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Abstract: Recent studies show that one of the most important issues of static 
optimization of structurally complex non-stationary technological processes is the 
development of appropriate methods for problem decomposition. The issue of 
optimization of non-stationary alkylation processes and ways to solve the problems 
arising in this regard has been investigated in this paper. It is known that there are 
several ways to increase economic efficiency of control systems for petrochemical 
technological processes.  It includes checking of instruments and regulators, identify 
improvements in the control and monitor of performance, etc. One of the main ways 
to increase the efficiency of control systems for technological processes which depend 
on current conditions is to develop models and algorithms that allowing control 
these processes in more optimal modes compared to current ones. In this regard, the 
presented article is relevant as it is dedicated to the development of optimal control 
algorithms for multistage petrochemical technological processes consisting of series-
connected non-stationary technological devices. 
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1. Introduction 

Most of the catalytic processes in the chemical, petrochemical and oil refining 
industries refer to the number of non-stationary complex and multi-stage processes. 
The decomposition approach is mainly used for optimal management of non-
stationary processes, taking into account the size of the problem (Dolganova et al., 
2012; Ivanchina et al., 2021). On the other hand, the requirement to satisfy the 
conditions of convexity imposed on the objective function and on the limiting 
conditions for solving the problem leads to a number of difficulties. The need to take 
into account the specifics of the processes of reaction and rectification in 
decomposition approaches is also associated with a number of difficulties (Dolganova 
et al., 2014; Dolganova et al., 2012). 

The optimization is a way to find the best of possible solutions. Generally, 
optimization is the task of finding the extremum (minimum or maximum) of the 
objective function in bounded interval limited by a set of linear and/or non-linear 
equalities and/or inequalities. 

Set of refinery and petrochemical processes are carried out in the presence of ideal 
mixing or stationary catalyst. A distinctive feature of catalytic processes of this class 
from other processes is that the activity of the catalyst used in the reaction process 
decreases as a result of the action of the mixtures formed during the reaction. In 
addition, since the main factor influencing the course of catalytic processes is the 
activity of the catalyst, it is necessary to control the process of reducing its activity 
during the technological process. Models and algorithms for solving optimization 
problem in reactor-regenerator, which is considered one of the main technological 
devices of modern petrochemical industry, were developed in (Frantsina et al., 2014; 
Ivanchina et al., 2016). 

In recent years, scientific works have been carried out on the optimal design of 
technological processes in various industries in the absence of sufficient initial 
information. These studies show that when using classical approaches in designing 
optimal schemes of technological processes, it is not always possible to obtain effective 
results for some parameters, such as the absence of sensors capable of measuring the 
reaction rate, heat transfer and other parameters. Taking into account these features, 
methods and algorithms for solving optimal design problems were developed in 
(Pronzato, Wynn, & Zhigljavsky, 2009). 

In general, when designing control systems for technological processes in the 
petrochemical industry, special attention should be paid to the development of 
optimal control algorithms (Hale et al., 2016). At present, L.S. Pontryagin’s principle of 
maximization and R. Bellman’s dynamic programming methods, which are considered 
to be the mathematical basis of optimal control theory, are used in the design of 
control systems of non-stationary petrochemical technological processes, as well as in 
technical systems (Pereira & Sousa, 2009). In recent years, very interesting scientific 
results have been obtained in both scientific and applied areas of optimal management 
of non-stationary technological processes (Boscain & Piccoli, 2005; Boscain, Sigalotti, 
& Sugny, 2021; Lawrence, 2010). 

Therefore, one of the main ways to improve the control of complex non-stationary 
technological processes is the effective development of control algorithms. In addition, 
optimal control of complex process systems requires a holistic approach to the system 
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in order to establish coordination between its various objects. These conditions allow 
to determine the formulation of this problem and the properties of the corresponding 
optimal control algorithms. 

Taking all this into account, in order to solve the problems of optimal control in 
technological system of multi-stage process of obtaining alkyl gasoline by sulfuric acid 
alkylation an algorithm based on L.S.Pontryagin’s modified principle of maximization 
independently from the above shortcomings has been developed. In this paper we 
propose an approach that, unlike previous works, allows us to overcome the above 
difficulties without additional complications of Pontryagin’s principle of 
maximization, including the modified Hamilton function to the problem. Thus, by 
introducing special additives (Boscain & Piccoli, 2005; Boscain et al., 2021; Hale et al., 
2016) it is possible to reduce the problem of convex programming. 

