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Syphilis is an infectious disease that can be diagnosed and treated cheaply. Despite

being a curable condition, the syphilis rate is increasing worldwide. In this sense,

computational methods can analyze data and assist managers in formulating

new public policies for preventing and controlling sexually transmitted infections

(STIs). Computational techniques can integrate knowledge from experiences

and, through an inference mechanism, apply conditions to a database that

seeks to explain data behavior. This systematic review analyzed studies that use

computational methods to establish or improve syphilis-related aspects. Our

review shows the usefulness of computational tools to promote the overall

understanding of syphilis, a global problem, to guide public policy and practice,

to target better public health interventions such as surveillance and prevention,

health service delivery, and the optimal use of diagnostic tools. The review

was conducted according to PRISMA 2020 Statement and used several quality

criteria to include studies. The publications chosen to compose this review

were gathered from Science Direct, Web of Science, Springer, Scopus, ACM

Digital Library, and PubMed databases. Then, studies published between 2015 and

2022 were selected. The review identified 1,991 studies. After applying inclusion,

exclusion, and study quality assessment criteria, 26 primary studies were included

in the final analysis. The results show di�erent computational approaches,

including countless Machine Learning algorithmic models, and three sub-areas of

application in the context of syphilis: surveillance (61.54%), diagnosis (34.62%), and

health policy evaluation (3.85%). These computational approaches are promising

and capable of being tools to support syphilis control and surveillance actions.
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1. Introduction

Syphilis is an infectious disease caused by Treponema

pallidum subsp. pallidum (T. Pallidum) infection that can be

sexually transmitted (Acquired Syphilis—AS) or through vertical

transmission during pregnancy (Congenital Syphilis—CS) (1–3).

Although curable and preventable through barrier methods (such

as condoms), syphilis has been neglected and still represents a

global public health concern due to inadequate diagnosis and

treatment, resulting in morbidity and mortality in newborns and

untreated infected people (4, 5).

According to theWorld Health Organization (WHO), over 357

million new cases of curable sexually transmitted infections (STIs)

were diagnosed among young adults (15–49 years) in 2016 alone,

of which 6 million were associated with syphilis (6). Currently,

Brazil, Europe Union, and the USA are facing a silent syphilis

epidemic that affects millions of patients annually (7–10). The 2022

Epidemiological Bulletin of Syphilis reported that, between January

1 and June 30, 2021, 167,523 new cases of AS were identified,

followed by 74,095 cases of syphilis in pregnancy (SIP) and 27,019

cases of CS (11). In Brazil, there was on average one new case of AS

every 1 min and 40 s, 1 new case of SIP every 4 min and 15 s, and 1

new case of CS every 11 min (12, 13).

Syphilis is diagnosed through serological tests, such as the

Venereal Disease Research Laboratory (VDRL), a non-treponemal

test. If a non-treponemal test is reactive, a treponemal test, e.g., T.

Pallidum hemagglutination assay (TPHA), is performed to confirm

the diagnosis. However, serological tests have limitations, such as

the time of infection, which may present false-negative results in

cases of early or late infections (14).

Adequately treated patients are expected to show significantly

reducing non-treponemal antibody titers, but there are cases

where titers persist for months to years and may represent a

false-positive result when retested (15, 16). Furthermore, it is

also possible to observe false-positive results in patients with an

autoimmune condition, such as systemic lupus erythematosus,

with other infectious diseases, such as brucellosis, or even in

pregnancy (15). As syphilis shares several clinical manifestations

and clinical characteristics with other treponemal and non-

treponemal diseases, a safe clinical diagnosis is necessary, always

performed by well-prepared and highly accurate laboratory tests

(17).

In parallel, computational methods have been applied in health

to aid diagnosis and treatment decisions, including in the diagnosis

of STIs, recommendation of adequate treatment, and predictions

on the probability of infection (18–21). Predictive analytics is a

method for predicting future risks based on current and prior

data, assisted often by data mining, machine learning, and novel

statistical techniques (22). These techniques are used to develop

an inference mechanism, a set of rules that can be applied to a

dataset to render a mathematical function that can predict or infer

knowledge about that data (19).

