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Potential benefits of medium
chain fatty acids in aging and
neurodegenerative disease
Ella Dunn†, Biqin Zhang†, Virender K. Sahota and
Hrvoje Augustin*

Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University
of London, Egham, United Kingdom

Neurodegenerative diseases are a large class of neurological disorders

characterized by progressive dysfunction and death of neurones. Examples

include Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia,

and amyotrophic lateral sclerosis. Aging is the primary risk factor for

neurodegeneration; individuals over 65 are more likely to suffer from

a neurodegenerative disease, with prevalence increasing with age. As

the population ages, the social and economic burden caused by these

diseases will increase. Therefore, new therapies that address both aging and

neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate,

high-fat diets developed initially as an alternative treatment for epilepsy. The

classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally

occurring medium chain fatty acids (MCFAs), on the other hand, are the main

components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-

based diets are more efficient at generating the ketone bodies that are used

as a secondary energy source for neurones and astrocytes. However, ketone

levels alone do not closely correlate with improved clinical symptoms. Recent

findings suggest an alternative mode of action for the MCFAs, e.g., via improving

mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been

linked to the treatment of both aging and neurodegenerative disease via their

effects on metabolism. Through action on multiple disease-related pathways,

MCFAs are emerging as compounds with notable potential to promote healthy

aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate

autophagy and restore mitochondrial function, which are found to be disrupted

in aging and neurodegeneration. This review aims to provide insight into the

metabolic benefits of MCFAs in neurodegenerative disease and healthy aging.

We will discuss the use of MCFAs to combat dysregulation of autophagy and

mitochondrial function in the context of “normal” aging, Parkinson’s disease,

amyotrophic lateral sclerosis and Alzheimer’s disease.

KEYWORDS

ageing, amyotrophic lateral sclerosis, Parkinson’ s disease, Alzheimer’s disease, medium
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1. Introduction

Neurodegeneration is defined as the progressive dysfunction, structural impairment,
and eventual death of neuronal cells. Neurodegenerative diseases (NDs) are predominantly
adult-onset pathologies that can have familial (genetic) or sporadic causes and form a large
class of neurological disorders that are the main cause of disability and the second leading
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cause of death worldwide (Erkkinen et al., 2018; Bannick et al.,
2019). Globally, the most common NDs are Alzheimer’s disease
(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(ALS).

The ketogenic diet is a low-carbohydrate, high-fat diet. The
classic KD utilizes long chain triglycerides (LCTs)–consisting of
long chain fatty acids (LCFAs)–to provide between 60 and 80%
of dietary energy. The alternative type of ketogenic diet relies on
medium chain triglycerides (MCTs) that are hydrolyzed to medium
chain fatty acids (MCFAs) as a primary energy source (Neal, 2017).
LCFAs and MCFAs differ by the number of carbon atoms: LCFAs
have between 16 and 20 carbon atoms, whereas MCFAs have 6–
12 (Neal, 2017; Table 1). After hydrolysis of triglycerides to fatty
acids in the gut, ketone bodies (known as ketones) are generated
in the liver via β-oxidation. Compared to LCFAs, MCFAs are more
rapidly metabolized and generate ketones more efficiently, allowing
for a more palatable diet due to the higher carbohydrate content
(Huttenlocher et al., 1971).

For almost a century, the ketogenic diet has been used in the
treatment of drug-resistant epilepsy (Martin et al., 2016). Recent
in vitro and in vivo studies suggest a wider, neuroprotective role
of the KD in the context of cancer, neurodegenerative diseases,
and normal, healthy aging (Moreno and Mobbs, 2017). The
mechanisms of action of the KD are not fully understood but
are likely related to improved mitochondrial function and energy
metabolism, and enhanced autophagy.

In this review, we discuss how impaired autophagy and
mitochondrial dynamics affect aging and pathogenesis of NDs,
focusing on AD, PD, and ALS, and provide an overview of
experimental evidence suggesting novel therapeutic avenues aimed
at exploiting the beneficial effects of MCFAs on these processes
(Table 2).

2. MCT-based diets,
neurodegenerative diseases, and
aging

2.1. Neurodegenerative diseases and
“healthy” aging

Multiple disease-causing factors have been identified for
AD, PD, and ALS, ranging from environmental to genetic.
A pathological feature shared by all three NDs is the accumulation
of protein inclusions that are believed to play a critical role in the
onset of neurodegeneration (Longhena et al., 2017). AD is the
most common ND, causing progressively severe and irreversible
cognitive and physical decline. The major hallmarks of AD
pathology are accumulation of β-amyloid plaques in the brain,
and the hyperphosphorylation and aggregation of tau protein to
form neurofibrillary tangles, both of which trigger neuronal cell
death (Luque and Jaffe, 2009). The loss of dopaminergic neurones
and the accumulation of Lewy bodies (LB), cytoplasmic inclusions
consisting of α -synuclein in the brain, leads to PD, the fastest
growing neurological disorder in the world (Volpicelli-Daley
et al., 2014; Poewe et al., 2017; Raza et al., 2019). ALS, the most
common form of motor neurone disease (MND), is characterized

by a progressive, paralysis-causing loss of motor neurones in the
brain and spinal cord (Hulisz, 2018) and the presence of inclusions
containing TDP-43, a protein that becomes pathological when
hyper-phosphorylated or hyper-ubiquinated (Lillo and Hodges,
2009). At the molecular level, human NDs are characterized
by proteotoxic stress, oxidative stress, neuroinflammation,
mitochondrial dysfunction, excitotoxicity and autophagy
dysregulation (Dong et al., 2009; Dugger and Dickson, 2017).
The convergence of biological processes implicated in different
NDs indicates common mechanisms driving neurodegeneration.
Currently, there are no treatments able to sufficiently alter any ND,
signifying a need for further research and funding.

The greatest risk factor for all major NDs is aging. Biological
aging is described as the gradual functional decline of cells,
tissues, and organs, leading to physical, physiological, metabolic
and psychological changes over time and increased vulnerability
to death. The molecular and cellular processes underlying
aging including genomic instability, telomere loss, epigenetic
changes, compromised protein homeostasis, deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence, stem cell
exhaustion and altered intercellular communication (López-Otín
et al., 2013). A large body of experimental evidence suggests that
amelioration of these hallmarks of aging may extend lifespan and
improve the health status in various animal models of “healthy”
aging and human diseases, prompting the search for genetic,
pharmacological and dietary modifiers of these processes. Due
to their ability to modulate many of the cellular mechanisms
underlying aging and pathobiology of NDs, MCFAs emerged as a
promising class of molecules for intervention into these processes.