A comparative assessment of the proposed decompositional approach and the 
direct method show that in the first case, the time to solve this problem is reduced 
almost twice. In addition, this approach makes it possible to take into account all 
necessary specific features of reaction and rectification apparatuses. By introducing 
special additives, the solution of the problem can lead to a convex programming 
problem, which significantly simplifies the solution of the optimal control problem for 
continuous multistage systems. 

2. Materials and Methods 

2.1. Description of the investigated technological process 

To solve the problem of controlling the alkylation process, it was studied as the 
research object. 

The reaction block of sulfuric acid alkylation is intended for the production of a 
high-octane component of gasoline. The raw material for the reactors is butane - 
butylene fraction of BBF. Sulfuric acid is also fed into the reactor as a catalyst. When 
BBF interacts with concentrated sulfuric acid, aviation alkylates, motorized alkylate 
and process reaction gases are obtained, which, in a single stream through acid and 
alkaline sedimentation tanks, enter the distillation compartment for separation. 

The initial concentration of sulfuric acid fed into the alkylation reactor is typically 
98%. After 2-3 days, the concentration of sulfuric acid decreases to 83% due to its 
dilution with water and organic impurities released during the reaction, dissolved in acid. 

When the catalyst activity decreases to 83%, it is not fed into the reaction zone. The 
rate of decrease in the activity of the catalyst depends on the regime parameters of the 
reaction process. In particular, an increase in the temperature in the reactor creates 
conditions for the formation of acid-soluble compounds, which causes a decrease in 
the activity and selectivity of the catalyst. 

The main purpose of the research is to develop mathematical models and control 
algorithms that provide optimal control of non-stationary technological processes for 
the production of alkyl gasoline by sulfuric acid alkylation. 

2.2. Formatting of Mathematical Components 

The process of reactor optimization will be considered on the time interval, where 
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in general case T is variable, and in some cases, it is a given fixed moment of final stage 
of the control process. In this case, the control functions are limited 

uq(t)∈U, q=1, m̅̅ ̅̅ ̅̅ , 0<t<T                                                                                                                (1) 

where uq is a control vector of the object q, U is a given closed bounded area in m - 
dimensional space. To maximize objective function the control uq ∈ U should be 
selected for all time in the range of t ∈ [0, T].. Objective function can be expressed as 
follows: 

J
1
= ∫ x1(u, x0, fγ)dt

T

0
,                                                                                                               (2) 

Satisfying functional constraints: 

Ji= ∫ x1(u, x0, fγ)dt, ≤ A t/h (i=2,3,…,l)
T

0
                                                                              (3) 

here J is the yield of the target product for the time interval T; Ji is the output of the 

i-th by-product (i=2,3, …); X0(T)- are the catalyst activities at the end of the process T. 
In other cases, final condition X0(T)=X0T can be more stringent and have the form 

g[x0(T)]=0,                                                                                                                               (4) 

where T is a fixed moment in time; g is an unknown function. 

2.3. Solving Optimization Problem 

Suppose that the mathematical model has the form [11]: 

dx0
 I

dt
=f I(uq

I , x s
I , X0, ξ I, t),                                                                                                                (5) 

fi
 I(u q

I , x s
I , X0, ξ I)=0,  q=1, m̅̅ ̅̅ ̅; s=1, l̅̅ ̅̅ ; i=1, n̅̅ ̅̅ ̅                                                                               (6) 

fi
 II(xs

 II, uq
 II, ξ II)=0,    i=1, n ̅̅ ̅̅ ̅                                                                                               (7) 

fi
 III(xs

 III, uq
 III, ξ III)=0,    i=1, n ̅̅ ̅̅ ̅                                                                                              (8) 

f
i
  k(xs

 k, uq
 k, ξ k)=0,    i=1, n ̅̅ ̅̅ ̅                                                                                                                (9) 

here, the differential equations describe the state of the reactors, and the final 
equations describe the quantitative relationship between the output and mode 
variables of the stages (upper indices are the stage numbers). 

To solve the problem (1) - (4) the principle of maximization is applied. Pontryagin’s 
principle of maximization is used in optimal control theory to find the best possible 
control for taking a dynamical system from one state to another, especially in the 
presence of constraints for the state or input controls. 

