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The defeat of the central motor neuron leads to the motor disorders. Patients

lose the ability to control voluntary muscles, for example, of the upper limbs,

which introduces a fundamental dissonance in the possibility of daily use of a

computer or smartphone. As a result, the patients lose the ability to communicate

with other people. The article presents the most popular paradigms used in

the brain-computer-interface speller system and designed for typing by people

with severe forms of the movement disorders. Brain-computer interfaces (BCIs)

have emerged as a promising technology for individuals with communication

impairments. BCI-spellers are systems that enable users to spell words by

selecting letters on a computer screen using their brain activity. There are three

main types of BCI-spellers: P300, motor imagery (MI), and steady-state visual

evoked potential (SSVEP). However, each type has its own limitations, which has

led to the development of hybrid BCI-spellers that combine the strengths of

multiple types. Hybrid BCI-spellers can improve accuracy and reduce the training

period required for users to become proficient. Overall, hybrid BCI-spellers

have the potential to improve communication for individuals with impairments

by combining the strengths of multiple types of BCI-spellers. In conclusion,

BCI-spellers are a promising technology for individuals with communication

impairments. P300, MI, and SSVEP are the three main types of BCI-spellers,

each with their own advantages and limitations. Further research is needed to

improve the accuracy and usability of BCI-spellers and to explore their potential

applications in other areas such as gaming and virtual reality.
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1. Introduction

The natural human ability to interact with other people in the form of joint
activity, verbally or with gestures depends on the functional status of the cognitive and
neuromuscular systems. Most often, this natural human ability became the problem when
there is a complete or partial loss of control over the muscle actions. Hard loss of the muscle
control is damage to the central motor neuron unites a group of neurological diseases, among
which the most well-known chronic disease is the amyotrophic lateral sclerosis, which is
based on damage to the motor neurons of brain and spinal cord (Zakharov et al., 2020;
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Verbaarschot et al., 2021). It is well known that a similar course
of neurological disorders is observed in brainstem stroke, locked-
in syndrome, brain or spinal cord trauma, cerebral palsy, multiple
sclerosis, and muscular dystrophies, the progression of which leads
to the fact that patients lose the ability to control voluntary muscles,
thereby causing functional and cognitive disorders (Rezeika et al.,
2018). People who have lost their motor functions lose the ability
to communicate with other people, which in turn leads to an
increasing in frustration, depression and, as a result, to social
deprivation.

Two decades ago, scientists proposed a new technological
paradigm for patients who had lost control of their muscles, namely
the Brain-Computer Interface (BCI) paradigm. BCI provides
patients with motor diseases the opportunity to communicate
using, for an example, the cortex electrical signals. There are
many methods to monitor the brain activity in the BCI paradigm:
Electroencephalogram (EEG), as well as Electrocorticography
(ECoG), functional Magnetic Resonance Imaging (fMRI), and
Positron Emission Tomography (PET). Between it all the EEG
method is a non-invasive measurement technique widely used in
almost all modern BCI applications, more practical than which
requires an opening through the skull to directly access the brain
tissue. The main reasons why EEG is so common are follows:
EEG equipment is relatively inexpensive, portable, simple to set-
up, and provides a signal with high time resolution compared to
other non-invasive methods for monitoring brain activity. Also,
non-invasive BCIs could become a useful tool to be utilized and
tested by healthy individuals for research and development of
applications (Wolpaw et al., 2002). The BCI-speller is one of the
first software applications that kick-started many advances in the
brain-to-computer communication. Spelling is one of the first BCI
application, it corresponds to the main communication mean for
people who are unable to speak (Cecotti, 2011). A variety of BCI
spellers has been designed and tested. The most well-known one
is the visual P300 speller, which detects the brain response to an
attended oddball stimulus (Farwell and Donchin, 1988).

