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Themyosin superfamily is a group of molecular motors. Autoimmune diseases are
characterized by dysregulation or deficiency of the immune tolerance
mechanism, resulting in an immune response to the human body itself. The
link between myosin and autoimmune diseases is much more complex than
scientists had hoped. Myosin itself immunization can induce experimental
autoimmune diseases of animals, and myosins were abnormally expressed in a
number of autoimmune diseases. Additionally, myosin takes part in the
pathological process of multiple sclerosis, Alzheimer’s disease, Parkinson’s
disease, autoimmune myocarditis, myositis, hemopathy, inclusion body
diseases, etc. However, research on myosin and its involvement in the
occurrence and development of diseases is still in its infancy, and the
underlying pathological mechanisms are not well understood. We can
reasonably predict that myosin might play a role in new treatments of
autoimmune diseases.
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1 Introduction

The myosin superfamily is a group of molecular motors moving along a linear actin axis.
Myosins were originally found when Kuehne observed a skeletal muscle contraction in
1864 and they were named after Roman numerals in 35 classifications (Kull, 2000). Myosin
plays a dominant role in living things, and the influence of the working mechanism has been
extensively researched, which not only helps people better understand how the body
converts chemical energy into mechanical energy but also provides a good reference for
the design of molecular machinery (Takaki et al., 2022). For example, with the deepening of
myosin II research, diseases such as myocarditis could be explained by genetic means.

In normal physiological conditions, the immune system does not act in response to the
human body itself (self-tolerance). Autoimmune diseases are characterized by dysregulation
or deficiency of the immune tolerance mechanism, inducing an immune response to the
human body itself (Coss et al., 2022; Johnson and Jiang, 2022). Autoimmune diseases are a
serious health hazard due to organic damage and dysfunction and are characterized by the
excessive activation of T and B lymphocytes, and autoantibodies (Mageau et al., 2023). The
etiology is obscure, and the appropriate treatment is debatable. Glucocorticoids and
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traditional antirheumatic drugs are the most commonly used drugs,
having positive effects on attenuating inflammation, analgesia, and
ameliorating or delaying disease progression. In addition, other
potential treatment options, such as stem cell transplantation,
biologics, or new plant agents, might be considered for those
who respond poorly or cannot tolerate first-line therapy (Dang
et al., 2020). Although autoimmune diseases cannot be completely
cured, treatments can keep symptoms at bay and improve the
quality of life for those who have already developed symptoms.
Based on previous research findings, we have discovered that the
link between myosin and autoimmune diseases is much more
complex than we had hoped. Myosins were abnormally expressed
in a number of autoimmune diseases, and participates in a
complicated pathological process of autoimmune diseases (Zhang
et al., 2020a), but the reported literature on this topic is very limited.
Although the available literature is scarce, we have reasons to believe
that a breakthrough can be made in the relation between myosin and
autoimmune diseases. This review fully describes the implications of
myosin in autoimmune diseases.

Myosin has long mismatched dimers and a Y structure of
~160 nm. Under a scanning electronic microscope, the myosin
structure may be observed, including the entire set of long
peptide chains and two pairs of short peptide chains,
constructing two spherical heads and a long rod-shaped tail.
Myosin was first found in muscular tissue, and since 1970,
scientists have identified more myosins in mice and humans.
Each myosin is constructed of a common set of three standard
parts, including the head, neck, and tail, and a composition of heavy
and light chains. After 1970, many non-muscle myosins were

gradually discovered, there are 35 members in the superfamily.
Myosin within the cytoskeleton, as its “molecular motor,” binds
actin called acto-myosin and effectively converts ATP
(Triphosadenine) energy into muscle contractions. The most
important feature for heavy chains is an energy-producing motor
to enable their metabolic capacity. The head part of the heavy chain
of myosin has the most conservative structure, generating energy
and momentum via the binding affinity of actin and the ATP
binding site for the ligand (Figure 1). Regulatory light chains
dedicated to certain functions have myosin regulatory
enforcement functions, and the phosphorylation/
dephosphorylation state has a large impact on the activity of
myosin. Based on the earliest and most sliding filament theory
(Spudich, 2001; Powers et al., 2021), combined with the later
developed swinging lever arm model explains how the myosin
combines with F-actin during the process of filament sliding
(Marcucci et al., 2021).

