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Introduction: Asthma is a heterogeneous inflammatory disease often associated

with other complex phenotypes. Identifying asthma-associated diseases and

uncovering the molecular mechanisms mediating their interaction can help

detangle the heterogeneity of asthma. Network analysis is a powerful approach

for untangling such inter-disease relationships.

Methods: Here, we integrated information on physical contacts between

common single nucleotide polymorphisms (SNPs) and gene expression with

expression quantitative trait loci (eQTL) data from the lung and whole blood to

construct two tissue-specific spatial gene regulatory networks (GRN). We then

located the asthma GRN (level 0) within each tissue-specific GRN by identifying

the genes that are functionally affected by asthma-associated spatial eQTLs.

Curated protein interaction partners were subsequently identified up to four

edges or levels away from the asthma GRN. The eQTLs spatially regulating genes

on levels 0–4 were queried against the GWAS Catalog to identify the traits

enriched (hypergeometric test; FDR ≤ 0.05) in each level.

Results: We identified 80 and 82 traits significantly enriched in the lung and

blood GRNs, respectively. All identified traits were previously reported to be

comorbid or associated (positively or negatively) with asthma (e.g., depressive

symptoms and lung cancer), except 8 traits whose association with asthma is yet

to be confirmed (e.g., reticulocyte count). Our analysis additionally pinpoints the

variants and genes that link asthma to the identified asthma-associated traits, a

subset of which was replicated in a comorbidity analysis using health records of

26,781 asthma patients in New Zealand.

Discussion: Our discovery approach identifies enriched traits in the regulatory

space proximal to asthma, in the tissue of interest, without a priori selection of

the interacting traits. The predictions it makes expand our understanding of

possible sharedmolecular interactions and therapeutic targets for asthma, where

no cure is currently available.

KEYWORDS

asthma, SNP function, comorbidity, expression quantitative trait loci, network analysis,
gene regulation
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Introduction

Asthma is a heterogenous phenotype with a wide range of

interactions and presentations with other phenotypes (1). Its

comorbidity with other complex diseases (e.g., eczema, mood

disorders, and diabetes) suggests the existence of shared

molecular pathways (2–5).

The genetics of asthma is complex, and the functional impacts

of known asthma-associated variants are poorly understood (6).

This is possibly due to data conglomeration issues arising from

phenotyping complications due to the interaction of asthma with

other complex traits. Despite this, the Trans-National Asthma

Genetic Consortium (TAGC) performed a meta-analysis of

genome-wide association studies (GWAS) and identified 878

SNPs in 18 loci as being associated with asthma (7). These loci

were enriched for enhancer marks, particularly in immune cell

types, suggesting roles in immune regulation (7). Yet, the specific

causal mechanisms of these disease-associated SNPs (da-SNPs) and

their contribution to the observed asthma comorbidity are largely

yet to be elucidated (8). Identifying the regulatory connections that

link asthma and asthma-associated conditions (both positively and

negatively associated) will improve our understanding of inter-trait

relationships and significantly impact our ability to apply and

develop novel therapeutic approaches.

Assigning functions to da-SNPs is complex because most da-

SNPs fall in non-coding regions and have small individual effect

sizes (8). Moreover, expression quantitative trait loci (eQTL)

analyses have identified long-range regulatory interactions at

numerous loci, reducing the effectiveness of conventional nearest-

gene approaches for identifying da-SNP functional targets (9–11).

Spatially constrained gene regulatory networks integrate chromatin

interaction (Hi-C) data and eQTL analyses to associate variants

with the genes they regulate. These networks represent one

approach for assigning functions to da-SNPs (12, 13).

The understanding that biologically similar traits and diseases

segregate in modules within the same network neighborhood has

been incorporated into attempts to identify conditions that are

associated with asthma (14, 15). A priori selection of the interacting

conditions enabled the identification of 1) overlapping genes

between asthma and nine immune-mediated diseases (14); and 2)

coding genes that link diseases with recognized similarities (e.g.,

chronic obstructive pulmonary disease (COPD) and asthma) (16).

Unfortunately, these studies limited investigations to conditions

whose pathophysiological relationships were clinically recognized.

However, network-based analyses should hypothetically enable the

investigation of inter-relationships between complex polygenic

traits without a priori selection by integrating data across

different levels of biological information (e.g., eQTLs, protein

interactions, and GWAS traits). Network analyses that do not a

priori restrict the tested conditions to those clinically recognized can

further our ability to understand the comorbidity, development,

and therapeutic avenues for pathologically related traits (14, 17, 18).