Artificial intelligence (AI) has been used to determine

characteristics of individuals who are more prone to STIs, such

as men who have sex with men (MSM), transgender people, sex

workers, those who use stimulants to enhance and prolong sexual

experiences (known as chemsex practitioners), and pre-exposure

TABLE 1 Research questions.

RQ Description

01 What computational methods are being applied to syphilis?

02 What is the purpose of applying computational methods in

the context of syphilis?

03 In which areas of health are computational methods being

applied (surveillance, diagnosis/prediction, or evaluation of

public health policies)?

prophylaxis users (PrEP) who do not use condoms (23). For AI

systems to be deployed, they need to be trained using data generated

from clinical interactions. These data can be collected during

clinical activities such as screening, diagnosis, and treatment of

patients so that the AI systems can learn the similarities between

groups and associations between the characteristics of subjects.

This data can also include demographic data, clinical notes of

health professionals, electronic records from medical devices, data

from physical exams, and laboratory and imaging results. AI

includes, among others, machine learning (ML) techniques that

analyze structured data, such as images and genetic data, and

natural language processing (NLP) that can use and integrate data

in various forms, such as text, waveform, and images (24).

Basic ML algorithms can be categorized as supervised and

unsupervised. Supervised ML methods work by gathering many

training cases, which contain labeled inputs and the desired outputs

(25). By analyzing the patterns in all the labeled input-output pairs

for new cases, the algorithm learns how to produce the correct

output for a given input (26, 27). Unsupervised learning infers the

underlying patterns by applying similarity measures to unlabeled

data to find subclusters of the original data, identify outliers, or

produce low-dimensional representations of the data (24).

Against this background, this systematic literature review (SLR)

aims to analyze published studies that use computational methods

with the application of AI, ML, or other statistical methods to

predict the occurrence of syphilis in critical populations and also

identify potential gaps and opportunities for future research on

different areas for programmatic response to syphilis, such as

management of surveillance and comprehensive care.

2. Materials and methods

This research was developed based on the systematic review

guidelines proposed by Kitchenham (28) and the PRISMA checklist

(29). Initially, as a fundamental part of the protocol, 3 Research

Questions (RQ) were formulated (Table 1).

The process of identifying primary studies related to the

research object of this SLR consisted of searches in six repositories:

Science Direct, Web of Science, Springer, Scopus, ACM Digital

Library, and PubMed. Searches in all databases were performed

on August 9, 2022. The following search string (SS01) was used

in searches:

• (syphilis) AND (“machine learning” OR “artificial

intelligence” OR “computational intelligence” OR “deep

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1201725
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Albuquerque et al. 10.3389/fpubh.2023.1201725

TABLE 2 Inclusion and exclusion criteria.

N Inclusion criteria Exclusion criteria

01 Articles published from 2015

to 2022

Duplicate articles

02 Research articles Review articles

03 – Studies not related to syphilis

and computational methods

learning” OR fuzzy OR “artificial neural network” OR

“specialist systems” OR “smart system”).

After identifying and defining the initial set of records,

screening was performed to select a subset of eligible primary

studies. This process was organized and executed based

on the application of three basic procedures: (i) Inclusion

Criteria—IC; (ii) Exclusion Criteria—EC; and (iii) Quality

Assessment Criteria—QA.

In the first procedure (i), a subset of primary studies was

defined from the IC and applied through the filters available in

the repositories. In the subsequent step (ii), a screening guided

by the EC based on reading the title, abstract, and keywords was

performed on the subset of primary studies. Rayyan (30), a web

application for systematic reviews, helped carry out step (ii). The

search used two inclusion and three exclusion criteria, as shown in

Table 2.

To determine the final set of eligible studies to seek answers

to the RQ (Table 1), a screening guided by the QA criteria was

carried out from the complete reading of the primary articles

(Table 3). An evaluation metric called score was used to qualify and

classify the studies (as presented in Equation 1). The score is the

arithmetic mean of the weights (w) assigned to each QA criterion.