2 Myosins involvement in autoimmune
diseases

2.1 Myosin immunization modeling
experiment

In a mouse model, cardiac myosin is an autoantigen,
especially in the later phases of postinfectious myocarditis.
Heart-reactive antibodies were identified as cardiac isoforms
of myosin due to autoimmunization (Rose et al., 1987). The

FIGURE 1
Myosin hydrolyzes ATP.
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application of emulsified cardiac myosin itself could establish an
experimental autoimmune myocarditis model (Lee et al., 2016).
Cardiac myosin could stimulate the production of heart-specific
antibodies accompanied by cardiac muscle striations and
sarcolemma (Rose et al., 1987). In cardiac myosin-immunized
experimental autoimmune myocarditis mice, activated
extrathymic T lymphocytes expressed high levels of LFA-1 and
IL-2R (Interleukin 2 receptor) beta-chains while inducing
differentiated CD4-CD8- T cell movement to the sites of the
cardiac lesion (Hanawa et al., 1993). It has also been reported that
myosin immunization can induce experimental autoimmune
myositis in guinea pigs (Chen et al., 2018).

2.2 Themolecular mechanism ofmyosins on
cell of the immune system

2.2.1 Contraction dysfunction
One of the chief effects of myosins on the cell of the immune

system could lead to the contraction dysfunction of autoimmune
diseases. The myosin motor operates as a linear motor
(Chatterjee et al., 2022), vibrating along a linear axis. Studying
the structure of the motor enables us to understand its
mechanism of directed movement (Reconditi et al., 2011).
Based on the classic swinging cross bridge model (Spudich,
2001), when ATP hydrolysis occurs, the head of myosin leans
toward F-actin, and deviates from actin to trigger the movement
of thin filaments. Then the motor head moves away from F-actin,
participates in a muscle contraction. The axon shape change of
myosin induces active cortex contraction, promoting the
disruption of the cytoskeleton (Riccobelli, 2021) (Figure 2). Or
the retraction dysfunction of filopodia/lamellipodia could be
induced by actin/myosin-based contractions damage (Reichert
and Rotshenker, 2019). The rod-like morphology aggregated by
the myosin impaired the junctions between neuromuscular

(O’Connor et al., 2018). Myosin IIA has been identified as a
negative regulator of B lymphocytes activation. B lymphocytes
response are thought to depend on contractile activity of non-
muscle myosin IIA. Deletion of the myosin IIA heavy chain
reduced serum immunoglobulin levels and no strong antibody
response was produced during immunization (Hoogeboom et al.,
2018) (Figure 2).

2.2.2 Regulatory myosin light chains related
mechanism

Regulatory light chains dedicated to certain functions have
myosin regulatory enforcement functions, and the
phosphorylation/dephosphorylation state has a large impact
on the activity of myosin. The myosin heavy chain has ATP
enzyme vitality, and the myosin light chain can be activated by
phosphorylation of Ca2+-CaM (calmodulin), causing
conformation transitions (Takaki et al., 2022) (Figure 3).
There are two light chains with their own position on the
heavy chain: one is the regulatory light chain 2 (MLC2), and
one is the essential light chain (MLC1). Under normal
physiological conditions, the phosphorylation of MLC2 stand
at 40% overall. The abnormal phosphorylation is the pathological
base and associated factors of diseases. Terminal of MLC2 have
two phosphorylation site: serine and threonine residues. After
phosphorylation, the MLC2 form transforms from a compressed
form to end as a extended form. Phosphorylated MLC2 can
increase the mobility of myosin transbridge and promote the
movement of motor head. In addition, phosphorylated MLC2 can
also accelerate the release of phosphoric acid, inducing the state
of myosin ADP·Pi (ADP, Adenosine diphosphate; Pi, Phosphoric
acid) held together by weak interactions with F-actin (Franz et al.,
2020). The weak binding state of actin·myosin·ADP·Pi is sensitive
of Ca2+, and much easier to transform into a strong binding force
state. Increased weak binding state accelerates the rate of force
generation, as well as changing the permeability of cell

FIGURE 2
The contraction dysfunction of myosins on autoimmune diseases.
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gap. Phosphorylation of myosin-light-chain kinase could induce
the involvement of related antibodies to decrease blood-brain
barrier permeability (Liu et al., 2018). The degradation of myosin
light chain 2 activated cellular apoptosis in Alzheimer’s and
Parkinson’s disease (Guo et al., 2019; Wang et al., 2019).
Myosin light chain kinase (MLCK) activates the JNK (c-Jun
N-terminal kinase) signaling pathway to facilitate neuronal
apoptosis in high glucose-induced hippocampal neurons (Xu
et al., 2021) (Figure 3).

2.2.3 Cell of the immune system adhesion and
migration

Cell of the immune system adhesion and migration are critical
for immune response and homeostasis. The dysregulation of cell
microenvironments triggers aberrant cell of the immune system
adhesion and migration. New research on myosin suggests that
myosins participate in the process of adhesion and migration.
Myosin-7B (MYO7B) could regulate the cell-to-cell transmission
in Parkinson’s disease (Zhang et al., 2020b). Non-muscle myosin II

FIGURE 3
The regulatory myosin light chains related mechanism on autoimmune diseases.