We hypothesized that a network analysis that integrates protein

interaction data with lung and whole blood tissue-specific spatial

gene regulatory networks (GRNs) would enable the identification of

the complex traits and shared genetic risk associated with asthma.
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Materials and methods

Data sources
• Gene expression levels (median transcripts per million;

TPM) in whole blood were obtained from GTEx (https://

gtexportal.org/home/datasets, GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz, 15/3/

2021).

• All variants genotyped within whole blood samples were

downloaded from GTEx (https://gtexportal.org/home/

datasets, GTEx_Analysis_2017-06-05_v8_WholeGenome

Seq_838Indiv_Analysis_Freeze.lookup_table.txt, 4/01/

2021).

• Single nucleotide polymorphisms (SNPs) and associated

traits were downloaded from the GWAS Catalog (https://

www.ebi.ac.uk/gwas/docs/file-downloads, 08/01/2022).

• Gene biotype information was obtained from GENCODE

(http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/

release_26/gencode.v26.annotation.gtf.gz, 05/06/2021).

• Gene-level constraint metrics were obtained from gnomAD

(https://gnomad.broadinstitute.org/downloads#v2-

constraint, gnomad.v2.1.1.lof_metrics.by_gene.txt, 11/01/

2021).

• Gene start and end positions were obtained fromGTEx (https://

gtexportal.org/home/datasets, gencode.v26.GRCh38.genes.gtf,

17/02/2021).

• The DisGeNet (v7) API was used to obtain curated gene-

disease associations. UMLS CUI to ICD10 disease mapping

tables were downloaded from the DisGeNet repository

(2/07/2022).

• ICD-10 to ICD-10-AM (11th edition) mapping tables were

downloaded from the Independent Hospital Pricing

Authority (IHPA) (https://www.ihpa.gov.au/publications/

icd-10-am-and-achi-mapping-tables, icd-10_2016_to_icd-

10-am_eleventh_edition_0.zip, 7/8/2022)

• GRCh38.p13 was the human genome build used in

this study.
Construction of the lung and whole blood
spatial gene regulatory networks

The CoDeS3D pipeline (https://github.com/Genome3d/

codes3d-v2) (19) was used to construct the tissue-specific GRNs.

In brief, lung and blood primary cell line Hi-C data was downloaded

and analyzed according to Rao et al. (20). The restriction enzymes

used to prepare the libraries (i.e., HindIII and MboI) were used to

digitally digest the GRCh38 genome into DNA fragments. SNPs

(MAF ≥0.05) present within whole blood and lung samples (GTEx

(11)) were used to interrogate the Hi-C libraries for interactions

captured between a DNA fragment overlapping a gene (as defined

by gencode v.26) and the DNA fragment containing the queried
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SNP (Figure 1). Interactions from adjacent fragments were

ignored, and no maximum loop length was set for this analysis.

Only SNP-gene interactions captured in more than one replicate for

each Hi-C cell line/tissue were included in downstream analysis. Hi-

C cell lines and GEO IDs of replicate samples can be found in

Supplementary Data 1.
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SNP-gene pairs were tested to identify eQTLs within each tissue

[GTEx (11)]. The covariates adjusted for are sex, top 5 genotyping

principal components, PEER factors, sequencing protocol, and

sequencing platform. Finally, multiple testing correction

(Benjamini-Hochberg) was performed, and spatial eQTLs with an

adjusted p-value ≤0.05 were selected as significant. A SNP that: 1)
B

C

D

A

FIGURE 1

Study overview. (A) Gene regulatory networks were identified within GTEx lung and whole-blood tissues using spatially constrained eQTLs. (B) The
asthma GRNs (level 0, depicted in purple) were identified within the lung and whole-blood GRNs. The asthma GRNs are comprised of asthma-
associated spatial eQTLs, their target genes, and the remaining spatial eQTLs targeting them. The asthma GRNs were expanded (i.e., levels 1-4) by
incorporating curated protein interactions (STRING and PROPER databases) that occur up to 4 edges away. For simplicity, only levels 1 and 2 are
depicted (green and orange, respectively). The set of spatially constrained eQTLs associated with the genes at each level (i.e., 0-4) were queried
against the GWAS catalog to identify traits enriched at each level (hypergeometric test, FDR ≤ 0.05, and 1000 sets of Monte Carlo simulation).
(C) Gene-disease associations were identified for all genes using DisGeNet. UMLS CUI identifiers from DisGeNet were converted to ICD-10-AM
disease terms. (D) A comorbidity analysis was performed on hospital records for New Zealand asthmatic patients.
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physically contacts and 2) is associated with the transcription level

of the interacting gene is termed a spatial eQTL (Figure 1A). Spatial

cis-eQTLs associate with transcript levels of genes that are<1 Mb

away from the spatial eQTL on the same chromosome while trans-

intrachromosomal spatial eQTLs are associated with transcript

levels of genes that are >1 Mb away on the same chromosome.

