540-92182-0_45
https://doi.org/10.1145/1764810.1764822
https://doi.org/10.1016/j.tcs.2004.12.015
https://doi.org/10.1016/j.dam.2018.07.017

Muhammad Yusuf Muhammad, Mathias Fonkam, Salu George Thandekatu, Sandip Rakshit, Rao
Narasimha Vajjhala/ Oper. Res. Eng. Sci. Theor. Appl. 6(1)2023 322-331

331

Genetic and Evolutionary Computing (pp. 582-585). IEEE.
https://doi.org/10.1109/ICGEC.2010.149
Peltola, H., & Tarhio, J. (2003). Alternative algorithms for bit-parallel string matching.
In String Processing and Information Retrieval: 10th International Symposium, SPIRE
(pp. 80-93). Springer. https://doi.org/10.1007/978-3-540-39984-1_7
Prasad, R. (2016). Efficient parameterized word watching using Bit-parallelism and
partitioning the text. International Research Journal of Electronics and Computer
Engineering,, 2(2), 20-24. https://core.ac.uk/download/pdf/230309917.pdf
Prasad, R., & Agarwal, S. (2008). Parameterized shift-and string matching algorithm
using super alphabet. In 2008 International Conference on Computer and
Communication Engineering (pp. 937-942). IEEE.
https://doi.org/10.1109/ICCCE.2008.4580744
Prasad, R., Sharma, A. K., Singh, A., Agarwal, S., & Misra, S. (2011). Efficient bit-parallel
multi-patterns approximate string matching algorithms. Scientific Research and
Essays, 6(4), 876-881. https://academicjournals.org/journal/SRE/article-full-text-
pdf/3C2654423657
Salmela, L., Tarhio, J., & Kytöjoki, J. (2007). Multipattern string matching with q-grams.
Journal of Experimental Algorithmics (JEA), 11, 1.1-es.
https://doi.org/10.1145/1187436.1187438
Xu, Y., Wang, L., Zhao, H., & Li, J. (2005). Exact matching of RNA secondary structure
patterns. Theoretical computer science, 335(1), 53-66.
https://doi.org/10.1016/j.tcs.2004.12.016
Zhang, G., Zhu, E., Mao, L., & Yin, M. (2009). A bit-parallel exact string matching
algorithm for small alphabet. In Frontiers in Algorithmics: Third International
Workshop, FAW 2009, Hefei, China, June 20-23, 2009. Proceedings 3 (pp. 336-345).
Springer. https://doi.org/10.1007/978-3-642-02270-8
Zhong, N., Li, Y., & Wu, S.-T. (2010). Effective pattern discovery for text mining. IEEE
transactions on knowledge and data engineering, 24(1), 30-44.
https://doi.org/10.1109/TKDE.2010.211

https://doi.org/10.1109/ICGEC.2010.149
https://doi.org/10.1007/978-3-540-39984-1_7
https://core.ac.uk/download/pdf/230309917.pdf
https://doi.org/10.1109/ICCCE.2008.4580744
https://academicjournals.org/journal/SRE/article-full-text-pdf/3C2654423657
https://academicjournals.org/journal/SRE/article-full-text-pdf/3C2654423657
https://doi.org/10.1145/1187436.1187438
https://doi.org/10.1016/j.tcs.2004.12.016
https://doi.org/10.1007/978-3-642-02270-8
https://doi.org/10.1109/TKDE.2010.211