2.2. MCT-based diet

The MCT diet relies on three main ketones to elicit
metabolic effects: acetone, acetoacetate and β-hydroxybutyrate
(BHB) (Schonfeld and Wojtczak, 2016). Ketone-based diets are
known to modulate levels of GABA and glutamate, inhibit voltage
dependent calcium channel regulation and alter mitochondrial
function and ATP availability (Bough and Rho, 2007; Lutas
and Yellen, 2013; Kadowaki et al., 2017). Under normal dietary
conditions, glucose is utilized as a main energy source. In
conditions where glucose is unavailable, such as in fasting
conditions, ketones become the main energy source. Whereas
ketone bodies can be neuroprotective (Kim et al., 2007; Yang et al.,
2019), there is a lack of clear correlation between plasma ketone
levels in mouse seizure models (Tan et al., 2017), and ex vivo
studies indicate that fatty acids, rather than ketones, provide anti-
seizure activity in rat models of epilepsy (Chang et al., 2016).
These experimental data suggest the existence of additional modes
of action through which ketogenic diets can exert their beneficial
effects on the nervous system.

Octanoic acid and decanoic acid are medium chain fatty
acids (MCFAs; Table 1) and components of the medium chain
triglyceride (MCT) ketogenic diet. These MCFAs can provide an
alternate energy source to glucose for neurones and astrocytes
(Cunnane et al., 2020). NDs are associated with metabolic
dysfunction, specifically with altered glucose and lipid metabolism
in the brain, indicating MCFAs as a potential treatment option
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TABLE 1 Medium chain fatty acids.

IUPAC name Common name Carbon atoms Chemical formula Molecular structure

Hexanoic acid Caproic acid 6 CH3(CH2)4COOH

Heptanoic acid Enanthic acid 7 CH3(CH2)5COOH

Octanoic acid Caprylic acid 8 CH3(CH2)6COOH

Nonanoic acid Pelargonic acid 9 CH3(CH2)7COOH

Decanoic acid Capric acid 10 CH3(CH2)8COOH

Undecanoic acid Undecylic acid 11 CH3(CH2)9COOH

Dodecanoic acid Lauric acid 12 CH3(CH2)10COOH

(Wlaz et al., 2012; Cunnane et al., 2020; Estes et al., 2021).
Importantly, recent findings demonstrate a pharmacological
mode of action for MCFAs through its inhibitory action on
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-
type glutamate receptors (Chang et al., 2016) and activation of
the peroxisomal proliferator-activated receptor gamma (PPARγ)
(Hughes et al., 2014).

Medium chain fatty acids and the MCT diet improve cognitive
performance of patients suffering from AD and mild cognitive
impairment (Krikorian et al., 2012; Taylor et al., 2018). In addition,
MCFAs have been shown to improve mitochondrial function and
promote autophagy, both of which are known to be dysregulated
in aging and NDs (Rangaraju et al., 2019; Stavoe and Holzbaur,
2019).

Importantly, MCFAs can cross the blood brain barrier (BBB)
(Wlaz et al., 2012, 2015), raising the possibility that MCFAs may
also be used to treat conditions affecting the central nervous
system, including AD, ALS, PD, and even some types of brain
tumors (Castellano et al., 2015; Croteau et al., 2017; Tefera
et al., 2017; Manzo et al., 2018; Zeng et al., 2019). The ability
of MCFAs to traverse the BBB provides an advantage from a
pharmacological perspective, especially as drug delivery to the
nervous system can be problematic. MCFAs can be administered
via multiple routes. Patients can adhere to the MCT diet by
restricting carbohydrates and eating foods that supply them with
the specific MCFAs (Grammatikopoulou et al., 2020). Ready-to-
consume drink supplements are available, as well as pre-prepared
ketogenic formulas and meals (Schoeler et al., 2021); patients
may also choose to supplement their diet with capsules and oils
containing the MCFAs they require (Grammatikopoulou et al.,
2020).

2.3. Current uses of MCT-based diets,
preclinical studies, and caveats

The MCT diet was originally developed as a treatment for
epilepsy as starvation, a condition in which ketones are utilized
as the main energy source, had long been observed to reduce the
frequency of seizures (Martin et al., 2016). For patients that have
developed resistance to the standard, pharmacological epilepsy
treatments, the MCT diet is especially important as it provides an
alternative treatment option (Loscher et al., 2020). Furthermore,
an MCT diet containing only decanoic and octanoic acids has

been shown to improve attention and structural connectivity in the
brains of patients with mild cognitive impairment (Roy et al., 2022).

In pre-clinical trials, the classic ketogenic diet has been
proven beneficial in the treatment of multiple diseases and
disorders. For example, ketone-producing diet can prolong life
and reduce seizures in mouse models of Dravet syndrome, an
early onset childhood developmental disorder with severe epileptic
encephalopathy (Jancovski et al., 2021). A reduction in anxiety is
seen in rats on the MCT diet, along with an increase in social
competitiveness (Hollis et al., 2018). The ketogenic diet is under
assessment for treating multiple sclerosis, as a 3-day fasting cycle
in which ketones are used as a primary source of energy appears
to alleviate symptoms associated with MS-related autoimmunity
(Choi et al., 2016). In mice, a ketogenic diet suppresses insulin
resistance and inflammation in a high fat diet-induced model of
obesity (Geng et al., 2016). The ketogenic diet is also beneficial
in Duchenne muscular dystrophy, where muscle function was
restored in a rat model (Fujikura et al., 2021). An oil-based MCT
diet has also been used to treat hypertrophic cardiomyopathy
in a patient with a deficiency in the gene coding for acyl-coA
dehydrogenase (Pervaiz et al., 2011).

Although both OA and decanoic acid (DA) constitute the main
fatty acids in the MCT-diet, they appear to have distinct roles. The
effect of DA on mitochondrial function appears to be stronger when
compared to OA (discussed later). In the brain, β-oxidation of OA
is favored, whereas DA preferentially stimulates lactate production
through glycolysis which is then utilized as an energy source by
brain cells. β-oxidation of both OA and DA occurs through the
action of carnitine palmitoyltransferase, (CPT) but it is thought
that OA also undergoes oxidation that is independent of CPT
(Khabbush et al., 2017). CPT levels in neurones is low, which may
explain why DA is spared from oxidation and appears to be present
at higher levels than OA.

Despite their advantages and clinical benefits, ketogenic diets
should be administered with caution. As they mimic starvation
conditions, patients must be very carefully monitored to avoid
possible side effects such as acidosis and hypoglycemia (Sankar
and Sotero de Menezes, 1999). Ketogenic dietary regimens are
known to result in weight loss and can be very effective to
help patients with obesity reach a healthy weight. However, if
prescribed to an individual with a healthy weight, extra weight loss
could be detrimental to the patients’ health (Bueno et al., 2013).
The ketogenic diet is not recommended for patients with liver
failure, porphyria, pyruvate kinase deficiency, carnitine translocase
deficiency, primary carnitine deficiency, pancreatitis, and carnitine
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TABLE 2 The potential effects of medium chain fatty acids (MCFAs) on autophagy and mitochondrial function in aging and neurodegenerative diseases.

MCFA Effects on autophagy and mitochondrial dysfunction in: References

Aging Alzheimer’s
disease (AD)

Amyotrophic
lateral sclerosis

(ALS)

Parkinson’s disease
(PD)

Hexanoic acid No literature available

Heptanoic acid No literature available

Octanoic acid Stimulates JNK-dependent
autophagy, known to extend

the lifespan in Drosophila

– – – Wang et al.,
2005; He et al.,

2022

Nonanoic acid – – – –

Decanoic acid Increases autophagy by Atg1
and Atg8a upregulation.