Trans-interchromosomal spatial eQTLs are associated with

transcript levels of genes that reside on different chromosomes.
Identification of traits sharing molecular
interactions with asthma

We constructed the multimorbid3D pipeline to identify traits

associated or comorbid with an index condition. Scripts for the

complete pipeline are accessible through https://github.com/

Genome3d/multimorbid3D. All subsequent data analysis were

performed using R version 4.0.1 (21) and RStudio version 1.3.959

(22). Briefly, asthma-associated SNPs (p = 1x10-5) were identified

using a keyword search for the exact term “Asthma” in the GWAS

Catalog (v1.0.2, 08/01/2022; Supplementary Data 2, (23)). The

asthma-associated SNP set was then used to identify asthma-

associated spatial eQTLs, and the genes they regulate within the

lung GRN. These genes, and all the spatial eQTLs that regulate them

(including spatial eQTLs associated with traits other than asthma),

represent the base asthma GRN (or level 0).

Biologically similar and comorbid conditions often segregate in

proximal protein interaction neighborhoods. Therefore, identifying

proteins that interact with the asthma GRN may improve our

understanding of the biology of asthma. As such, the asthma

GRN was expanded to include curated protein interactions from

STRING (24) (only the five highest-scoring interactions were used;

of those, only interactions with a medium confidence score of ≥

0.700 were considered; Supplementary Data 3, 4; accessed 29/04/

2022) and PROPER (25) that occur up to 4 edges away

(Supplementary Data 5, 6). For example, level 1 comprises the

genes that encode the first neighbor proteins that share 1 edge (i.e.,

directly interact) with level 0 proteins. Similarly, level 2 includes the

genes for the second-neighbor proteins that share 1 edge with level 1

(and 2 edges with level 0) and so on. Spatial eQTLs that regulate the

expression of the protein-coding genes on each level were identified

by querying the lung GRN. The spatially constrained eQTLs

associated with the protein-coding genes from levels 0 to 4 were

queried against the GWAS Catalog to identify traits associated with

these variants by GWAS. The hypergeometric distribution test was

used to determine the enrichment of traits at each level:

sf (Trait,   Level) =   1 −on
i=0

n

xi

 !
M − n

N − xi

 !

M

N

 ! (1)

Where N is the total number of spatial eQTLs identified at the

given level, x is the total number of spatial eQTLs associated with a

trait identified at the given level, M is the total number of unique

SNPs in the GWAS Catalog, n is the total number of GWAS Catalog
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SNPs associated with the identified trait. Multiple testing correction

was performed to identify significantly enriched traits (Bonferroni

correction, FDR = 0.05).

To remove biases associated with the protein interaction

network topology and to identify traits specific to asthma, this

process was repeated 1000 times in a Monte Carlo simulation on a

random N number of genes, where N is the size of the disease GRN

(level 0) to be randomized. Traits, and their respective eQTL-gene

pairs, having an adjusted p-value< 0.05 were selected as being

significant (Figure 1B). Because there is no constraint on the

SNP’s direction of effect, the identified traits could be positively

or negatively associated with asthma.

This entire process was repeated using the whole blood GRN.
Identifying curated gene-
disease associations

Genes were assigned to diseases using DisGeNet (26). To reduce

the number of false positives, we included only curated GDAs derived

from CGI (27), PsyGeNET (28), ClinGen (29), CTD (human data)

(30), UniProt (31), Orphanet (32), and the Genomics England

PanelApp (33). Disease mappings were used to convert the UMLS

CUI identifiers to ICD-10 disease terms. These were then converted

to ICD-10-AM disease terms using the mapping tables provided by

IHPA (accessed 07/08/2022) (Figure 1C).
Comorbidity analysis

Patient diagnostic records (n = 2,051,661, 1,119,021 females and

2,051,658 males) from the 31st of December 2015 to the 1st of

January 2021 were obtained from the New Zealand Integrated Data

Infrastructure. Records of patients over the age of 100 were

excluded from the analysis. From these records, conditions that

are comorbid with asthma (ICD-10-AM 11th edition code, J45.9)

were identified using the comoRbidity R package (34). Odds ratio,

relative risk, and comorbidity scores were calculated as follows:

Odds   ratioAB =  
CABH
CACB

(2)