To date, the BCI and speller paradigms have been described
in sufficient detail in the scientific literature, starting from the
first publications on models of these paradigms (Farwell and
Donchin, 1988; Wolpaw et al., 2002; Rezeika et al., 2018). As a
results three major Brain–Computer Interface (BCI) paradigms are
known now: P300 paradigm, Steady-State Visual Evoked Potential
(SSVEP) paradigm, Motor imagery (MI) paradigm. P300 or the
oddball paradigm causes a P300 signal in the brain waves of the
user which is then interpreted by the BCI system, resulting in
the selection of the desired letter. Researchers have developed
both visual and auditory stimuli to induce a P300 signal for
different systems and applications: Visual Evoked Potential (VEP),
Auditory Evoked Potential (AEP), tactile P300 BCI (Farwell and
Donchin, 1988; Höhne and Tangermann, 2014; Bulanov et al.,
2020a). The SSVEP system is implemented in several modifications:
a frequency-modulated Visual Evoked Potential (f-VEP); the code-
modulated Visual Evoked Potential (c-VEP); the Motion-Onset
Visual Evoked Potential (mVEP) (Snyder, 1992; Guo et al., 2008;
Bulanov et al., 2020b). In particular, the mVEP paradigm has been
used to investigate human brain motion processing, and mVEP
(pre-defined simple motion of the visual targets) comprised of the
peaks P1, N2 (160–200 ms), and P2 (complex visual moving stimuli,
latency 240 ms). Analysis of publications in this subject area showed

that both BCI and Speller paradigms are undergoing constant
evolution. New approaches to the development of the BCI-speller
paradigm are aimed at achieving highly effective communication
of patients or healthy subjects between each other or with external
devices (Sun et al., 2022).

2. Paradigms of spellers: BCI-P300,
BCI-MI and BCI-SSVEP

2.1. BCI–P300 paradigm

The first BCI-speller application on the P300 wave was
introduced by Farwell and Donchin (1988), consisting of a 6 × 6
matrix illuminated randomly (Farwell and Donchin, 1988). Since
the matrix consisted of six rows and six columns, at least 12 flashes
were required for each column and row to blink once. The subject
focused on the target letter and counted the number of flashes of
the required symbol/letter for the better concentration of attention.
The brighter illumination of the row and column containing the
target symbol as a visual stimulus caused the P300 wave in the EEG
signals. The maximum achieved precision was 95% at 12 bits/min,
so the required symbol was classified by the computer from the
matrix after about 26 s in Farwell and Donchin (1988). It was a very
long time for typing compared to the abilities of a healthy person,
but was of great importance to a person who was not available
any other ways of communicating. Thus, it was proved that the
P300 could be used to develop BCI communication applications.
Technology has evolved over the years toward faster, more accurate,
and user-friendly BCI P300-speller.

Thus, Jin et al. (2010) reduced the number of highlights per
attempt from the classic variant of 12 flashes, which was mentioned
above, to 9 and 7, which speeded up the application. Nine
lights showed the highest accuracy and 92.9% information rate
at 14.8 bits/min, and 12 flashes showed 88.0% and 10.1 bits/min,
respectively, while 7 lights showed 68.8% and 5.3 bits/min. The
maximum rate was 17.3 bits/min, but with a lower accuracy of
89.3% for 9 flashes per attempt. In addition, Jin et al. (2012)
proposed a 7 × 12 keyboard type matrix. Such solution improved
the classification accuracy of P300 up to 94.8% at a speed of 27.1
bits/min for 21 flash templates (Figure 1).

Chroma Speller developed by Acqualagna et al. (2013) provided
visual stimuli of different colors. The subjects were asked to focus
not on the letter, but on the color. The Chroma Speller was created
as a system that was independent of sight, and that required
minimal workload. The research showed high level of productivity
(Figure 2).

Akram et al. (2015) used a 3 × 3 matrix interface (Figure 3) to
reduce the typing time, which is similar to a smartphone keyboard
with a built-in dictionary that suggests words as the user types the
characters he needs, similar to the predictive typing system T9 (Text
on nine keys) on the mobile phones. As a result, it was possible
to achieve a reduction in word typing time from 3.47 min for
the traditional BCI-speller to 1.67 min in the proposed paradigm,
which in turn reduced the word typing time by 51.87%.

Pires et al. (2012) created a side single-character speller module
based on the P300. The productivity of the lateral single-character
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FIGURE 1

Example of the keyboard type matrix and the stimulus screen presented to the subject during the experiment.

writing was compared with the productivity of standard spelling–
rows and columns. The results showed that the accuracy of the
technology was 89.90% at a speed of 26.11 bits/min, and 88.36%
at a speed of 21.91 bits/min for rows and columns (Figure 4).

FIGURE 2

Example of the screen with visual stimulus of different colors
presented to the subject during the experiment.

FIGURE 3

Example of the matrix interface and the stimulus screen presented
to the subject during the experiment.