To solve the problem numerically, the following conversion simplifications were 
introduced. 

The mathematical model of the reactor, describing the quantitative relationship 
between the outputs and the regime parameters, is in the form of: 

x1=-21,5607+0,5485U1+0,1456U2+0,742U3+0,2388X0(t) 

-0,242γ-0,0024U1
 2-0,00159U2X0(t)- 

-0,00844U3X0(t)+0,0157γ2                                                                                            (10) 
x2=-11,6827-0,2576U1+0,000256U2+0,0336U3-0,2174X0(t) 
-0,0972γ+0,0028U1X0(t)- 
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-0,0045U3γ+0,00094X0
2(t)+0,002028X0(t) 

where х1, х2 are the outputs of alkyl benzene and motoalkylate, respectively; U2 is 
the flow rate of BBF (raw materials) into the reactor; γ is the qualitative indicator of 
BBF (the ratio of the amount of isobutane to the amount of unsaturated 
hydrocarbons); X0 is the activity of sulfuric acid. 

dx0/dt= − [0,392-0,0132U1+0,00074U2-0,0108U3+0,0152μ
+0,00059U1U2+0,00086U1U3+0,0004U1μ+

+0,0000628U2U3-0,000744U2μ+0,0173U3μ-0,00132U1
2-

0,000109U2
2-0,000648U3

 2-0,0011μ2] X0
 2(t)/X0(0)Q.

                           (11) 

The development of optimal control of the considered process consists in 
determining such equations and from the range: 

5 m/h ≤  u1(t) ≤ 15 m/h;   30 m/h ≤ u2(t) ≤ 65 m/h;   10℃ ≤ u3(t) ≤ 19℃           (12) 

and the completion time of the process T, which satisfies the maximum to the 
functional: 

J1= ∫ x1(t)dt
T

0
                                                                                                                             (13) 

and the constraint x2 ≤ 0,45 m/hour for solving equations (10), (11). In this case, 
x0(0)=98%, x0(T)=83%. It is required to find the control uq

1(t) ∈ U1 (0 ≤ t ≤ T) from 

(12), which should satisfy the maximum to the functional (13) and the solution of 
equation (11). 

Differential equation (11) is transformed into the form [12]: 

dx0/dt=a1u1
2x0

2+a2u2
2x0

2+a3u3
2x0

2-a4u1
2x0

2+a5u1u3x0
2-a6u1u3x0

2-
a7u1x0

2+a8u2x0
2-a9u3x0

2+a10x0
2                                                                                                      (14) 

a1=α6×r;        a7=(α2+α9γ)r;     a2=α10×r;     a8=(α3-α12γ)r; 
a13=α13×r1;     a9=(α4-α14γ)r;     a4=α7×r;      a10=(α1-α5γ+α12)r; 
a4=α7×r ;        a5=α8×r ;           r=1/X0(0)×Q;      Q =100T;     a4=α7×r , 

where  α1, α2,..., α15  are the corresponding coefficients of the differential equation; 

(13) the functionality is presented as 
x1(x0, u, fγ)=b1u1

2-b2u1+b3u2+b4u3+b5 
b1=β

1
; b2=β

2
; b3=β

5
x0 − β

3
; b4=β

6
x0 − β

4
;                                                                            (15) 

b5= − β
7
x0 − β

8
γ2+β

9
γ+β

10
, 

the restriction to the functionality is written as 
x2(t) ≤ d1u1 − d2u2+d3u3+d4 ≤ 0,45 T/hour, 
d1=β

1
; d2=δ3; d1=δ7x0 − δ2; d3=δ4 − δ8γ,                                                                            (16) 

d4=δ9x0
2+δ10γx0 − δ8x0+δ6γ+δ10. 

Substituting (14) and (10) into (16), we get modified Hamiltonian function [12]: 

H(x0, u, fγ, t=c1u1
2+c2u2

2+c3u3
2 − c4u1u2+c5u1u3x0

2 − c6u2u3 − c7u1+c8u2+c9u3+c10) 

where 
c1=a1x0

2ψ
1
+b1ψ

0                               c6=−a6x0
2ψ

1
 

c2=a2x0
2ψ

1
                                c7=a1x0

2ψ
1

− b2ψ
0 

c3=a3x0
2ψ

1
                                c8=a8x0

2ψ
1
+b1ψ

0
                                                           (17) 
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c4=−a4x0
2ψ

1                               c9= − a9x0
2ψ

1
+b4ψ

0  

c5=a5x0
2ψ

1
                                c10=a10x0

2ψ
1
+b5ψ

0  

Based on the proposed algorithm, optimal values of u1(t), u2(t), u3(t) from the 
permissible range (12) were found for various values of disturbances satisfying a 
maximum (14). Thus, by introducing special additives (17), problem (1)-(4) can be 
reduced to a convex programming problem, which greatly simplifies the solution of 
the optimal control problem for continuous multistage systems. 