Relative riskAB =  
CABN
PAPB

(3)

Comorbidity   score

=   log2(
observed  CAB   +   1
expected  CAB   +   1

),   expected  CAB =  
PAPB
N

(4)

Where A is asthma and B is the disease being tested, CA is the

number of patients diagnosed with asthma, CB is the number of

patients diagnosed with disease B, the number of patients diagnosed

with both asthma and disease B is given by CAB, H denotes the

number of patients without asthma and disease B, N is the total

number of patients being tested. The prevalence of asthma and

disease B is given by PA and PB, respectively. Diseases with less than
frontiersin.org
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6 patients were excluded, as were diseases with a 95% confidence

interval of odds ratio that overlaps 0 (Figure 1D). No clinical

samples were accessed for this analysis.
Ethics

The use of the Integrated Data Infrastructure within Stats NZ

Data Lab was reviewed and approved by Statistics New Zealand

(project number MAA2020-63) and the Auckland Health Research

Ethics Committee (approval AH22495).
Results

Structures of the lung and whole blood-
specific spatial gene regulatory networks

SNPs (n=40x106, MAF≥ 0.05) within the GTEx dataset were

downloaded (dbGaP accession: phs000424.v8.p2; approved project

number: #22937) and screened for spatial eQTLs in lung and whole

blood (Figure 1) using the CoDeS3D algorithm (19). The resulting

lung GRN comprises 873,133 spatial eQTL-gene interactions

(740,028 spatial eQTLs regulating 15,855 genes expressed in the

lung) and has more cis-acting (eQTL-gene are separated by<1Mb)

than trans-intrachromosomal (eQTL-gene pair are separated by

≥1Mb on the same chromosome) or trans-interchromosomal

spatial eQTLs (eQTL-gene pair are located on different

chromosomes). The lung GRN has been previously described in
Frontiers in Immunology 05
more detail (35). The whole blood GRN comprises 1,713,885 spatial

eQTLs-gene interactions (1,077,379 spatial eQTLs regulating 14,871

genes expressed in whole blood). The blood GRN also has more cis-

acting (n=1,634,655) than trans-intrachromosomal (n=67,014) or

trans-interchromosomal spatial eQTLs (n=12,216) (Figures S1, S2).

A detailed description of the blood GRN can be found in

Supplementary Note 1, Figures S3, S4.
SNPs from 68 traits are associated with
asthma through pleiotropic genes

Asthma SNPs (n=383; Supplementary Data 2) were mapped onto

the lung GRN (Figure 1) to identify 112 genes (i.e., the asthma L-

GRN) whose transcript levels are regulated by spatial eQTLs

associated with asthma (n=155 [153 cis interactions and 2 trans-

intrachromosomal interactions], 40.5% of the asthma-associated

SNPs) and spatial eQTLs associated with an additional 68 traits

(n=480, Figure 2). Running the asthma-associated SNPs through

FUMA’s SNP2GENE function prioritized 104 of the 112 genes

identified using our pipeline (36) (see Supplementary Note 2). The

asthma L-GRN includes HLA genes and other genes previously

reported to be associated with asthma (e.g., PRKCQ (37), GSDMA

(38), and GSDMB (39)). Of the 68 traits that were identified as

associating with asthma through pleiotropic genes, 9 are endotypes of

asthma (e.g., childhood-onset, adult-onset, nonatopic, atopic,

moderate or severe asthma), 9 represent allergic disease (e.g.,

allergic rhinitis, allergic disease [asthma, hay fever or eczema]), 7

represent blood cell counts (e.g. eosinophil counts, neutrophil count),
FIGURE 2

Asthma-associated spatial eQTLs regulate pleiotropic genes within the asthma lung-specific GRN. Convex biclustering of trait-eQTL-gene
interactions identified pleiotropic genes at level 0 within the asthma lung-specific GRN. For each eQTL, the x-axis represents the target gene, and
the y-axis represents the associated trait. Only eQTL-gene pairs associated with traits that passed the Monte Carlo simulation are included.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1231492
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zaied et al. 10.3389/fimmu.2023.1231492
12 are autoimmune diseases (e.g., rheumatoid arthritis, type 1

diabetes, vitiligo, systemic lupus erythematosus [SLE],

inflammatory bowel disease), 23 pertain to metabolite levels (e.g.,

red blood cell fatty acid levels, omega-6 polyunsaturated fatty acid

levels), 3 are related to drugs used for asthma treatment and to relief

allergy symptoms (e.g., medication use: adrenergics, inhalants;

glucocorticoids; and antihistamines for systemic use) and 5 “other”

traits (i.e., nasal polyps, idiopathic membranous nephropathy,

extranodal natural killer T-cell lymphoma nasal type (ENKTL-N),

respiratory disease, response to hepatitis B vaccine). The identified

pleiotropic genes serve as connectors between asthma and the

identified traits (Figure 2, Supplementary Data 7).