Relatively recently, on the basis of the BCI-P300, Russian
developers have created a software and hardware complex
“Neurochat” which were presented by the convenient user interface
(Figure 5), special neuroheadset and Wi-Fi method of connection
a headset to a computer. This system allows people with severe
speech disorders or a lack of hand motor skills to communicate
on the Internet. Studies of typing by patients with post-stroke
aphasia using “Neurochat” have shown a progressive increasing in
the accuracy of typing words from 63% in the first session to 92%
in the tenth session (Ganin et al., 2020).

Unlike classical BCI spellers based on the two-dimensional
approach of flashing rows and columns, Korkmaz et al. (2022)
proposed using a three-dimensional visualization and column
highlighting (Figure 6). This idea was based on the facts
that, firstly, the P300 wave amplitude when using columns
is greater than when using rows due to people’s habit of
reading texts horizontally, and secondly, 3D visualization increases
the brain’s ERP response. Significance testing is also used to
evaluate performance improvement, and it was noted that the
proposed paradigm significantly improves performance with fewer
electrodes. When using the proposed paradigm, the best mean

FIGURE 4

Example of the side single-character speller module based on the
P300.
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FIGURE 5

Example of the “Neurochat” interface.

classification accuracy scores on test data improve from 89.97 to
93.90% (an improvement of 4.36%) for 1 flash, from 97.11 to
98.10% (an improvement of 1.01%) for 3 flashes, and from 99.70
to 99.81% (an improvement of 0.11%) for 15 flashes when using all
electrodes included in the study. On the other hand, accuracy scores
increase by 9.69% for 1 flash, 4.72% for 3 flashes, and 1.73% for
15 flashes when using the proposed paradigm with only one EEG
electrode (P8).

2.2. BCI—MI paradigm

The first BCI-speller system based on the motor images (MI)
was introduced in 2006 and called Hex-o-Spell (Blankertz et al.,
2007). The developers were inspired by the Hex system, which
was used in mobile phones and allowed to type text by changing
the orientation of the device. The BCI system was represented by
two controls: an imaginary movement of the right hand and an

FIGURE 6

Example of the ex-three-dimensional visualization and column
highlighting.

imaginary movement of the leg for 30 purposes, consisting of 26
letters of the English alphabet and 4 punctuation marks (Figure 7).

The graphical interface was represented by six hexagons
arranged around a circle, in the center of which there was an arrow
pointing to any of the hexagons, each of which contained five
characters. Imagining the movement of the right hand or foot, the
user could rotate the arrow and select the hexagon in which the
target letter was located. After that, the selected group of symbols
was arranged in such way that each symbol occupied one of the
hexagons, while an empty hexagon made it possible to return to the
previous stage in case of an error. The typing speed in the MI-based
IMC system varied between 2.3 and 5 symbols per minute for one
user and from 4.6 to 7.6 symbols per minute for another user. In
general, the system had the advantages of MI: independence from
the gaze and the absence of the necessary stimulation, but long-
term training in the reception of motor imagination was required
from users. The BCI method on the motor imagery paradigm is
also evolving. The sensorimotor rhythm can be recorded over the
motor cortex with the contribution of some somatosensory areas.
Based on sensorimotor rhythm EEG BCI-MI is used to improve
the motor acts in healthy people and to restore the neuromuscular
system in patients.

Classically during the movement in Motor Imagery (MI) and
movement preparation the sensorimotor rhythm demonstrates
the Event-Related Desynchronization (ERD) and Event-Related
Synchronization (ERS). Wherein the signal location varies
depending on which limb is moving and on which side of the
body the specific movement is taking place. Despite the fact that
during MI the amplitude of the sensorimotor signals is not large,
the classification makes it possible to distinguish between the
imagination of the leg or arm movement, as well as the side of the
upper or lower limb (left or right) (Wolpaw, 2013). In the study
(Varsehi and Firoozabadi, 2021), the increase in the reliability of
the BCI-MI method is based on the remarkable idea–to ensure
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FIGURE 7

Example of the stimulus screen presented to the subject during the experiment by the Hex-o-Spell system.

FIGURE 8

Example of the rhombus-shaped keyboard.

the selection of the minimum number of the EEG signal channels,
which significantly improves the quality of classification of the
brain signals generated during motor imagery. This is done by the
Granger cause-and-effect analysis, as well as using the machine
learning method, independent component analysis of clusters of
artifactual and normal EEG signals. After selecting a small number
of EEG channels, BCI-MI achieves a classification accuracy of
93.03%, sensitivity of 92.93%, and specificity of 93.12%.