The weight (w), which can vary between 0, 0.5, and 1.0, measures

how satisfactory the response of that article is to a specific QA

criterion, as shown in Equation (2). The preliminary reports that

obtained a score ≥ 0.5 (i.e., 0.5 ≤ score ≤ 1.0) were considered

eligible for this SLR.

score =
1

nQA

nQA
∑

i=1

wQAi
(1)

where:

– nQA: variable used to represent the total of QA criteria;

– wQA: variable used to determine the value referring to the weight

w attributed to the QA criterion under analysis (see the possible

values in Equation 2).

wQA =











1.0, yes, fully describes,

0.5, yes, partially describes,

0, does not describe.

(2)

The scores were assigned by two independent reviewers and

elementary data of the final set of eligible studies, extracted based

on the RQ, were summarized in Table 4. Studies were included via

another method, based on a simple and active search in Science

TABLE 3 Quality assessment.

QA Description

01 Does the study have as an object of investigation a computational

approach applied to the topic of syphilis?

02 Does the study describe the computational method applied to the

context of syphilis?

03 Does the study describe the field of application in health

(surveillance, diagnosis, and evaluation of public policies)?

Direct, Springer, and PubMed (Figure 1). This search used the

following descriptors: syphilis AND model AND diagnosis.

3. Results

The quantitative results of the execution of the SLR protocol

are presented in Figure 1. After identification and screening, 26

primary studies were selected as eligible and included in this SLR

to respond to the RQ (Table 1). Relevant data were extracted from

the eligible studies and described in Table 4.

3.1. Research question 01

Different computational approaches applied to syphilis and

other STIs were identified in the primary studies. It was observed

that mostly and regardless of the context and purpose of the

application, primary studies explored different computational

models of supervised MLâĂŤthat is, algorithmic models based on

previously labeled data to perform classification or regression tasks.

Data-based computational applications for classification or

regression tasks generally involve well-organized and pervasive

processes that form the following workflow (57): (i) data

acquisition, which will serve as input for computational models

after the second stage; (ii) data processing, which prepares the

data through denoising, feature extraction, feature selection, and

data balancing; (iii) training, testing, and selection of the best

computational model for application. In the set of primary

studies, a more significant effort was evident in processes (ii) and,

mainly, (iii).

With data from electronic records from health centers, and

especially considering stage (iii), Xu et al. (31) and Elder et al.

(48) proposed the most significant number of computational

models applied to the context of syphilis. They used different

predictivemethods: symbolic; probabilistic; distance-based; margin

maximization; connectionists; and ensemble learning. Both articles

proposed, respectively, 17 and 16 ML models based on regression

algorithms (linear and non-linear), Support Vector Machine

(SVM), Bagging Ensemble, Boosting Ensemble, Stacking Ensemble,

Random Forest (RF), Naïve Bayes (NB ), K-Nearest Neighbor

(KNN), Neural Net, and multi-layer perceptron (MLP). As a result,

the Boosted Generalized Linear Model (AUC = 0.76) (31) and the

Super Learning (cross-validated AUC = 0.76) (48) obtained the

best performances.

As for predictive models of ML based on regression

and regression for classification, which are widely used in
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TABLE 4 Set of selected primary studies and their main characteristics.

References Year Score Health
target

Objective Techniques (best
model)

Performance (best model)

Acc Recall Precision AUC

Xu et al. (31) 2022 1.0 Surveillance Predicting risk Boosted GLM – – – 76%

Valentim et al. (32) 2022 1.0 Surveillance Predicting syphilis Stochastic Petri net and

three regressions

98.81% – – –

Yan et al. (33) 2021 1.0 Surveillance Predicting STDs ARIMA RMSE: 1,794.99;MAPE: 3.39%

Cuffe et al. (34) 2020 1.0 Surveillance Predicting syphilis Logistic Regression – 88.1% – 89.2%

Young et al. (35) 2018 1.0 Surveillance Predicting syphilis LMM and LASSO RMSE: 4.90; R2 : 0.898

Allan-Blitz et

al. (36)

2018 1.0 Surveillance Predicting syphilis GEE and Poisson

Regression

– – – 69%

Macedo et al. (37) 2016 1.0 Surveillance Recommending

information

CISS+ (NLP) – – 90% –

Zhang et al. (38) 2016 1.0 Surveillance Estimating syphilis

incidence

ARIMAX RMSE∗ : 0.0097;MAPE∗ : 0.1335

Yan et al. (39) 2022 0.83 Surveillance Analyzing the impact of

the COVID-19

pandemic on the

epidemiological changes

of STDs

Gray Model APE 2019/2020: 4.07%/15.45%

Tissot and

Pedebos (40)