It is proposed to solve the optimization problem in two ways: 

a) fixed point in time T 
b) with changing times (see table 1) 

Figure 1 illustrates the trajectories of optimal controls for a fixed time point of 
completion of the process T=72 hours. Figure illustrates the changing trajectories U1, 
U2, U3 under normal control. 

 
Figure 1. Trajectories of optimal controls at a fixed moment of completion of the 

alkylation process 

 
Figure 2. Trajectories of change  𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)  under normal control 

(Source: compiled by the authors) 

3. Results 

Table 1 shows the construction results of optimal control of the reaction process of 
sulfuric acid alkylation production at different values of the raw material composition. 



Optimal Control of the Alkylation Process Reactors 

318 

On the basis of the proposed algorithm, at different values of disturbance –X0(T) 
(catalyst activities), optimal values of U1(t) (consumption of raw material), U2(t) 
(consumption of catalyst), U3(t) (temperature in the reactor) from the permissible 
range (12) were found satisfying a maximum (2). In the table the activity of the catalyst 
and the output of alkyl benzene at different values of the composition of the raw 
material during one cycle- T are presented. 

Table 1. Results of optimal control of the reaction process of sulfuric acid alkylation 
production at different values of the raw material composition 
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T
h

e ratio
 

iso
b

u
tan

e 
to

 
u

n
satu

rat
ed

 
h

y
d

ro
carb

o
n

s 

C
y

cle 
D

u
ratio

n
 

T
 (h

o
u

r)  

A
ctiv

ity
 

cataly
st at 

th
e en

d
 

cy
cle 

(X
/T

), %
 

T
h

e y
ield

 
o

f alk
y

l 
b

en
zen

e 
d

u
rin

g 
o

n
e cy

cle, 
T

 

C
y

cle 
D

u
ratio

n
 

T
 (h

o
u

r) 

A
ctiv

ity
 

cataly
st at 

th
e en

d
 o

f 
C

y
cle 

(X
/T

), %
 

T
h

e 
o

u
tp

u
t o

f 
alk

y
l 

b
en

zen
e 

d
u

rin
g 

o
n

e cy
cle, 

T
 

4 72 85.4 188 92 83 243 
5 72 85 281 90.5 83 249 
6 72 84 175 89.5 83 254 
7 72 84.7 172 87.5 83 213 
8 72 84.6 172 86 83 208 
9 72 84 172 85 83 200 

10 72 85.3 172 86 83 215 
11 72 84.2 183 83 83 215 

(Source: compiled by the authors) 

4. Discussion and Conclusion 

4.1 Discussion 

In the presented paper, mathematical formalization and solution of a physically 
based optimal control problem are considered, taking into account the real dynamics 
of external material flows of a technological facility that carries out the alkylation 
process. External material flow in technological processes refers to the dynamics of 
changes in raw materials and their quality indicators. The obtained about the 
operating parameters of technological processes is always somewhat different from 
its real value. The main reason for this is errors in the transmitter of primary 
information, the converter, communication channels and, finally, in the algorithms for 
processing information in the measuring circuit. This shows that, due to the above 
reasons, mathematical models of any class, built on the basis of primary information, 
will always have certain errors. On the other hand, since the parameters specific to the 
input flows in the facility have a wide range of variation, mathematical models and 
algorithms that can take this feature into account should be developed in order to 
conduct the reaction process in the reactor in optimal modes in each current situation. 

As a result of the research of this apparatus, it was found that it operates under the 
influence of internal and external disturbances, quantitative and qualitative indicators 
of raw materials, changing in a wide range, which directly affect the work of the 
technological process. The practical significance of this study is the solution of the 
problem in the  condition that is mentioned above. As a result, the solution of the 
problem, indicators are obtained that provide the required quality of the alkylation   
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process. 