2.3. BCI—SSVEP paradigm

Spelling is one of the first BCI application. It corresponds to
the main communication mean for people who are unable to speak
(Wolpaw et al., 2002). BCI-speller SSVEP, based on Steady-State

Visual Evoked potentials (SSVEP), does not require calibration or
special training for the user (Volosyak et al., 2009). The technology
was represented by a rhombus-shaped keyboard and contained 26
letters of the English alphabet, 3 punctuation marks, and the "Ctrl"
and "Del" keys (Figure 8). Four fields with arrows located on the
periphery of the keyboard made it possible to move the keyboard
cursor left and right, up and down, and the "Select" field was
designed to select the target character. Each of these fields flickered
at a certain frequency, causing SSVER in the cerebral cortex. In
addition, the technology reproduced the name of the letter selected
by a user. Studies have shown that the classification accuracy of
SSVER at an average information transfer rate of 22.6 bits/min was
92%.

Among other things, various devices were added to speller
systems based on the P300, MI, and SSVEP paradigms to speed up
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FIGURE 9

Example of the hybrid speller in the frequency enhanced row and column (FERC).

FIGURE 10

Example of the brain-controlled BCI-speller with an EOG and SSVEP-based.

the BCI-speller and improve classification accuracy, for example,
an eye tracker or combine paradigms, for example, P300 with MI
or P300 with SSVEP (Yin et al., 2014; Mannan et al., 2020; Zuo
et al., 2020). A new version of the BCI-speller with a reduced
visual field, developed and studied by an inter-university group of
scientists, showed a higher classification accuracy than the classic
BCI-P300 (Kirasirova et al., 2020). A study showed that BCI with
120 targets based on code-modulated visual evoked potentials
(c-VEP) has a higher average information rate (265.74 bit/per
min), the large instrument set, high speed, and short training
time simultaneously (Sun et al., 2022). The instrument set can
be further expanded by enlarging the code combination. At the
same time, the average accuracy achieved of 76.58%. Although
the brain-computer interface (BCI) based on a stationary visual
evoked potential (SSVEP) has been widely studied due to its high
information transfer rate, short user training time, and wide subject

applicability. However, this method also has disadvantages such as
visual discomfort and "BCI illiteracy."

In the study to create a hybrid BCI (h-BCI) system, the authors
used low-frequency stimulation (12 sessions, 0.8–2.12 Hz with
an interval of 0.12 Hz), which evokes visual evoked potential
(f-VEP) and pupillary reflex (PR) (Jiang et al., 2022). The final
hybrid accuracy was obtained using a decision fusion method
to combine VEP and PR information. As a result, the average
accuracy was 94.90 ± 2.34% (data frame 1.5 s) for the controlled
method and 91.88 ± 3.68% (data frame 4 s) for the unsupervised
method, which corresponds to an information transfer rate of
64.35 ± 3.07 bits/min and 33.19 ± 2.38 bits/min, respectively. The
authors conclude that the proposed h-BCI with the low-frequency
visual stimulation paradigm is more convenient and beneficial than
the traditional SSVEP-BCI paradigm using the alpha frequency
band.
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FIGURE 11

Example of the hybrid BCI combining SSVEP and EOG-based eye movements.

3. Speller—Hybrid systems headings

Hybrid systems were designed to combine the advantages of
two different systems.

Bai et al. (2023) proposed a hybrid speller in the frequency
enhanced row and column (FERC) paradigm, which allows for
the simultaneous elicitation of two signals, P300 and SSVEP.
The graphical interface used was a classic 6 × 6 row-column
layout, equal to 36 characters (Figure 9). It is worth noting that
the frequency of column flashing was 6.0, 6.5, 7.0, 7.5, 8.0, and
8.5 Hz, and the frequency of rows was 9.0, 9.5, 10.0, 10.5, 11.0,
and 11.5 Hz, with each row or column flashing for 1 s. Thus, as
soon as the classifier recognizes the column and row, the target
stimulus is determined. The proposed hybrid BCI achieved an
average accuracy of 94.29% and an information transfer rate of
28.64 bits/min.

Another hybrid BCI-speller system (Han et al., 2023), encoded
by a combination of electroencephalography functions: P300,
motion visual evoked potential (mVEP), and SSVEP, used a layout
of more than 200 targets instead of the common 36 characters.
The authors noted that the mVEP and P300 components were
prominently expressed in the central, temporal, and occipital
regions, while the most distinct feature of SSVEP was observed
in the occipital region. The proposed hybrid BCI-speller achieved
an average accuracy of 85.37 ± 7.49% and 86.00 ± 5.98% for the
classification of 216 targets, with an average information transfer

FIGURE 12

Example of the hybrid orthographic matrix in virtual reality.

rate of 302.83 ± 39.20 bits/min and 204.47 ± 37.56 bits/min,
respectively.