2021 0.83 Surveillance Assessing clinical risk KER AUPRC: 0.099

Joshi et al. (41) 2021 0.83 Surveillance Estimating syphilis cases ARIMA – – – –

Amith et al. (42) 2020 0.83 Surveillance Analyzing social

networks

Ontology z-score: 0.48

Serban et al. (43) 2019 0.83 Surveillance Forecasting

outbreaks/levels of

disease

Deep Learning F1-score: 0.852 and 0.939

Scholz et al. (44) 2015 0.83 Surveillance Simulating the spread of

syphilis

SILAS Model – – – –

Ruan et al. (45) 2021 0.66 Surveillance Estimating life

expectancy

NLP Loss: 5.16E-04

Ou et al. (46) 2020 0.5 Surveillance Supporting STIs

screening

Complex networks – – – –

Wang et al. (47) 2022 1.0 Diagnosis Classifying infectious

diseases

MIDDM 72.60% 72.60% 89.45% –

Elder et al. (48) 2021 1.0 Diagnosis Classifying STIs Super Learning

(ensemble model)

– – – 76%

Bao et al. (49) 2021 1.0 Diagnosis Predicting STIs diagnosis GBM 77% 81% – 85.8%

Dexter et al. (50) 2020 1.0 Diagnosis Classifying STIs RF – 91% 89% 99.22%

Mathur et al. (51) 2021 0.83 Diagnosis Classifying 20 diseases CNN ensemble – – – 98%

Lu et al. (52) 2019 0.83 Diagnosis Identifying indicators Multivariable Logistic

Regression

– – – 94.1%

King et al. (53) 2018 0.83 Diagnosis Classifying STIs Multivariable Logistic

Regression

c-statistic: 0.703 and 0.676

SUNWG (54) 2021 0.66 Diagnosis Classifying syphilitic

uveitis

Multinomial Logistic

Regression

100% – – –

Pinoliad et al. (55) 2020 0.66 Diagnosis Classifying syphilis and

other STIs

Deep Learning 90% 100% 58% –

Pinto et al. (56) 2022 1.0 Health policies Impact evaluation of

health policies

Segmented Linear

Regression

– – – –

Boosted GLM, Boosted Generalized Linear Model; STDs, Sexually Transmitted Diseases; ARIMA, Autoregressive Integrated Moving Average; ARIMAX, ARIMA with Explanatory Variable;

RMSE, Root Mean Square Error; MAPE, Mean Absolute Percentage Error; LMM, Linear Mixed-effects Model; LASSO, Least Absolute Shrinkage Selection Operator; GEE, Generalized

Estimating Equations; CISS+, Chronic Illness Surveillance System - expanded version; NLP, Natural Language Processing; APE, Absolute Percentage Error; KER, Knowledge Embedding

Representation; AUPRC, Precision-recall curves; SILAS, Sexual Infections as Large-Scale Agent-based Simulation; STIs, Sexually Transmitted Infections; MIDDM, Multiple Infectious Disease

Diagnostic Model; GBM, Gradient Boosting Machine; RF, Random Forest; CNN, Convolutional Neural Network; SUN WG, The Standardization of Uveitis Nomenclature Working Group.

*Congenital syphilis.

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1201725
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Albuquerque et al. 10.3389/fpubh.2023.1201725

FIGURE 1

Adapted from PRISMA 2020 flow diagram from the result of the execution of the systematic review protocol.

primary studies, the following algorithms were observed:

Multivariable/Multivariate Logistic Regression (31, 49, 52, 53);

Multinomial Logistic Regression (54); Elastic-Net Regression (31);

Logistic Regression (32, 34) Segmented Linear Regression (56);

Bayesian Additive Regression Trees (BART) (48); Least Absolute

Shrinkage and Selection Operator (LASSO) (35, 48); RIDGE

Regression (48); Poisson Regression (36); Generalized Linear

Model Logistic Regression (GLM) (48); Boosted GLM (31); Linear

Mixed-effects Model (LMM) (35); Linear Regression (32), and

Polynomial Regression (32).