Reduced autophagy
contributes to functional

decline in aging.
Reduces oxidative stress,
increase mitochondria

biogenesis, and upregulate
mitochondrial respiratory

chain enzymes via activation
of PPARγ, SIRT1 and SIRT3.
Elevated oxidative stress and

reduced mitochondrial
function contribute to

functional decline in aging.

Reduces excitotoxicity by
AMPAR inhibition.

Over-excitation of the
AMPAR contributes to

AD.

Decreases autophagy by
inhibiting mTORC1 in

patient-derived
astrocytes. mTORC1

inhibition was previously
shown to improve

locomotion in zebrafish
ALS model.

Reduces excitotoxicity by
AMPAR inhibition.

Over-excitation of the
AMPAR contributes to

ALS.

Reduces excitotoxicity by
AMPAR inhibition.

Over-excitation of the
AMPAR contributes to PD.

Reduces dopaminergic
neuron loss and oxidative

stress via activation of SIRT3.
Reduced SIRT3 was reported
with dopaminergic neuron
loss and increased oxidative

stress in the PD mouse
model.

Johnson et al.,
2009; Van

Damme, 2009;
Malapaka et al.,
2012; Hughes

et al., 2014; Joshi
et al., 2015;

Lattante et al.,
2015; Liu et al.,

2015; Chang
et al., 2016;

Mesquita et al.,
2017; Whitehead

et al., 2017;
Jurado, 2018;

Dabke and Das,
2020; Warren

et al., 2020, 2021;
Akamatsu et al.,

2022

Undecanoic acid No literature available

Dodecanoic acid – – – Reduces augmented
autophagy by decreasing

Atg5 and Beclin-1. LRRK2
mutations increase

autophagy, resulting in
neurite shortening which
precedes neuronal death.

Plowey et al.,
2008; Sekar et al.,

2018

Medium-chain
triglyceride (MCT)
ketogenic diet,
consisting of various
MCFAs

Nutritional ketosis
upregulates autophagy by

inhibiting mTORC1.
Reduced autophagy

contributes to functional
decline in aging.

Upregulates mitochondrial
respiratory chain enzymes.
Promotes autophagy and

mitochondrial biogenesis via
AMPK and PGC-1α

activation.

Ketone-dependent
autophagy regulation of

HMGS2, an enzyme
controlling ketone

synthesis from MCFAs,
reduces amyloid-β

plaques

Promotes mitochondrial
ATP synthesis and
prevents complex I

inhibition.

Ketones generated from
MCFA metabolism directly

promote chaperone-mediated
autophagy (CMA).

Activation of CMA induces
LRRK2 and α-synuclein

degradation.
Improves mitochondrial
respiration by reducing

glutamate- induced ROS.
ROS production induced by

excitotoxicity of
glutaminergic neurones was

observed in PD

Cuervo and
Dice, 2000; Finn
and Dice, 2005;

Zhao et al., 2006;
Jäger et al., 2007;

Maalouf et al.,
2007; Egan et al.,
2011; McDaniel

et al., 2011;
Orenstein et al.,
2013; McCarty
et al., 2015; Hu

et al., 2017;
Dabke and Das,

2020

palmitoyl transferase deficiency (Maswood et al., 2020). The
ketogenic diet also comes with a range of short-term side effects,
commonly referred to as the “keto flu,” including fatigue, dizziness,
nausea, vomiting and headaches (Maswood et al., 2020). Short-
term symptoms usually subside when the body has adjusted to

the diet, however, long-term side effects such as the build-up of
kidney stones are not uncommon; in addition, most patients will
require supplementation to prevent vitamin deficiencies (Wilong,
2007; Maswood et al., 2020). Recent clinical findings demonstrate a
correlation between a long-term ketogenic diet and reduced bone
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density (Simm et al., 2017) and experiments in mice suggest a
significant negative effect on bone health by octanoic acid, a major
component of the MCT diet (Jain et al., 2021). Overall, following a
ketogenic or MCT-based diet has the potential to compromise the
nutritional status of some patients necessitating regular monitoring
and nutrient supplementation.

Another important consideration is that some ketogenic diets
are very hard to follow. Due to their restrictiveness, patients
are limited on what they can eat, and compliance issues are
very prominent. The retention rate can be partially improved by
enhancing the taste of pre-prepared foods and increasing patient
support (Tong et al., 2022).

3. Mitochondrial dysfunction in
aging and neurodegenerative
diseases

Mitochondria are responsible for generating most of the
adenosine triphosphate (ATP) supply in the cell through
oxidative respiration (Mookerjee et al., 2010). ATP production
in mitochondria is achieved by transferring electrons from
NADH and FADH2 generated by glycolysis and the Krebs
cycle through Complexes I to IV of the Electron Transport
Chain (ETC) (Martínez-Reyes and Chandel, 2020). Complex
I, III, and IV use high energy electrons to pump protons to
the intermembrane space creating a proton gradient across
the inner mitochondria membrane. The transfer of protons
back to the mitochondria matrix drives the production
of ATP via Complex V (Zhao et al., 2019). Interestingly,
muscle and brain tissues of aged mice fed a ketogenic diet
exhibited increased levels of the Krebs cycle protein citrate
synthase and Complex I and IV proteins (Zhou et al., 2021;
Figure 1).

Mitochondrial dysfunction is a hallmark of both NDs and
normal, “healthy” aging (Figure 1). As an organism ages,
mitochondrial ATP production declines due to increased electron
leakage and consequent uncoupling of the ETC (Mookerjee
et al., 2010). The brain requires a large amount of energy
and neuronal cells have a limited glycolytic capability, making
them extremely reliant on the energy produced by mitochondria
and vulnerable to mitochondrial dysfunction (Moreira et al.,
2009). Treatments that can improve mitochondrial output may
therefore be beneficial in rescuing symptoms of aging and NDs.
Mitochondria are dynamic and constantly undergo fission and
fusion (Zhu et al., 2013). However, in AD, ALS, and PD,
mitochondrial dynamics is disrupted, resulting in mitochondrial
fragmentation and reduced energy output (Wang et al., 2009; Lim
et al., 2012; Jiang et al., 2015). Mitochondrial fission is regulated
by the dynamin-related protein 1 (Drp1). Interestingly, KD has
been shown to promote mitochondrial integrity by suppressing
the mitochondrial translocation of Drp1 and reducing ER stress
(Guo et al., 2018; Figure 1). On the other hand, although
damaged or mutated mtDNA contributes to mitochondrial
dysfunction, there is minimal evidence suggesting that MCFAs
are directly beneficial in restoring the structural integrity of
mtDNA.