FIGURE 4
The effects of myosins on B lymphocytes and T lymphocytes of immune function.
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is essential for the formation of the B cell receptor surface,
influencing the signal transmission to antigen-presenting cell
(Seeley-Fallen et al., 2022). T lymphocytes lacking myosin IIA
showed excessive adherence to high endothelial venules, reduced
migration in the interstitium, and inefficient recirculation in the
lymph nodes (Jacobelli et al., 2010) (Figure 4). The function of
myosin IIA can also be observed by its participation in immune
synaptic maturation (Kumari et al., 2012), mediated primarily by
regulating lymphocyte function-associated antigen-1 to promote the
mechanical force change involving detachments and contractions
(Morin et al., 2008) (Figure 4). According to the patho-anatomy of
the disease, the phenomenon of mst1 deficiency involves
overactivated T lymphocytes and abnormally differentiated B
lymphocytes (Jacobelli et al., 2010). T lymphocytes migrate
through the transcellular process during interstitial migration,
and myosin IIA is the driving force for pushing the nucleus
through the endothelium (Krummel et al., 2014) (Figure 4).
Lamin-A enhances the extent of phosphorylation of myosin IIA
and Vav1 (Vav guanine nucleotide exchange factor 1), which could
lead to increased activation of the T lymphocytes receptor,
accelerating formation of the immunological synapse between T
lymphocytes and antigen-presenting cells (González-Granado et al.,
2014) (Figure 4).

2.3 Abnormal expression of myosins in
autoimmune diseases

2.3.1 Multiple sclerosis
In a specific type, ALS-associated (ALS, Amyotrophic lateral

sclerosis) extraocular muscles express a unique set of myosin
isoforms and dampen multiply innervated fiber contraction

(Nijssen et al., 2017) (Table 1). Evidence continues to accumulate
associating myosin evidences with multiple sclerosis.
Unconventional myosin 48/Myo1C (Myosin 1c) is responsible for
the progression of pathological ALS diseases, while myosin 48/
Myo1C interacts with other proteins to participate in the
complement and coagulation cascades of ALS diseases
(Myronovkij et al., 2016; Starykovych et al., 2021). An isolated
46 kDa form of unconventional Myo1C present in MS (Multiple
sclerosis) patients via specific autoantibodies can serve as a potential
screening protein (Zasońska et al., 2018). Thus far, monospecific
anti-p46/Myo1C immunoglobulin G (IgG) antibodies might be
expected to have a wide potential application in areas in earlier
age at MS disease diagnosis (Horák et al., 2017).

2.3.2 Alzheimer’s and Parkinson’s disease
Transcriptome changes involving a complex set of cytoskeletal

proteins, including nuclear lamin, tropomyosin 1, and myosin light
chain 1, were specifically upregulated during Parkinson’s disease
pathogenesis (Ryu et al., 2019). Pink1−/− mice (Parkinson’s disease
model) showed enhanced tongue press force with relative increases
in myosin heavy chain IIa in the styloglossus but typical myosin
heavy chain profiles in the genioglossus (Glass et al., 2020). Cortical
myosin II damage is affected in the metaphase plate in cell mitosis in
associated Parkinson’s diseases (Toyoda et al., 2017). The abnormal
expression of myosin light chain 20, myosin heavy chain 11, and α-
smooth muscle actin participated in gastroparesis of Parkinson’s
disease (Xiu et al., 2020).

2.3.3 Other neurological disorders
There are many kinds of autoimmune diseases that occur in the

nervous system. Even for some common nervous system diseases,
the inclusion of a new classification as part of autoimmune diseases

TABLE 1 Myosin and its physiological function in autoimmune diseases.

Myosin Physiological function

α-myosin peptides Expand peripheral blood T lymphocytes in diseased heart and skeletal muscle; As the candidate autoantigens
in myocarditis

Non-muscle myosin As the immunopathology factor inducing neuroinflammation

Myo1C and myosin 48 Participate in the complement and coagulation cascades

MYO5b Cause cholestasis with normal serum gamma-glutamyl transferase activity

MYO18A Induce mixed features of myelodysplastic/myeloproliferative neoplasms in myeloid leukemia patients

Myosin heavy chain alpha Trigger CD4+ T lymphocytes accumulating in the myocardium

MYH6 As myocardial antigen in myocarditis

MYH9 Induce the increased expression of α-synuclein

Myosin heavy chain 11 Impair mitotic progression

Embryonic myosin heavy chains Weaken the contractile force of gastric circular smooth muscle and gastric myoelectric activity

Myosin light chain 1 Influence dopamine neuronal differentiation

Myosin light chain 20 Impair mitotic progression

α-smooth muscle actinmyosin Ⅱ Impair mitotic progression

FLNA regulated the actin-myosin motor units and cytoskeleton Fail to transmit force signals to the extracellular matrix
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is needed. Except for multiple sclerosis, Alzheimer’s and Parkinson’s
disease, with the development of newly discovered molecular
mechanisms, autoimmune diseases are increasing. Embryonic
myosin heavy chains are markers that are more commonly
expressed in spinal muscular atrophy (Sewry et al., 2021). The
uncovered CD8+ T cell response activated by T lymphocytes
simulates the effects of perturbing non-muscle myosin and
vimentin structure, which suggests that myosin is an important
immunopathology factor in neuroinflammation in experimental
autoimmune encephalomyelitis (Feizi et al., 2021).