The same process was repeated using the blood GRN to identify

188 pleiotropic genes (i.e., the asthma B-GRN) regulated by spatial

eQTLs associated with asthma (n=57 [56 cis and 1 trans-

intrachromosomal interaction], 14.9% of asthma-associated SNPs)

and 70 other traits (n=815). A hypothesis test for one population

proportion (one-sample proportion test) identified that the

proportion of asthma-associated spatial eQTLs in the lung GRN

is significantly higher than in the blood GRN (p< 0.00001),

consistent with the central role of the lungs in asthma. The

enriched traits within the asthma B-GRN were comparable to

those identified for the asthma L-GRN, except for some

psychological traits (e.g., depressive symptoms, schizophrenia

(MTAG), and feeling worried) and cancers (e.g., cervical cancer,

follicular lymphoma, Figure S5).
Protein interaction networks reveal 12
traits that interact with asthma

Comorbid and biologically similar diseases tend to segregate in

modules within the same network neighborhood (20, 23).

Therefore, we translated the lung GRN into a protein-protein

interaction network (PPIN) to include curated protein

interactions occurring in STRING (medium confidence score ≥

0.700) and PROPER. Briefly, starting from the 112 genes that are

regulated by asthma-associated spatial eQTLs, the asthma GRN was

expanded using curated protein interactions to form 4 concentric

PPIN levels (Figure 1B). The 4 PPIN levels specific to the lung

contained a total of 1,478 proteins before bootstrapping, at which

point the network was reduced to a set of 37 protein-coding genes.

The spatial eQTLs regulating the genes identified at each level were

then identified from the lung GRN. 6 interacting proteins were

identified at level 1 (1 edge from level 0), which were regulated by 15

spatial eQTLs within the lung GRN. At level 2, 24 spatial eQTLs

targeted transcript levels of 9 genes. At level 3, 51 spatial eQTLs

targeted transcript levels of 20 genes. Finally, at level 4, 6 spatial

eQTLs targeted transcript levels of 3 genes. The detected spatial

eQTLs were enriched within 4 GWAS traits at level 1

(hypergeometric test; FDR ≤ 0.05 and 1000 sets of Monte Carlo

simulation), 4 traits at level 2, 2 traits at level 3, and 2 traits at level 4

(Figure 3, Supplementary Data 7).

Expanding four levels away from asthma B-GRN (level 0)

identified 2,471 proteins over 4 levels before bootstrapping, at

which point it reduced to a set of 325 protein-coding genes
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within the blood GRN. Of those, 35 genes were regulated by 52

spatial eQTLs at level 1, 184 spatial eQTLs regulated 156 genes at

level 2, 1 gene was regulated by 14 spatial eQTLs at level 3, and 276

spatial eQTLs regulated 146 genes at level 4. Analysis for

enrichment in GWAS traits identified 4 enriched traits at levels 1,

2, and 4 and 1 trait at level 3 (Figure 4).
Gene-disease association analysis identifies
asthma comorbidities replicated in New
Zealand asthma patient health records

Complex diseases such as rhinitis, metabolic syndrome, and

dermatitis have been identified as comorbidities in asthma patients,

suggesting that shared molecular pathways contribute to their

development (40). Our analysis identified 126 GWAS traits

interacting with asthma (Supplementary Data 7, Figures 3, 4).

However, while these traits provide insights into asthma

pathology, many do not represent disease conditions (e.g.,

amyloid A serum levels). Therefore, we queried DisGeNet with

the genes from each level (levels 0-4) to identify their associated

diseases. 35 genes were associated with 306 curated UMLS CUI

disease identifiers (Supplementary Data 8) that map to 57 ICD-10

disease terms and 53 ICD-10-AM disease terms.