3.1. MCFAs may promote healthy aging
by upregulating mitochondrial
biogenesis and reducing oxidative stress

The 10-carbon DA can activate pathways or receptors related
to mitochondrial function, such as peroxisome proliferator-
activated receptors (PPARs) (Michalik et al., 2006; Malapaka et al.,
2012). PPARs are involved in various physiological processes,
including energy metabolism and inflammation (Varga et al.,
2011). Mice fed with PPARγ agonists exhibited extended lifespan,
improved cognitive ability, reduced inflammation, and enhanced
mitochondrial function (Xu et al., 2020). Decanoic acid is identified
as a modulator that directly binds and activates PPARγ (Malapaka
et al., 2012). Moreover, DA stimulates complex I activity and
increases mitochondrial number in cultured neurones through the
regulation of PPARγ (Hughes et al., 2014; Figure 1).

Sirtuins are a family of proteins involved in stress response,
epigenetic modification, cellular metabolism and longevity
(Houtkooper et al., 2012). Three of the seven known sirtuins,
SIRT3, SIRT 4, and SIRT5 are predominantly expressed in
the mitochondria and believed to function as a link between
metabolism and aging (Ji et al., 2022). SIRT1 and SIRT3 display
a reduced expression with age (Donmez and Guarente, 2010;
Jing et al., 2013), resulting in increased oxidative stress and
reduced mitochondrial biogenesis due to reduced activation
of PGC-1α (PPARγ coactivator 1-alpha), a key regulator of
mitochondrial biogenesis (Onyango et al., 2002; Nemoto et al.,
2005). Interestingly, cultured hippocampal neurones treated with
BHB or DA show activation of SIRT1 and SIRT3, as well as
upregulation of mitochondrial respiratory chain enzymes (Dabke
and Das, 2020; Figure 1 and Table 2).

The AMP-activated protein kinase (AMPK), a critical sensor
of intracellular ATP levels and regulator of energy homeostasis, is
another protein known to decline with age (Reznick et al., 2007;
Hardie et al., 2012; Herzig and Shaw, 2018). Age-related decline
of AMPK results in reduced activation of PGC-1α, with a negative
effect on mitochondrial biogenesis (Jäger et al., 2007; Figure 1) and
autophagy (Egan et al., 2011). Little is known regarding the effect
of MCFAs on AMPK activity, however, rats with ad libitum access
to KD showed an elevated level of AMPK signaling in the liver
(McDaniel et al., 2011), warranting further evaluation of the role
of MCT-based diets in modulating this pathway.

3.2. MCFAs may improve symptoms of
Alzheimer’s disease by promoting
mitochondrial biogenesis

Multiple studies have linked mitochondrial dysfunction
to Alzheimer’s disease (AD). PGC-1α, a crucial regulator of
mitochondrial biogenesis, is suppressed in both AD models and
patients (Qin et al., 2009; Sheng et al., 2012); SIRT1 expression
and activity are also found to be reduced in the brains of AD
patients (Julien et al., 2009; Lalla and Donmez, 2013). Reduced
PGC-1 activation and downregulation of SIRT1 also promote
amyloid-beta (Aβ) production, impaired Aβ clearance and tau
hyperphosphorylation, resulting in the formation of Aβ plaques
and neurofibrillary tangles (Qin et al., 2006; Min et al., 2010).
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FIGURE 1

Factors contributing to mitochondrial dysfunction and potential points of intervention. Mitochondrial dysfunction associated with aging and
neurodegenerative diseases and molecular modulators of mitochondrial function (red) through which MCFAs (medium-chain fatty acids), MCT
(medium-chain triglyceride) diet or KD (ketogenic diet) (green) can potentially reverse the pathological phenotype. The production of ROSs (reactive
oxygen species) is mitigated by DA (decanoic acid) and BHB (β-hydroxybutyrate) activating PPARγ (peroxisome proliferator-activated receptors
gamma) and SIRT3 (sirtuin 3). Reduced mitochondrial biogenesis is restored by BHB, DA, and KD through the activation of SIRT1 (sirtuin 1), PPARγ,
and AMPK (AMP-activated protein kinase), which subsequently activate PGC-1α (PPARγ coactivator 1-alpha) to promote mitochondrial biogenesis.
Excessive calcium influx into cells is reduced by DA and 5-MOA (5-methyl octanoic acid), which inhibit AMPAR (AMPA-type glutamate receptors). KD
reverses the disrupted mitochondrial dynamics and ETC (electron transport chain) function via inhibition of Drp1 (dynamin-related protein 1) and
enhances the expression of ETC complexes, respectively. Created with BioRender.com.

The accumulation of Aβ has been shown to affect mitochondrial
bioenergetics, dynamics, distribution and clearance in human
cell cultures, yeast, fruit fly and mice (Iijima-Ando et al., 2009;
Sinclair et al., 2021; Lee et al., 2022; Epremyan et al., 2023;
Zyśk et al., 2023). Altered glucose metabolism is one of the
hallmarks of AD (Hoyer, 1991; Schubert, 2005; Calsolaro and
Edison, 2016). Due to its positive effect on glucose levels, KD has
been proposed as a potential treatment for AD (Broom et al., 2019).
Furthermore, KD-induced elevated ketones have been reported to
have a neuroprotective effect by reducing oxidative stress in AD
and PD models (Kashiwaya et al., 2000; Kim et al., 2007; Yang
et al., 2019). Indeed, MCT diet improved cognitive function in

AD patients with mild to moderate symptoms of AD (Ota et al.,
2019). Another study also showed that patients who followed the
MCT diet had an improved brain energy metabolism (Croteau
et al., 2018). Although the underlying mechanisms remain unclear,
it was proposed that the beneficial effect of the MCT diet on AD
stems from the ability of the ketones to provide an alternative
fuel source to the brain cells that are damaged or impaired due
to metabolic dysfunction (Takeishi et al., 2021). Ketones in the
brain are also shown to reduce inflammation and oxidative stress,
two known contributors to the development of AD (Pinto et al.,
2018). In addition, the brains of AD patients exhibit altered levels of
mitochondrial respiratory complexes, along with impaired axonal
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transport and synaptic morphology, and increased ROS production
and oxidative stress (Manczak et al., 2004; Rice et al., 2014; Pickett
et al., 2018; Butterfield and Halliwell, 2019).

Synaptic dysfunction is one of the early signs of AD and
other neurodegenerative diseases (Taoufik et al., 2018). AMPA-
type glutamate receptors (AMPARs) are Ca2+ permeable channels
that mediate excitatory synaptic transmission in the brain and
contribute to glutamate receptor-mediated neurodegeneration
(Greig et al., 2000; Palmer et al., 2005; Joshi et al., 2011). Over-
excitation of the AMPAR leads to excitotoxicity, which is implicated
in AD, ALS and PD (Johnson et al., 2009; Van Damme, 2009;
Joshi et al., 2015; Whitehead et al., 2017; Jurado, 2018; Akamatsu
et al., 2022), leading to the idea that inhibition of AMPARs could
potentially improve the symptoms and progression of AD and
other NDs. A recent study identified DA as a selective inhibitor of
excitatory synapses in hippocampal slices and a non-competitive
antagonist of AMPA receptors, explaining its anti-convulsant effect
in the in vitro seizure model (Chang et al., 2016). OA, another key
MCT diet component (Masino, 2022), does not inhibit AMPARs
(Chang et al., 2016). However, its modified version, 5-methyl
octanoic acid (5-MOA), inhibits AMPARs both in vitro and in vivo,
suggesting potential novel therapeutic interventions for AD (Chang
et al., 2015; Figure 1).