Other computational approaches include models based on

Deep Learning (43, 49, 55), Convolutional Neural Network

Ensemble (51), Decision Tree (47), RF (31, 49, 50), Gradient

Boosting Machine (49), Extreme Gradient Boosting (XGBoost)

(47–49), Autoregressive Integrated Moving Average (ARIMA) (33,

38, 41), ARIMA with Explanatory Variable (38), Decomposition

(38), Generalized Estimating Equations (36), NLP (37, 45),

Ontology (42), Complex Networks (46), Knowledge Embedding

Representation (40), Sexual Infections as Large-Scale Agent-based

Simulation model (44), and Gray Model (39). Table 4 shows the

techniques that obtained the best performances in each study and

their respective values according to the metric used for evaluation.

3.2. Research question 02

The primary included studies show and explore various

applications of computational methods in the context of the

syphilis. Two large groups of applications stood out: first, in

the classification and identification syphilis indicators (47–55);

second, in the prediction of STI-related risks, including syphilis

(31–36). Both groups employed trained computational models
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that have learned patterns from a previously known syphilis-

related dataset. Such models were able to use those patterns to

make predictions or classify new patient data for establishing

syphilis diagnosis.

Other scholars, such as Macedo et al. (37), have explored

alternative applications and proposed a health surveillance software

architecture modeled with ML algorithms and NLP techniques.

These techniques can provide preventive recommendations based

on specific terms associated with the disease and published

scientific articles. Ruan et al. (45), also using NLP, developed a

method to estimate health-adjusted life expectancy in China. Zhang

et al. (38), Joshi et al. (41), and Scholz et al. (44) developed

applications to estimate syphilis incidence in China, estimate

syphilis cases in New York State, and simulate a spread of syphilis

in the population of Germany, respectively.

Further, by expanding the possibilities of applications based

on computational methods in the syphilis context, the studies

also presented models built to analyze networks or social media.

The goal aimed to interpret and elucidate the relationships of

individuals who post about STIs (42) and to forecast outbreaks

based on publications and situational awareness by analyzing

scientific articles (43). Tissot et al. (40) presented a model

for risk assessment of miscarriage during the early stages of

pregnancy. In the same perspective of preventive care, Ou et al.

(46) proposed an application to help health agents in the STI

screening process.

Two studies explored applications for impact analysis. First,

Yan et al. (39) used a computational model developed to analyze

the impact of the COVID-19 pandemic on the epidemiological

changes of STIs in China. In another approach, Pinto et al.

(56) evaluated, through an algorithmic model, the effectiveness

of public policy actions in Brazil to reduce AS, SIP, and

CS rates.

3.3. Research question 03

Considering the perspective of the large area of health sciences,

the applications proposed in the included studies focus on seeking

and investigating computational solutions within the scope of

three subareas (Figure 2). (1) surveillance accounted for 16 studies

(61.54%) (31–46); (2) diagnosis for nine related studies (34.62%)

(47–55); and (3) evaluation of health policies for only one

(3.85%) (56).

For (1) surveillance, studies (31–46) point to promising

technologies or computational methods (Sections 3.1 and 3.2)

that act as instruments to subsidize and provide technical support

to actions mainly related to the epidemiological surveillance of

syphilis and other STIs. Not diverging from the purpose of the

different subareas, subarea (2) stood out, where studies focus on

seeking innovative and scalable solutions for diagnosing syphilis

and other STIs (47–55). Regarding (3) evaluation of health

policies, Pinto et al. (56) present a computational solution to

investigate and statistically measure the effectiveness of strategies

and public policy actions which, from the perspective of public

health management, is a vital resource to assist and guide

decision-making.

4. Discussion

Although completely curable, syphilis is a sexually transmitted

infection caused by T. Pallidum, which is responsible for a silent

epidemic wave worldwide (3, 7–9, 58, 59). Even though it is

relatively easy to diagnose syphilis through routine laboratory

methods, the tests available around the world still present problems,

mainly because the most qualified tests are difficult to access,

especially in poorer countries. Therefore, the application of

computational methods can contribute to the development of new,

more accessible (point of care), cheaper, andmore accurate tests for

the diagnosis of syphilis (60).