A comorbidity analysis was performed using hospitalization

records in New Zealand to identify which disorders co-occur in

asthma patients. Of 2,051,661 hospitalized patients, 26,781 were

diagnosed with asthma, equating to an asthma disease prevalence of

1.305% among hospitalized patients in New Zealand between 31/

12/2015 and 01/01/2021. 194 ICD-10-AM terms were statistically

associated with asthma (q-value<0.05). These include conditions

that are not necessarily disorders, e.g., complications following a

procedure, drug use, etc. Of the disorders, the most significant

comorbidities of asthma (q-value<0.001, ranked by odd ratio)

included family history of asthma and other chronic lower

respiratory diseases, polyarteritis with lung involvement [Churg-

Strauss], drug-induced Cushing’s syndrome, unspecified acute

lower respiratory infection, unspecified dermatitis, occupational

exposure to toxic agents in other industries and bronchiectasis. A

full list of identified disease terms associated with asthma can be

found in Supplementary Data 9. Of the 194 ICD-10-AM disease

terms, 9 terms (mapping to 11 UMLS CUI disease terms) were also

identified in the gene-disease association analysis (p-value = 0.0051,

Fisher’s exact test). All identified diseases had increased odds of

being comorbid with asthma except for retinal diseases and

ulcerative colitis (Figure 5A). The identified diseases were

associated with 8 genes (Figure 5B) that fall 2 to 4 levels away

from the asthma L-GRN and B-GRN.
142 genes modulating asthma-trait
interaction have known drug-
gene interactions

We compared the genes identified within the extended asthma

L-GRN and B-GRNs (hypergeometric test, FDR ≤ 0.05 and 1000
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sets of Monte Carlo simulation) with genes from a) the druggable

genome (41) and b) the drug-gene interaction database [DGIdb

(42)] to identify opportunities for drug repurposing. Of the 606

genes we identified, 139 were present in the druggable genome, and

142 have known drug interactions (Supplementary Data 10).

Valette et al. used Mendelian Randomization to prioritize 50

genes regulated by non-spatial cis eQTLs in the blood as being

causally associated with asthma (43). Comparison with the asthma

L-GRN and B-GRNs identified that 22/50 of those genes were

pleiotropic genes at level 0 in our analysis (Supplementary Data 10).

Of those, 12 genes were regulated by the same eQTL in both studies,

namely UBAC2, TEF, TDRKH, SUOX, SLC22A5, SCRN2, RPS26,

MEI1, IKZF3, GSDMB, FADS1, and CSDC2.
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Discussion

The molecular and biological mechanisms that influence

complex phenotypes interact across multiple levels of biological

information. In this study, we used lung and whole blood-specific

spatial GRNs to identify conditions that interact with asthma.

The GRNs connected asthma-associated spatial eQTLs with

spatial eQTLs associated with other traits by integrating

information on curated protein-protein interactions, thereby

identifying various traits interacting with asthma, many of

which had previously reported associations with asthma. It

additionally identifies the genetic variants and proteins bridging

these traits to asthma.
A B

FIGURE 3

Integrating an expanded protein-protein interaction network with the lung GRN identifies conditions associated with asthma. (A) GWAS traits
enriched for spatial eQTLs at levels 0 to 4 within the extended asthma L-GRN; circle size indicates the number of spatial eQTLs, and circle color
indicates the statistical significance of enrichment. Traits in black are associated with spatial eQTLs that regulate the expression of level 0 genes.
Traits in blue or red are associated with spatial eQTLs that regulate protein-coding genes having curated interactions in STRING or PROPER,
respectively. (B) Trait-spatial eQTL-gene interactions occurring at levels 1 to 4 of the asthma L-GRN. For a given spatial eQTL or a set of spatial
eQTLs, the x-axis represents the target gene (only genes with interactions in STRING are shown), and the y-axis represents the associated trait. Only
spatial eQTLs-gene pairs associated with traits that passed the Monte Carlo simulation are included.
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This study is not without limitations. Firstly, asthma-trait

associations can only be identified using variant-gene pairs that

physically interact and will only involve traits previously

investigated by GWAS. Additionally, not all genetic variants can

be queried due to a bias for participants of primarily European

ancestry within GWAS studies (44). Secondly, our method relies on

regulatory connections affecting genes that have known interactions

in STRING and PROPER, where STRING integrates various
Frontiers in Immunology 08
sources as evidence for protein interaction (e.g., co-expression,