3.3. MCFAs could ameliorate symptoms
of amyotrophic lateral sclerosis via
improved mitochondrial biogenesis

The exact molecular mechanisms behind motor neurone
degeneration in ALS are currently unclear, however, there is
increasing evidence implicating mitochondrial dysfunction in the
pathogenesis of ALS (Zhao et al., 2022). Aggregation of swollen
mitochondria in the neurones of ALS patients was one of the first
pathological changes seen in the disease, providing clear evidence
of dysfunction (Atsumi, 1981; Taylor et al., 2016). Morphologically
abnormal mitochondria have been observed in multiple cellular
and animal models of ALS; mitochondria appear fragmented,
vacuolated and more spherical, and are seen in atypical clusters
along the axon (Higgins et al., 2003; Magrané et al., 2014).

Defective mitochondrial respiration, ATP production and
oxidative phosphorylation have also been widely reported in ALS
patients. Indeed, post-mortem analysis of sporadic ALS patients
demonstrated reduced complex I-IV activity in the spinal cord,
and impairment of I and IV activity in skeletal muscle, leading to
a reduction in ATP production (Wiedemann et al., 1998, 2002).
Elevated ROS production and ROS-associated damage are common
pathological features of ALS. Both post-mortem and biofluid
analysis of ALS patients has demonstrated markers of ROS damage
(Shaw et al., 1995; Smith et al., 1998). It is thought that oxidative
damage via an increase in ROS production results in aggregation
of TDP-43, one of the main pathological hallmarks in ALS (Cohen
et al., 2012).

Amyotrophic lateral sclerosis mouse models subjected to the
ketogenic diet have larger numbers of motor neurones in the spinal
cord compared to mice on a normal diet (Zhao et al., 2006). In
addition, motor performance of the “KD mice” was significantly
enhanced due to preservation of motor neurones in the spinal cord.

The same study detected a higher concentration of BHB (a ketone
generated via MCFA metabolism) in the blood of KD-fed mice
(Zhao et al., 2006). BHB was able to promote mitochondrial ATP
synthesis and prevent the inhibition of complex I in vitro, likely
contributing to the increased motor performance observed in the
KD-treated ALS model mice (Zhao et al., 2006; Table 2). Dietary
supplementation of OA, a key component of the MCT diet, had
no effect on the survival rate of ALS mice (Zhao et al., 2012),
but significantly improved motor performance, by protecting
against spinal cord motor neurone loss (Zhao et al., 2012). This
study concluded that OA treatment significantly promoted oxygen
consumption rate, restoring energy metabolism (Zhao et al., 2012).

3.4. MCFAs may alleviate symptoms of
Parkinson’s disease by elevating ketone
levels

Mitochondrial dysfunction has long been associated with PD
(Mullin and Schapira, 2013; Park et al., 2018). Mutations in the
Leucine Rich Repeat Kinase 2 (LRRK2) gene are a common
genetic cause of late-onset familial and sporadic PD (Kumari
and Tan, 2009). The G2019S mutation increases LRRK2 kinase
activity (Chen and Wu, 2018). Overexpression of either wild-
type LRRK2 or LRRK2G2019S leads to increased ROS production
and reduced mitochondrial function in mice, fruit flies, iPSC cell
cultures and PD patients (Mortiboys et al., 2010; Cooper et al.,
2012; Ng et al., 2012; Yue et al., 2015). SIRT3, capable of reducing
oxidative stress (Nemoto et al., 2005), is also decreased in the mouse
model of AD (Yang et al., 2015). The formation of Lewy bodies,
composed of aggregated α-Synuclein (α-Syn) protein, is another
PD hallmark. Mutations in the SNCA gene, encoding α-Syn, induce
ROS production and mitochondrial fragmentation (Ryan et al.,
2015). α-Syn is located on mitochondria-associated membranes
(MAM), which regulate Ca2+ signaling and apoptosis (Guardia-
Laguarta et al., 2014). Excessive α-Syn disrupts mitochondria-ER
interactions, impairing ATP output and Ca2+ exchange (Paillusson
et al., 2017). α-Syn also suppresses mitochondrial biogenesis
through PGC-1α inhibition (Ryan et al., 2013). Interestingly, PD
patients exhibit under-expression of PGC-1α, resulting in the loss
of dopaminergic neurones (Zheng et al., 2010).

Decanoic acid has been shown to reduce the degeneration
of dopaminergic neurons in the C. elegans PD model by
modulating the insulin signaling pathway—a critical regulator
of longevity in both invertebrates and vertebrates—resulting in
the enhanced transcription of genes encoding antioxidant and
heat-shock proteins (Sanguanphun et al., 2022). Interestingly, the
polyphenolic compound resveratrol has been shown to have an
antioxidant effect by acting as a free radical scavenger, providing
a neuroprotective effect via binding and activating SIRT1 (Iuga
et al., 2012; Cao et al., 2015; Salehi et al., 2018). Resveratrol can
also protect neuronal cells against oxidative stress and toxicity
specifically induced by α-synuclein via SIRT1 activation (Albani
et al., 2009). In line with these studies, SIRT3 is required to reduce
dopaminergic neuron loss in a mouse model of PD, enhances
mitochondrial antioxidant capacity and reduces oxidative stress
(Liu et al., 2015). Although few studies directly investigated the
effect of MCFAs on PD, multiple reports provide indirect evidence
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supporting MCFAs’ beneficial effect on PD via elevating the level
of ketone bodies. Similar to AD, the KD has been shown to
alleviate symptoms of PD (Kashiwaya et al., 2000). In one study,
rat neuronal cells were treated with ketone bodies, specifically beta-
hydroxybutyrate (BHB) and acetoacetate, resulting in decreased
production of glutamate-induced ROS. This reduction was due
to an increase in the NAD+/NADH ratio, which in turn led to
improved mitochondrial respiration (Maalouf et al., 2007; Table 2).
Previous study also showed enhanced mitochondrial respiration
and a reduction of PD symptoms in PD model mice treated
with D-BHB through subcutaneous injections (Tieu et al., 2003;
Table 2). These findings suggest that the use of MCFAs may have
potential therapeutic benefits in the treatment of PD.

Overall, MCFAs have shown potential in treating NDs and
functional decline caused by aging via restoring mitochondrial
function through the activation of the PPARγ and the
inhibition of the AMPAR.