Previous studies analyzed the sensitivity and specificity of

Syphilis Health Check, a rapid qualitative test to detect human

antibodies to T. Pallidum (61), or explored the prevalence of

syphilis in men who have sex with men (MSM), identifying critical

geographic mapping, trends, and data gaps in Latin America and

the Caribbean (62). However, in the current paper, we present a

systematic review that investigates the application of computational

methods as technological tools to support and induce strategies

in the context of syphilis. The analysis revealed a diverse set

of studies that used computational methods for epidemiological

surveillance of syphilis, diagnosis of syphilis, and assessing the

impact of public policies.

In this sense, our review shows the utility of computational

tools in furthering the general understanding of syphilis which

is worsening a global problem, to guide policy and practice to

target better public health interventions such as surveillance and

prevention, health care service delivery, and the optimal use of

diagnostic tools. For instance, Joshi et al. (41) utilized an ARIMA

model to investigate the impact of the COVID-19 pandemic on

the diagnosis and reporting of STIs, aiming to inform sexual

health program planning. The study analyzed New York State STI

surveillance data from January 2015 to December 2019 and found

that stay-at-home orders contributed to a decline in sexual activity

with casual partners, and adversely affected sexual health services,

including a reduction in access to diagnostic testing for STIs.

Zhang et al. (38) showed that disease surveillance data could be

used to understand syphilis behavior over time using a time-series

models. The study revealed a long-term seasonal and increasing

trend for the infection, with secondary syphilis showing more

significant seasonal fluctuation than other types of the disease.

They concluded that patient’s likelihood of seeking treatment for

secondary syphilis, which is more severe than the other types,

was one reason to explain the observed seasonality. Using logistic

regression models, Cuffe et al. (34) revealed that several risk factors

were associated with a CS case. This finding may potentially

support epidemiological surveillance and healthcare services in

directing prevention efforts for CS.

Bao et al. (49) demonstrated that it is possible to use

ML techniques to predict syphilis infection using datasets that

should be available in most settings, such as STIs symptoms,

previous syphilis infection, length of residence in the current place,

frequency of condom use with casual male sex partners during

receptive anal sex, and the number of sex partners.

Dexter et al. (50) alerted to the limitations of predictive models,

especially regarding the low generalization power using health
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FIGURE 2

Summary of occurrence of articles by application area.

data. They cautioned on generalizing the model’s performance

in the test and validation dataset to general population use.

Understanding the descriptors and how to render the model with

high generalizability in the test and validation datasets allows

the development of reliable models that reach a favorable result

within the scope for which it was intended. Algorithmic bias is an

important considerationwhen applying algorithms generated using

learning sets and restricted data, as they can further reinforce and

augment prevailing inequalities in health systems (63).

There is a need for establishing population-level integrated

data sets that are representative, inclusive, and incorporate public

health and surveillance data with health service delivery and socio-

economic data to improve the utility of AI and ML techniques to

strengthen health systems in general and to improve control of

syphilis (64, 65). For this disease, there is encouraging development

of technological platforms aimed to minimize errors generated

by the fragmentation of data used to survey, diagnose and treat

syphilis. For example, in Brazil, the Salus Platform Integrates

surveillance data with primary health care data and applies ML

to improve work processes and response in health crisis scenarios

(66, 67). This Platform has also integrated a model of Research

on Knowledge, Attitudes, and Practices in the Population into

its technological architecture, adapted from the national survey

carried out by the Ministry of Health, the Search of Knowledge,

Attitudes, and Practices in the Brazilian population (PCAP) (68).

With this, it is possible to investigate patient’s knowledge, attitudes,

and practices related to syphilis, HIV, and other STIs infection.

There are great possibilities with ML to improve and better

target surveillance and testing for syphilis and to help inform

the development of more efficient and timely diagnostic processes

for syphilis and in health surveillance. These developments can

help benefit the fight against syphilis, but also other infectious

diseases by paving the way for the development of rapid

incidence assays to characterize emerging and worsening epidemics

(69).

In the context of Brazil, which has the Brazilian National Health

System (SUS), with a tripartite governance framework underpinned

by a regionalized and hierarchical network of healthcare providers

organized according to the complexity of care, behavioral surveys

can be carried out when patients seek health care (70, 71).