text-mining, and genomics context prediction channels) and

PROPER, which at its current state limits interactions to those

identified in 3 cell lines. Moreover, spatial eQTLs whose target genes

do not form protein-protein interactions, or those forming

unknown interactions, will be missed by our analysis. The third

limitation is that the lung and blood GRNs we constructed are not

dynamic (i.e., each represents a snapshot of captured regulatory and
B

C

A

FIGURE 4

Integrating an expanded protein-protein interaction network with the blood GRN identifies conditions associated with asthma. (A) GWAS traits
enriched in levels 0 to 4 within the extended asthma B-GRN; circle size indicates the number of spatial eQTLs, and circle color indicates the
statistical significance of enrichment. Traits in black are associated with spatial eQTLs that regulate the expression of level 0 genes. Traits in blue or
red are associated with spatial eQTLs that regulate protein-coding genes having curated interactions in STRING or PROPER, respectively.
(B) Heatmap showing trait-spatial eQTL-gene interactions occurring within levels 1 to 3 of the extended asthma B-GRN (only genes with
interactions in STRING are shown). (C) Trait-spatial eQTL-gene interactions occurring at level 4 of the extended asthma B-GRN. For a given spatial
eQTL in B or C, the x-axis represents the target gene, and the y-axis represents the associated trait. Only spatial eQTLs-gene pairs associated with
traits that passed the Monte Carlo simulation are included. Of those, only genes regulated by ≥ 2 spatial eQTLs are shown in (C).
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protein interactions) and are thus subject to change. Fourthly, our

analysis combines information across multiple levels of biological

organization that do not originate from the same biological samples

[i.e., eQTL data from GTEx (45), Hi-C datasets [Supplementary

Data 1], population studies [GWAS (23)], and protein-protein

interaction data from curated and experimental datasets (24, 25)].

Moreover, while a disease SNP and a spatial eQTL may not

necessarily overlap, they could colocalize within the same linkage

disequilibrium (LD) block. These LD effects have not been explored

in this particular analysis. Finally, disease risk is associated with

both rare and common genetic variation. Therefore, the focus on

common variation overlooks disease risk associated with the

convergence of common and rare effects. Notwithstanding these

limitations, the approach we have outlined improves our ability to

identify how common genetic variation connects traits that interact

with asthma through described molecular pathways.

Asthma is a complex immune-mediated inflammatory airway

disease whose features include airway remodeling and respiratory

obstruction (46, 47). We identified that the genes regulated by

asthma-associated spatial eQTLs in the lung are also regulated by

spatial eQTLs associated with various asthma endotypes, allergic

and autoimmune disorders, metabolite levels, and traits related to

the use of asthma medication. For example, variants associated with

SLE risk, a known comorbidity of asthma (pooled odds ratio (OR):

1.37; 95% CI 1.14–1.65; I2 = 67%) (48), regulate pleiotropic genes

that are regulated by asthma-associated spatial eQTLs. The

identification of 22 genes causally related to asthma through

Mendelian Randomization as being pleiotropic and linked to

other traits in our analysis further supports the existence of

shared molecular pathways that could contribute to comorbidity

risk (43). It also raises the spectre that those not identified in our

network either act in another tissue or are not transcriptionally
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active at the developmental stages at which data for these tissues

were obtained.

Metabolite-associated traits (n=23 traits) were the single most

enriched category of traits identified as sharing genetic and protein

mechanisms with asthma. This included omega-3 and omega-6

polyunsaturated fatty acid levels (e.g., arachidonic acid), which have

been associated with the attenuation and upregulation of asthmatic

pathways (49). The metabolism of arachidonic acid can produce

cysteinyl leukotrienes, which is overexpressed in asthma patients

and has recently been linked to the production of IL-4, IL-5, and IL-

13 by binding ILC2 and Th2 cells (50). Our analysis identifies 5

arachidonic acid-associated spatial eQTLs and 5 target genes (i.e.,

FADS1, FADS2, TMEM258, SLC22A5, and AC034220.3) that

potentially affect this interaction. Notably, decreased activity of

FADS1 and FADS2 (fatty acid desaturase 1 and 2) are markers of

asthma progression (51).

Proteins do not work independently of each other. Therefore, we

analyzed protein-coding genes that directly and indirectly interact

with protein-coding genes on the asthma GRNs (level 0). This

identified traits that directly interact with asthma (level 1 traits)