Zhang Z. et al. (2023) developed a brain-controlled BCI-
speller with an EOG and SSVEP-based switch that allows for the
activation and deactivation of stimulus illumination in a waiting
state, reducing visual fatigue. EOG represents the depolarization
and hyperpolarization between the cornea and retina caused by
eye movement, which creates a potential difference between the
retina and cornea. The distinctive feature of EOG from EEG is
that its amplitude is higher than background physiological signals,
making it easier to detect. The results showed that the accuracy
of the brain-controlled switch developed in this study was up
to 94.64%. Additionally, the study design itself is based on the
time-space frequency conversion (TSFC) and SSVEP paradigm
(Figure 10), which operates on the constant change of the temporal
and spatial frequency of auxiliary SSVEP stimulus blocks. The
developed 60-character orthography, based on the TSFC-SSVEP
stimulus paradigm, has an accuracy of 90.18% and an information
transfer rate of 117.05 bits/min.

At the same time, Zhang J. et al. (2023) also proposed
combining SSVEP and EOG to improve the performance of the
BCI-speller. The target stimulus selection process occurs as follows:
in the first stage, 20 buttons start flashing simultaneously, and
the subject selects the desired symbol and looks at it. Then, eye
movement stimulation occurs, meaning that when the sinusoidal
stimulation (first stage) ends, 16 buttons in four areas of the
graphical interface start moving in different directions. The user
continues to track the target with their eyes, making corresponding
eye movements. The Figure 11 shows how the speller’s graphical
interface looks from the beginning of button movement to the end
of movement. The conducted experiment demonstrated an average
system accuracy and information transfer rate of 94.75% and 108.63
bits/min, respectively.

3.1. SSVEP + EMG

Lin et al. (2016) created the orthographic matrix 6/10. Sixty
symbols were divided into four groups of 15 characters, which
were illuminated with different frequencies. The participant made
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TABLE 1 Summary of P300, MI, SSVEP spellers.

References Subjects Typing speed Mean accuracy

BCI–P300 paradigm

Farwell and Donchin, 1988 4 healthy 12 bits/min 95.0%

Jin et al., 2010 8 healthy 14,8 bits/min 92.9%

Jin et al., 2012 9 healthy 27.1 bits/min 94.8%

Acqualagna et al., 2013 9 healthy 1.4 char/min 88.4%

Akram et al., 2015 10 healthy average time of 1.67 min per word -

Pires et al., 2012 10 able-bodied participants, 5 participants with
cerebral palsy (CP), 1 participant with Duchenne

muscular dystrophy (DMD)

26.11 bits/min 89.9%

Ganin et al., 2020 9 participants with ischemic stroke in the territory
of the left middle cerebral artery

average typing time per letter 38.9 s 92.1%

Korkmaz et al., 2022 10 healthy – 93.90% for 1 flashing, 98.10% for 3
flashings and 99.81% for 15 flashings

BCI—MI paradigm

Blankertz et al., 2007 2 healthy 7.6 bits/min –

Varsehi and Firoozabadi, 2021 105 healthy – 93.03%

BCI—SSVEP paradigm

Volosyak et al., 2009 32 healthy 22.6 bits/min 92%

Sun et al., 2022 22 healthy 265.74 bits/min 76,58%

Jiang et al., 2022 10 healthy 64.35 bits/min 94,9%

Bai et al., 2023 11 healthy 28.64 bits/min 94.29%

Zhang Z. et al., 2023 7 healthy 117.05 bits/min 90,18%

Zhang J. et al., 2023 10 healthy 108.63 bits/min 94.75%

Hybrid speller

Mannan et al., 2020 20 healthy 184.06 bits/min 90.35%

Zuo et al., 2020 18 healthy – 93.94%

Zuo et al., 2020 14 healthy 53.06 bits/min –

Lin et al., 2016 10 healthy 90.9 bits/min 85.8%

Yao et al., 2018 3 healthy 360.7 bits/min 95.2%

the first movement for the group selection process. Each group
required a certain number of the first movements:

• Group 1–zero fist movements are required.
• Group 2–single movement is require.
• Group 3–two movements are required.
• Group 4–three movements are required.

After selecting the desired group, the user chose the target letter
by looking at it to get the SSVEP response. The information transfer
rate when combining SSVEP and EMG was 90.9 bits/min with an
average accuracy of 85.80%.