4. Autophagy in aging and
neurodegenerative disease

Dysfunctional protein homeostasis is a key feature of both aging
and NDs, resulting in the accumulation of misfolded, mislocalized
and aggregated proteins within neurones (Aman et al., 2021).
There are two major pathways responsible for degradation of
cellular proteins and maintenance of homeostasis: the ubiquitin
proteasome system (UPS) and the autophagy-lysosome pathway
(Lilienbaum, 2013). Normally, around 90% of cellular proteins
throughout the body are degraded by the UPS, however, when
the UPS is defective, autophagy can be upregulated to help clear
larger protein aggregates (Rock et al., 1994; Kageyama et al.,
2014). Autophagy is thought to be the primary method of protein
clearance in ND patient neurones, as the UPS is unable to
degrade the large pathological aggregates of proteins (Chandran
and Rochet, 2022). Autophagy was first described in the 1960s
as a lysosome-dependent pathway for degradation of damaged
or unnecessary cellular components (De Duve and Wattiaux,
1966). There are three main types of autophagy: macroautophagy,
chaperone mediated autophagy (CMA) and microautophagy
(Figure 2). In microautophagy, cellular components requiring
degradation are taken up directly by the lysosome through
invagination of the membrane, whereas in CMA, proteins targeted
for degradation are translocated across the lysosomal membrane
with the help of a chaperone protein (Figure 2; Glick et al., 2010).
Macroautophagy (hereafter referred to as autophagy) involves the
delivery of cytoplasmic components to lysosomes for degradation
via an autophagosome—an intermediary vesicle that binds to and
fuses with the lysosome to form an autolysosome (Figure 2; Glick
et al., 2010).

Autophagy is an intricate, multi-stage process; the main
stages and critical proteins mediating autophagy are illustrated
in Figure 2. Autophagic clearance is initiated via the autophagy-
related 1 (Atg1)-Unc51-like kinase (ULK) complex; ULK1
phosphorylation via the activation of AMP-activated protein kinase
(AMPK), or the inhibition of mechanistic target of rapamycin
complex 1 (mTORC1) initiates phagophore formation (Figure 2;
Shang and Wang, 2011; Liu and Sabatini, 2020). The UPS can

control the magnitude of the autophagy response via ULK1 and
mTOR kinases (Liu C. et al., 2016; Nazio et al., 2016). Once
autophagy is initiated, the phagophore membrane elongates and
matures to become an autophagosome, which then fuses with a
lysosome to form an autolysosome that degrades and recycles cargo
(Figure 2).

Neurones are long-living, post-mitotic cells critically
dependent on autophagy for maintaining their homeostasis
and functionality (Stavoe and Holzbaur, 2019). Unsurprisingly,
autophagy dysfunction is widely reported in ALS, AD, PD, and
in aging. Neuronal cells are especially vulnerable to impaired
autophagy—autophagosomes containing cargo to be degraded
must be transported along the axon to the cell body to fuse
with lysosomes, as lysosomes are rarely found in distal axons
(Maday et al., 2012; Cheng et al., 2015). This vulnerability results
in opportunity for proteins to aggregate and form pathological
inclusions—a hallmark pathology of many NDs. A large body of
evidence indicates MCFAs as a suitable intervention for combating
symptoms of NDs and aging due in part to their autophagy-
promoting effects. MCFAs are also known to inhibit autophagy
when it is pathologically augmented, indicating that MCFAs may
have a modulatory effect on autophagy in NDs, dependent on the
context. One of the difficulties in reviewing the use of MCFAs in
treating NDs, is the variety of different cell types and models used
to study autophagy. We attempt to reconcile the dysregulation of
autophagy in various model systems, and how the involvement of
MCFAs affect autophagy.

4.1. MCFAs may promote healthy aging
via upregulation of autophagy

Reduced autophagic activity is thought to be responsible for
accumulating damaged or dysfunctional cellular components
during aging, significantly contributing to the organismal
functional decline. A study using S. cerevisiae to determine
autophagy-related genes in aging identified several short-lived
mutants as having defective autophagy (Matecic et al., 2010).
Deletion or suppression of Atg genes can reduce the lifespan of
various model organisms, and essential autophagy genes such
as Atg5 and Atg7 are downregulated in the human brain during
normal aging (Figure 2; Komatsu et al., 2005; Simonsen et al.,
2008; Tóth et al., 2008; Lipinski et al., 2010).

Nutritional ketosis, brought upon by the MCT diet, is known
to upregulate autophagy throughout the brain, via inhibition
of mTORC1 (Table 2; McCarty et al., 2015). DA has been
demonstrated to stimulate autophagy in Dictyostelium, a widely
used model to study autophagic clearance, seen via the increase
in autophagosome number and enhanced autophagic flux, likely
due to increased expression of Atg1 and Atg8a (Table 2; Mesquita
et al., 2017; Warren et al., 2021). The term “autophagic flux”
describes the dynamic process of autophagy from phagophore
initiation to lysosome recycling and is often used as a measurement
of degradation activity. Interestingly, these results were not seen
with OA, suggesting that the effect on autophagy may be specific
to DA (Warren et al., 2021). However, OA can stimulate c-Jun
N-terminal kinase (JNK)-dependent autophagy in rats (Table 2;
He et al., 2022). JNK activation is known to extend the lifespan in
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FIGURE 2

Molecular regulation of autophagy. The three main types of autophagy are macroautophagy (referred to as autophagy), microautophagy and
chaperone-mediated autophagy (CMA). Autophagy is initiated via the autophagy-related (Atg) 1-Unc51-like kinase (ULK) complex that includes
ULK1, Atg13, FIP200 (focal adhesion kinase family interacting protein of 200 kD) and Atg101. Phosphorylation of ULK1 stimulates the translocation of
the class III phosphoinositide 3-kinase (PI3K-III) complex containing Beclin-1 from the cytoskeleton to a pre-autophagosomal structure, initiating
the formation of the autophagosome (Suzuki et al., 2007; Mizushima, 2009; Di Bartolomeo et al., 2010). The activity of the PI3K-III complex
generates phosphatidylinositol-3-phosphate (PI3P), which binds to the WD repeat domain phosphoinositide-interacting 1 (WIPI1) and WIPI2
complexes, catalyzing two ubiquitin-like reactions that allow elongation of the autophagosome membrane (Ohsumi and Mizushima, 2004). Atg5
and Atg12 are conjugated together in the first reaction, in the presence of Atg7 and Atg10 (Ohsumi et al., 2000). During the second reaction, a
complex containing Atg5, Atg12, and Atg16 attaches to the membrane and induces the conjugation of phosphatidylethanolamine to LC3
(microtubule-associated protein 1A/1B-light chain 3), forming LC3-II and facilitating membrane closure (Fujita et al., 2008). LC3-II binds to
autophagy receptors, such as Sequestosome 1 (p62/SQSTM1), that are bound to components targeted for degradation (Pankiv et al., 2007). Once
autophagosomes are fully formed, the UV radiation resistance gene (UVRAG) protein is phosphorylated and combines with the homotypic fusion
and protein sorting (HOPS) complex to assist with membrane trafficking and fusion, thus allowing fusion of the autophagosome with a lysosome
(Liu and Sabatini, 2020). Ras-associated binding (Rab) proteins and soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE)
proteins also assist in fusion of autophagosomes and lysosomes (Aman et al., 2021). After fusion, the lysosomal content is degraded by lysosomal
hydrolases, and degradation products are released into the cell for re-use (Aman et al., 2021). Microautophagy involves degradation of peroxisomes
and mitochondria via invagination of the lysosome membrane (Kunz et al., 2004). In CMA, protein substrates are unfolded by heat shock cognate
71 kDa protein (hsc70) chaperones and translocated across the lysosome membrane via interaction with lysosome-associated membrane protein
2A (LAMP-2A) (Majeski and Fred Dice, 2004). Blunt arrows indicate main proteins/processes downregulated in ageing (blue), amyotrophic lateral
sclerosis (ALS, red) and Alzheimer’s disease (AD, green), and Parkinson’s disease (PD, orange). Created with BioRender.com.