However, for this to happen in SUS, health policies, public health,

surveillance, and healthcare service delivery activities need to

operate more effectively in an integrated manner (72). Brazil’s

suboptimal response to COVID-19 has shown the need for better

coordination of health policies, public and healthcare delivery, and

integrated datasets that can be harnessed for the application of ML

methods (73–75).

Results of this study show that analysis using computational

techniques could help inform public health and healthcare delivery

responses to the worsening syphilis epidemic around the world.

But for this to happen, surveillance and policies developed to

inform public health and healthcare delivery interventions must be

better coordinated. The fact is that health sciences have advanced

a lot, particularly with digital health, surpassing the analog world.

Therefore, we come from a place where health was more restricted

in terms of access to care, as diagnosis methods were only carried

out using expensive and difficult-to-access equipment that required

super specialists to operate and issue medical reports.

Surveillance actions for STIs such as syphilis, coupled

with novel AI-based technologies and tools, contribute toward

overcoming the delays in reports drawn on case notification

and the shortcomings in current STI data collection. Optimal

STI surveillance is contingent on timely and accurate data, yet

surveillance data are generally delayed or unavailable (76). In

Brazil, which has experienced a syphilis epidemic since 2016 (77),

epidemiological reports on syphilis have usually been released
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belatedly, usually by more than a year. Thus, in this case, how to

make decisions that rely only on delayed data that reflects previous

scenarios? (78).

Against this background, IA may enhance surveillance, serving

as a tool to support decisions about public health interventions

in the context of STIs. Therefore, this could provide part of the

answer to this public health problem. According to Young et al.

(76), available research on STIs has shown that AI can predict

syphilis rates at the small-town level by parsing publicly available

social media data regarding people’s sexual attitudes and behaviors

associated with syphilis. This method, known as Rumor analysis,

is highly cumbersome through traditional surveillance methods.

However, this is not the case when AI-based tools are used because

they allow the same analyses to be performed within seconds (79).

Today we are living the transition from this analogical world

of health to a fully digital world; the world is experiencing an

important process of digital transformation in health. However,

for this movement in digital health to be successful and achieve

better social results, science must also look at neglected diseases

such as syphilis. Advances in health with AI cannot only be used

to increase the profits of the health industry; they must also target

social inequities and injustices and develop new diagnosticmethods

to increase access to health for all who need it. This is the way of the

future. Using digital health, based on computational methods such

as AI, and all its potential to create new diagnostic methods, new

tests, and new forms of prevention against STIs, for example, would

be a great advance.

Cheaper technologies at the point-of-care that can be operated

at distances—telemedicine and telediagnosis—will certainly

contribute to reducing inequalities health access, an important

contribution to global health (60). Syphilis is a secular disease, but

there are indications it is an ancient ailment, rendering senseless

the fact it is still a neglected disease by global science. It is necessary

to move forward in the present—right now—so that in the future

there will be no more children dying from congenital syphilis. This

is a very noble goal for science, for health, for digital health and for

those who study the application of AI in health.

5. Conclusions

This article investigates the literature, based on a systematic

review protocol, to identify and highlight studies exploring

applications based on computational methods or approaches in

the context of syphilis. The execution of the SLR protocol yielded

26 primary studies, which were considered eligible. Our findings

reveal a substantial diversification of algorithmicmodels, regardless

of the purpose of application, and three subareas of concentration

in the field of health sciences: (1) surveillance (16 studies—61.54%)

(31–46); (2) diagnosis (nine studies—34.62%) (47–55); and (3)

evaluation of health policies (one study—3.85%) (56).

By showing computational models capable of being tools to

support STI control and surveillance actions, the studies show

promising outcomes. The use of several ML models in the context

of syphilis, for example, exhibit a tendency toward consolidation of

algorithms for classification and regression tasks. However, there

are still ambitious challenges to be explored, such as evaluating

the generalization capacity of models considering different global

populations, identifying biases in data, and investigating universal

access to applications.

A limitation of this review was the impossibility of defining

the best predictors for the analysis of syphilis due to the diversity

of methods, datasets, and variables used. In addition, the review

findings could not establish a technique with good generalizability

for the implemented models.
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