3.2. BCI for high-speed spelling in VR by
combining eye tracking and SSVEP

Yao et al. (2018) developed a 4 × 10 orthographic matrix
in virtual reality. The orthographic matrix with 40 symbols in

VR was designed for two-step sequential control of eye-based
block selection and SSVEP (Figure 12). Before the experiment, the
subjects underwent a nine-point calibration of their eyes. During
the calibration process, the subjects underwent eight iterations
of fixing all 40 symbols in red (320 attempts). Then the process
of selecting the symbols began. First, a block of 4 targets was
selected using the gaze tracking. After selecting the desired block,
the user chose the target symbol by looking at it to get the SSVEP
response. This hybrid method achieved an information transfer rate
of 360.7 bpm with an average accuracy of 95.2%.

Electroencephalography (EEG) indeed remains the most used
BCI technique. BCI, in turn, is becoming an increasingly
reliable method of experimental and clinical application due to
the introduction of artificial intelligence (AI) into the brain-
computer interface technology (Gutierrez-Martinez et al., 2021).
Thus, in the analytical review performed on the databases of
Google Scholar, PubMed, IEEE Xplore and Elsevier Science
Direct, it was shown that hDL-based BCI, apparently, will help
overcome a significant drawback of the EEG signal classification
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(Alzahab et al., 2021). Most of the studies used a Convolutional
Neural Network-Recurrent Neural Network (CNN-RNN)
architecture, and half of the studies used a small number of
layers to achieve a compromise between network complexity and
computational efficiency (Fujiwara and Ushiba, 2022). Further, the
review also shows that it is necessary to use the neuroimaging
method in the BCI paradigm, such as functional near-infrared
spectroscopy (fNIRS), which becomes highly informative one
(Gutierrez-Martinez et al., 2021). Also it is important to apply the
new combinations of architectures, such as RNN and Deep Belief
Network based on DBN, for a better study of the frequency and
time-frequency characteristics of the recorded brain signals.

4. Conclusion

We have previously reviewed past research on BCI-speller
based P300, MI, SSVEP and speller hybrid systems.Table 1 presents
summary data, which most clearly reflects the pros and cons of the
existing BCI-speller. All the non-invasive BCI-spellers presented in
this review were developed with the aim of improving spelling in
brain-computer systems. The use of different BCI paradigms allows
for a differentiated choice, which is especially important when
working with patients with lesions in different parts of the brain.
It should be noted that there are major limitations in the use of BCI
with neurological diseases. for the implementation of all paradigms,
a sufficient level of the patient’s cognitive functions is required.
This is primarily due to understanding the instructions and the
ability to maintain a sufficient level of attention. For many decades,
scientists have been working on increasing the speed, accuracy,
and convenience of speller systems, so that they can compete with
traditional methods of communication or come as close as possible
to them.

Despite the fact that in the process of studying a large number
of works there are a small number of topics, the emphasis is on the
study of EEG changes when using these technologies (Varsehi and
Firoozabadi, 2021). The results achieved have demonstrated Mean
Accuracy, as a rule, sufficient for practical use, reaching values
of 99.8% (Korkmaz et al., 2022). However, for everyday use as a
method of typing text messages, this technology is not fast enough,
reaching a maximum of 360.7 bits/min (Yao et al., 2018). In this
case, there is mainly a significant decrease in accuracy with an
increase in the BCI speed (Sun et al., 2022). More attention needs to
be paid to the graphical interface, making the design of the devices
simple and user-friendly for the end consumer. Additionally, more

research should be conducted directly on patients, rather than
healthy subjects. At the same time, the use of a limited number of
functions to control devices in the smart home concept or hospital
equipment by the patient can increase the practical implementation
of the technology. Increasing speller systems flashing duration, can
be used as an Accuracy BCI boost (Korkmaz et al., 2022). The
use of these technologies in patients, primarily with severe motor
or speech disorders, on the one hand, with the improvement and
simplification of the hardware part of the data, namely, with the
preservation of information content (accuracy and speed) with a
minimum number of recorded EEG electrodes. Thus, technologies
of the brain-computer interface presented in the paper as a means
of communication for people with motor disabilities serve as a good
foundation for further development and research in the field of
BCI-speller (Maslova and Pyatin, 2022). First of all, it concerns
the direct connections between the technological solutions and
targeted brain areas, which are the most effective information
channels for environment interacting and communication between
users based on faster, more accurate and user-friendly BCI-speller
systems.
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