Drosophila, indicating that OA can promote healthy aging, albeit
through a different mechanism to DA (Table 2; Wang et al., 2005).
Furthermore, activation of JNK-dependent autophagy increases
Beclin-1 expression, a key protein in autophagosome membrane
elongation (Figure 2; Park et al., 2009) suggesting an mTOR-
independent modulation of autophagy by OA.

In addition to its role in maintaining cellular homeostasis,
autophagy has also been shown to have anti-inflammatory and
antioxidant effects (Giordano et al., 2014; Qian et al., 2017). This
suggests that a decline in autophagic activity may contribute to the
chronic inflammation and oxidative stress associated with aging.
Low grade, chronic inflammation is known to promote aging;
referred to as “inflammageing,” this condition is characterized

by increased levels of inflammatory markers throughout the
body (Franceschi et al., 2000). The possible beneficial impact
of MCFAs on aging may therefore stem from their autophagy-
promoting effects, mediated by decreased inflammation and
oxidative stress.

4.2. MCFAs could correct dysregulated
autophagic flux in Alzheimer’s disease

Autophagy dysregulation is a common occurrence in AD.
Early studies detected large amounts of aggregated tau protein
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and subcellular vesicles within swollen neurites (a common AD
pathology) in AD patient brains; these vesicles were later identified
to be immature autophagosomes (Suzuki and Terry, 1967; Nixon
et al., 2005). Similar results were seen in AD mice, in which
immature autophagosomes were shown to accumulate in neurites
before β-amyloid (Aβ) plaques began to form, suggesting that
autophagy dysfunction precedes, and possibly causes, pathological
inclusion formation (Yu et al., 2005).

Medium-chain triglyceride diets have a positive effect on Aβ

plaques, via the regulation of autophagy. The activity of HMGCS2,
an enzyme that controls the synthesis of ketones from MCFAs,
is mediated by the mTOR pathway (Hu et al., 2017). HMGCS2
induces the autophagic clearance of Aβ precursor protein (APP),
thus reducing the occurrence of Aβ plaques (Table 2; Hu et al.,
2017). Autophagy regulation by HMGCS2 is dependent on ketones,
therefore, an MCT diet, or indeed MCFA supplementation, will
increase the activity of HMGCS2 and clearance of APP (Table 2;
Hu et al., 2017). Aβ accumulation is largely caused by the
imbalance between its production and clearance (Selkoe and
Hardy, 2016). It is plausible to assume that, by preventing the
production of Aβ plaques, MCFA treatment may delay AD onset
and progression.

Normal autophagic flux is essential for neuronal homeostasis
(Zhang et al., 2013), and its impairment is known to correlate
with AD progression (Chung et al., 2019). Proper formation and
degradation of autophagosomes is essential for normal autophagic
flux and the PI3K-CIII complex plays a vital role in autophagosome
formation. The expression of Beclin-1, a core subunit of the PI3K-
CIII complex, is significantly reduced in AD; consequently, the
generation of PI3P, the product of PI3K-CIII complex activity,
is also downregulated in the patients’ brains (Figure 2; Pickford
et al., 2008; Lucin et al., 2013; Morel et al., 2013). A recent
study showed that a diet high in MCFAs—achieved by replacing
animal fat with coconut oil—can restore impaired autophagic
flux in mouse hepatocytes (Wang et al., 2017). Interestingly,
this functional restoration is independent of AMPK and mTOR
signaling, suggesting that MCFAs, unlike short-chain fatty acids
(Iannucci et al., 2016), may not act directly on the classic
autophagy-regulating pathways (Wang et al., 2017). As MCFAs can
restore normal autophagic flux, it is possible that treatment will
slow down or even prevent disease progression in AD.

4.3. MCFAs may improve motor
symptoms in amyotrophic lateral
sclerosis by upregulating autophagy

The ketogenic diet has proven to be an effective therapy
in mouse models of ALS by promoting mitochondrial energy
production and membrane stabilization (Zhao et al., 2006).
However, whether MCFAs influence autophagy in ALS remains
unclear. Several ALS-associated genes are functionally implicated
in autophagy, including SQSTM1, C9orf72, Ubiquilin-2, and VAPB
(Mao et al., 2019; Şentürk et al., 2019; Wu et al., 2020; Cozzi
and Ferrari, 2022). The C9orf72 protein binds GTPases Rab7,
and Rab11 to aid endosome maturation and recycling, interacts
with Atg1-ULK complex to aid autophagosome formation, and
regulates autophagic flux via Rab8a and Rab39b (Sellier et al., 2016;

Sullivan et al., 2016; Farg et al., 2017). Mutations in C9orf72 impair
autophagic flux, resulting in protein aggregation leading to motor
neurone dysfunction and death (Sellier et al., 2016). Toxic dipeptide
repeats aberrantly translated from the hexanucleotide repeat
expansion region within intron 1 of the C9orf72 gene disrupt
the VAPB-PTPIP51 interaction at the mitochondrial-endoplasmic
reticulum interface (Gomez-Suaga et al., 2022), thereby linking
mitochondrial function to autophagy, through two ALS disease-
causing genes, C9orf72 and VAPB. When functioning normally, the
autophagy receptor p62/SQSTM1 interacts with proteins targeted
for degradation and brings them into the autophagosome where the
receptor and its cargo are degraded upon fusion with a lysosome
(Figure 2; Klionsky et al., 2016). The presence of p62/SQSTM1-
positive inclusions in ALS patient motor neurones indicates that
autophagic flux has been disrupted, as degradation of cargo has
not been achieved (Al-Sarraj et al., 2011). As MCFAs are proven
to restore autophagic flux in hepatocytes, it is possible that the
same effect will be seen in motor neurones (Wang et al., 2017).
Furthermore, MCFAs may also combat the decrease in autophagy
seen in ALS. Rapamycin, a known inhibitor of mTORC1 and a
potent autophagy inducer in many cell types including neurones
(Noda and Ohsumi, 1998; Rangaraju et al., 2010), can rescue
impaired locomotion in a zebrafish model of ALS (Table 2; Lattante
et al., 2015). Preclinical data show that decanoic acid can inhibit
mTORC1 in patient-derived astrocytes, much in the same way as
rapamycin, resulting in an overall increase in autophagy (Table 2;
Warren et al., 2020). These results suggest that MCFAs have the
possibility to alleviate motor symptoms of ALS by increasing
autophagy levels.