and traits that indirectly interact with asthma (levels 2 to 4). Within

the lung GRN, all the enriched traits, apart from ENKTL-N, have

reported associations with asthma. These include venous

thromboembolism (hazard ratio (HR): 3.24, (52)), amyloid A

serum levels (53), protein C levels (54), intracranial volume (55),

white matter microstructure (mean diusivities) (56, 57) and

depressive symptoms (58). Notably, of the 80 traits enriched across

levels 0-4, only 8 were identified when running this analysis using

COPD-associated SNPs, (i.e., white blood cell count, vitiligo, serum

metabolite levels, atopic asthma, asthma (adult onset), cortical surface

area [global PC1], urinary metabolite levels in chronic kidney disease

and urinary metabolite ratios in chronic kidney disease), despite the
BA

FIGURE 5

Genes 2 to 4 levels away from the asthma B-GRN and L-GRNs are associated with comorbidities observed within hospitalized patient records.
(A) Diseases that are positively or negatively associated with asthma in patients hospitalized in New Zealand between 31/12/2015 and 01/01/2021.
Diseases were identified using the ICD-10-AM disease terms. Multiple odds ratios exist for some diseases with more than one ICD-10-AM disease
term or UMLS CUI identifier. For example, acute promyelocytic leukemia (UMLS CUI = C0023487, ICD-10-AM = C92) maps to acute promyelocytic
leukemia [PML], in remission (ICD-10-AM C9241) and acute promyelocytic leukemia [PML], without mention of remission (ICD-10-AM C9240).
Asthma B-GRN, normal font; asthma L-GRN, bold font. (B) Disease terms from A that have reported associations with genes located 2 to 4 levels
away from the asthma B-GRN (normal font) and asthma L-GRN (bold font).
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use of the same lung GRN, suggesting disease-specific results (35). Of

the 82 traits identified in the blood GRN, all had known associations

with asthma, apart from 8 traits whose association with asthma is yet

to be confirmed, i.e., primary biliary cholangitis, nephropathy, giant

cell arteritis, parental longevity, systolic blood pressure x alcohol

consumption interaction, ENKTL-N, high light scatter reticulocyte

count and reticulocyte fraction of red cells traits. As for the known

asthma-associated traits identified using the asthma B-GRN, they

include serum folate levels [OR=1.45, 95% CI 1.05–2.02, (59)],

urinary potassium excretion (60, 61), monocyte percentage of white

cells (62, 63), and body mass index [relative risk: 1.21, 95% CI 1.16–

1.26, (64)]. We propose that studies investigate the novel associations

identified in our study; traits such as high light scatter reticulocyte

count and reticulocyte fraction of red cells are of particular

importance since they could serve as potential biomarkers of asthma.

Despite reported links between asthma and an increased risk for

lung cancer [HR 1.29; 95% CI 0.95–1.75 (65)], the mechanism

remains unknown. Chronic inflammation (66), structural and

functional changes of the lungs [e.g., thickening of the bronchial

wall, fibrosis, and formation of scar tissue (67, 68)] could contribute

to the asthma-lung cancer association. However, our analysis

implicates 57 spatial eQTLs targeting 17 genes in the asthma-lung

cancer interaction. Increased expression of BTN3A2, one of these

genes, in resting T cells is causally associated with a lower risk of

asthma development (69). Notably, increased expression of BTN3A2

is associated with a favorable prognosis in lung cancer (70).

Our approach identified traits that are associated with asthma.

However, many of these traits are not recognized diseases. Thus, we

used DisGeNet to identify curated disease associations for the genes

within the PPINs. Of the diseases we identified as associated with

these genes, 9 were identified as comorbid with asthma in New

Zealand patients hospitalized with asthma and 2 occurred at higher

levels within the non-asthmatic hospitalized population (i.e., retinal

diseases and ulcerative colitis). This is consistent with a previous

observation that there is no increased risk of ulcerative colitis in

patients diagnosed with asthma (71) but inconsistent with others (71,

72). Notably, ulcerative colitis was associated with the pleiotropic

TNFSF15 gene (within the asthma L-GRN), which is associated with

both childhood asthma (73) and ulcerative colitis (74).

The strength of the network approach we developed is the

provision of molecular insights for the identified asthma-trait

interactions. However, questions about the significance of finding

risk variant-gene associations with blood (e.g., white blood cell count)

and brain (e.g., intracranial volume, white matter microstructure) and

neurological (e.g., depressive symptoms) related traits using a lung-

specific GRN remain. It should be noted that while the GRNs are

tissue-specific, most GWAS studies are carried out using blood

samples. Traits are thus identified if their associated variant is: 1)

GWAS significant; and 2) a spatial eQTL in the tissue of interest. This

may help explain why some blood and brain-related disorders were

observed despite using a lung-specific GRN. It may also reflect

interconnectivity between whole-body organ systems, a study bias

concerning gene and protein function, or the conserved action of

regulatory sites (marked by spatial eQTLs) across tissue types.

Further work will be required to determine which of these possible

explanations is or are relevant.
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Our de novo discovery approach can identify conditions

comorbid with asthma without a priori selection of the

interacting phenotypes. In so doing, it prioritizes phenotypes for

which genetic variation and biological mechanisms interact and

potentially affect disease presentation. The molecular connections

we have identified in this study represent high-value targets for

subsequent investigation into asthma development, comorbidity,

and future therapeutic development.
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