The above mathematical statement of optimal control problem of technological 
systems in which devices are connected in series and the current state of methods for 
solving the optimization problem give us reason to express several considerations on 
this matter. As it is known, even with a smaller dimension of the original problem and 
sufficiently large N stages, the solution of the mathematical programming problem 
makes it an extremely difficult circumstance so that when solving the optimal control 
problem based on the discrete maximum principle, at each step it becomes necessary 
to solve the multiextremal problem. The above difficulties are exacerbated by the fact 
that with an increase in the number of stages, the number of local extrema also 
increases (Dolganova et al., 2012; Ivanchina et al., 2021). 

The possibility of using the non-linear programming methods to solve only large-
scale problems was studied by a number of authors (Dolganova et al., 2014). The 
conclusion reached by these authors is that using the method makes it possible to 
decompose large mathematical problems into small-sized problems that are easy to 
solve, but the results of solving these problems, that are not mathematically complex, 
do not allow determining the optimal mode of the system operation as a whole. Hence, 
we can conclude that the best indicator of the used methods is the mathematical size 
of the optimization problem being solved (Lawrence, 2010; Pronzato et al., 2009). The 
problem of mathematical size in the optimization problems to be solved creates 
problems in terms of the operability of the solution even on modern computers. 

    4.2 Implications 

     The experience of operating the optimal control systems of alkylation technological 
processes showed that the lack of information on the course of processes in many 
cases reduces their efficiency and productivity.  On the other hand, the change in a 
wide range of quality indicators and consumption of raw materials for processing 
makes their efficiency even more unsatisfactory . In some cases, this is due to the 
nonlinear and non-stationary dynamic characteristics of these systems.  

İn order to solve the problem of optimal control of reactors of the alkylation 
process, taking into account the specific features and characteristics of the process.  is 
used the modified method of the maximum principle. The solving the optimization 
problems proposed in two ways: 

a) fixed point in time T 

b) with changing times (see table 1) 

Based on the proposed algorithm, optimal values of u1(t), u2(t), u3(t) from the 
permissible range were found for various values of disturbances satisfying a 
maximum a yield of alkyl-benzene .  

Figure 1. shows the trajectories of optimal controls at a fixed time point for the 
completion of the alkylation process T = 72 hours. Figure 2. shows the trajectories of 
u1(t), u2(t), u3(t)  under normal control. A comparative analysis of the optimal and 
conventional controls shows that in the first case the yield of the target product - alkyl-
benzene can be increased by 2.5% and the consumption of sulfuric acid can be reduced 
by 5%, also the time for solving this problem is almost halved. 

In the second variant of solving the reactor optimization problem,  u1opt(t), u2opt(t), 
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u3opt(t) and T were also determined, which at  x0(T)=83% are satisfied by max J1. 

4.3 Conclusion 

On the basis of the modified method of the maximum principle at different values 
of the composition of raw material, the activity of the catalyst, optimal values of the 
output of alkyl benzene have been determined, which are shown in table 1. As a result 
of a comparative analysis, it was determined that the successful solution of the 
optimization problem makes it possible to increase the amount of target product - 
alkyl gasoline by 2.5% and reduce the consumption of sulfuric acid by 5%. A 
comparative assessment of the proposed decomposition approach to this problem 
shows that the time for solving this problem is almost halved. In addition, this 
approach makes it possible to take into account all necessary specific features of 
reaction and distillation apparatus. 

The results obtained in the paper allow us to design an optimal control system to ensure 
the production of output coordinates with minimal energy costs during the control of 
technological devices of this class. This type of control algorithms can be useful for flexible 
control systems. 

4.4 Limitation and Future Research Recommendation 

There are some limitations to this study. It can be considered more appropriate to use the 
control algorithms proposed in this research work in multistage petrochemical, oil refining 
technological processes consisting of non-stationary technological devices connected in 
series. The features of such technological processes are that the series-connected 
technological apparatuses operate in modes that differ from each other in the degree of 
regulation and in the absence of information about the intermediate states of the system. 

Based on this, the methods and algorithms applied in the research work can be used in 
the development of optimal control systems of multi-stage, non-stationary technological 
complexes with a complex structure, more precisely, in solving the issue of optimization at 
the upper level of this system. The obtained optimal parameters can be used as set-point for 
control systems of  these processes. 
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