Due to their positive effects on both autophagy and
mitochondrial function, MCFAs hold promise as a novel, multi-
target therapeutic strategy for ALS. However, this may not
be true for all types of ALS. Mouse models of ALS caused
by mutations in the copper-zinc superoxide dismutase (SOD1)
enzyme demonstrate pathological induction of autophagy in the
spinal cord in the early, pre-symptomatic stages of the disease (Li
et al., 2008; Zhang et al., 2011). When SOD1 ALS mice were treated
with rapamycin, motor neurone degeneration was accelerated
and the lifespan was significantly shortened (Zhang et al., 2011),
providing evidence that stimulation of autophagy is not always
beneficial in ALS. Clearly, the relationship between autophagy and
neurodegeneration is complex, and a delicate balance of autophagy
is likely required for health benefits in NDs.

4.4. MCFAs may modulate autophagy in
Parkinson’s disease, and increase the
clearance of pathological inclusions by
promoting chaperone-mediated
autophagy

Mutations in α-synuclein (SNCA) and leucine-rich repeat
kinase 2 (LRRK2, PARK8) are associated with genetic forms
of PD, and have been widely studied for their involvement in
autophagy dysfunction. The mechanisms by which these genes
affect autophagic clearance and contribute to PD pathology are still
being uncovered, but the upregulation of autophagy is a promising
therapeutic intervention for PD.
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Mutations in LRRK2 are the most common genetic cause of PD.
LRRK2 is a kinase that regulates many autophagy-related processes
within a cell, including vesicular trafficking and endosomal
transport (Dodson et al., 2012; Steger et al., 2016; Connor-Robson
et al., 2019). Disease-causing LRRK2 mutations increase the kinase
activity of LRRK2, contributing to PD pathology (Jeong and
Lee, 2020). LRRK2 is normally degraded in lysosomes via CMA;
the G2019S mutation inhibits this process (Figure 2; Orenstein
et al., 2013). BHB, one of the main ketones generated via MCFA
metabolism, directly promotes CMA activation by increasing
protein oxidation, resulting in increased clearance of proteins
damaged by oxidation (Table 2; Finn and Dice, 2005). An activation
of CMA by MCFAs may therefore increase the degradation of
mutated LRRK2, preventing increased kinase activity (Table 2).

Interestingly, the G2019S mutation in LRRK2 also increases
autophagy in cultured human neurons, possibly to compensate
for the reduction in CMA, resulting in neurite shortening—
a pathological hallmark that precedes neuronal death in many
NDs (Table 2; Plowey et al., 2008). It is possible that MCFAs
are a suitable treatment to simultaneously promote CMA and
decrease autophagy in PD patients. Fatty acids are known to
inhibit autophagy regulated by AMPK activation in mice (Liu T.
et al., 2016) and mTOR suppression in rat and human hepatocytes
(Vinciguerra et al., 2008), it remains unclear, however, whether
this is mediated by MCFAs. Treatment with lauric acid (LA),
an MCFA with 12 carbon atoms, can decrease pathologically
augmented autophagy in human chondrocytes (cells responsible
for cartilage formation) as shown by the reduced expression of Atg5
and Beclin-1, proteins involved in the elongation and maturation
of the autophagosome (Figure 2; Sekar et al., 2018). LCFAs such
as palmitic acid, myristic acid and stearic acid further increased
autophagy in chondrocytes, indicating that LA, and perhaps other
MCFAs, may be better at modulating autophagy (Sekar et al.,
2018). LCFAs also induced the expression of LC3, a key player
in autophagosome formation, whereas LA treatment returned
LC3 expression to the control levels, suggesting stabilization of
autophagosome production (Sekar et al., 2018). On the other hand,
a recent study demonstrated that LA could induce autophagy in
wild-type pig intestinal cells, resulting in dysregulated autophagic
flux and cell death (Yang et al., 2020). These studies show that
LA can promote or reduce autophagy depending on the context,
indicating LA may be an ideal treatment to normalize autophagy
homeostasis in ND patients (Table 2).

Accumulation of α-synuclein is a hallmark pathology in both
sporadic and familial PD. Although the normal function of α-
synuclein has not been fully elucidated, it is thought that this
protein plays a role in the formation of synaptic vesicles (Burré
et al., 2010). The A53T mutation in SNCA has been linked
to autophagy; cells expressing A53T mutant α-synuclein display
accumulation of autophagic vesicles, suggesting an impairment
of autophagic flux (Stefanis et al., 2001). Like LRRK2, α-
synuclein is also degraded via CMA; A53T mutations prevent
this CMA-associated degradation and increase autophagy, likely
as a compensatory response (Table 2; Cuervo and Dice, 2000).
Considering the autophagy-stimulating activity of MCFAs, it is
possible that this class of lipids may promote the degradation of
α-synuclein via an increase in CMA (Finn and Dice, 2005). LA
treatment may also be successful in ameliorating the compensatory
increase in autophagy, restoring autophagic flux (Sekar et al., 2018;

Yang et al., 2020). Overall, it seems that MCFA treatment may be
advantageous in both sporadic and familial PD.

5. Discussion

Medium chain fatty acids have a direct role in regulating
autophagy and mitochondrial function, processes that are
dysfunctional in aging and NDs. This review highlights evidence
that MCFAs have the potential to be sufficient treatments for some
NDs, and promote healthy aging, due to their effects on autophagic
processes and the function of mitochondria. It is possible that
MCFAs affect dysregulated autophagy and mitochondrial function
together as well as in parallel, providing more evidence that they
are an advantageous treatment option. It is worth noting that
there is an overlap of disease-causing genes involved various
neurodegenerative diseases. Thus, MCFA treatments that modulate
the severity of AD and PD, may also be effective in treating
ALS and possibly other neurodegenerative diseases. However,
this is an under-researched area and there are currently very
few studies reporting a link between MCFAs and autophagy and
mitochondrial function in neurones. Adverse side effects associated
with MCFAs and the MCT diet have also been reported, warranting
further studies into the mode of action and safety aspects of
these compounds.

5.1. Avenues for future research and
limitations of research into MCFAs

A systematic analysis of each MCFA using animal models
will be required to gain a clearer picture of the effects that
these compounds have on different neurodegenerative diseases.
Drosophila would be particularly amenable to this type of analysis
as the disease models are well established, and tissue-specific effects
as well as whole organism effects can be easily determined. In the
case of ALS, Drosophila could be used to assess differences between
motor neurone and brain degeneration as neural cell type-specific
toolsets are readily available to the research community (Jenett
et al., 2012; Aso et al., 2014).

In addition, modifications to individual MCFAs may provide
compounds with more specific biological effects. For example,
4-MOA and 5-MOA are both methyl-modified derivatives of
octanoic acid, and it would be interesting to compare the different
effects that these molecules have on neuronal biology at the
molecular level.

One of the limitations of the research into the biological effects
of MCFAs is the lack of a standardized model that can be used to
compare the effects of different compounds on neural function. As
a result, many of the observations are specific to a given cell, or a
given organism. Given that Drosophila has both motor neurones
and a complex brain, this model appears ideally positioned for
studying the effects of MCFAs on tissue specific and organ-specific
alterations. In addition, the complete neural circuitry of the fly
brain has recently been mapped (Winding et al., 2023), aiding the
efforts to understand how MCFAs modulate neurodegeneration at
the level of neurons and connecting synapses.
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