2.3.4 Autoimmune myocarditis
Except the myosin immunization functions on autoimmune

myocarditis, various myosin subtypes have been found for
autoimmune myocarditis. α-Myosin peptides expand peripheral
blood T lymphocytes in diseased heart and skeletal muscle and
might be candidate autoantigens in myocarditis (Axelrod et al.,
2022). Myosin heavy chain alpha (MYHCA)-triggered post-MI
CD4+ T lymphocytes selectively accumulate in the myocardium
of infarction mice as the dominant cardiac antigen (Rieckmann
et al., 2019).

2.3.5 Myositis
The main inducement of heart failure and sudden cardiac death

in young adults and adolescents is myocarditis. Cardiac myosin, as
the major autoantigen, is the critical cause associated with
autoimmune processes in myocarditis clinical cases. In some
cases, architectural abnormalities in muscle myosin were detected
in congenital myopathies via muscle biopsy (Claeys, 2020). Many
new genes are being identified in congenital myopathies specializing
in neuromuscular disorders. Recently, a patient with a homozygous
mutation presented a dominant phenotype of rare muscle disorders,
while MYH2 (Myosin heavy chain 2) mutations were responsible for
autosomal dominant progressive myopathy (Telese et al., 2020).
Prune belly syndrome (PBS) is a rare, multisystem congenital
myopathy characterized by dysfunction of the X-chromosome
gene filamin A (FLNA) in transmitting force signals from the
actin-myosin motor units and cytoskeleton to the extracellular
matrix (Iqbal et al., 2020). MYH7 is an extremely rare gene that
provides novel insights into associated changes in muscle physiology
(Beecroft et al., 2019). Additionally, uncoordinated mutant myosin
chaperone 45B (UNC45B), as the default template assembly, splits
up the muscle thick filament arrangement (Dafsari et al., 2019).

2.3.6 Hemopathy
Thrombocytopenia is characterized by a decrease in platelets or

abnormal platelet function, accompanied by clinical presentations
such as menorrhagia and ecchymosis and other clinical
manifestations such as neuropathic deafness, cataracts, and
nephritis. Thrombocytopenia, an immune disorder, is a new hot
topic. There appear to be four main causes of autoimmune
thrombocytopenia: 1) the production of anti-platelet
autoantibodies, which are mainly produced in the spleen and
destroy platelets; 2) platelet-reactive T cell abnormalities in the
blood of patients with immune thrombocytopenia; 3) the body’s
immune response to platelet-associated antigens; 4) viruses that
cause immune complex disease resulting in thrombocytopenia.
Molecular mechanisms directing hereditary thrombocytopenia are

often related to genemutations. Dohle inclusions were more likely to
be found in areas of peripheral blood mutant neutrophils in MYH9-
mutation (MYH9, Non-muscle myosin heavy chain 9) hereditary
thrombocytopenia (MYH9-related diseases are caused by defects in
the gene encoding myosin heavy chainMYH9) (Balduini et al., 2018;
Rodeghiero et al., 2018). A novel variant (E1421K) induced
abnormal aggregates of MYH9 protein manifested as apparent
neonatal alloimmune thrombocytopenia MYH9 (Samelson-Jones
et al., 2018). The essential fusion of FLT3 (Fms Related Receptor
Tyrosine Kinase 3) andMYO18A (Myosin 18 alpha) was detected in
eosinophilic granulocytes associated with chronic myeloproliferative
disorders, such as atypical chronic myeloid leukemia (Zhang et al.,
2018).

2.3.7 Inclusion body disease
Inclusion body disease (IBD) has 90% of its origins in inclusion

body herpesvirus. The virus produces inclusion bodies in respiratory
and digestive tract epithelial cells, developing secondary bacterial
infection caused by CD8+ lymphocyte-mediated autoimmune
cytotoxicity. Abnormal changes in retinal tissues, brain tissues,
spinal cord tissues, terminal nerve tissues, and organ tissues are
common complications of IBD, and IBD during onset is hidden, has
a slow progression, and has a longer course. To date, there is still no
specific drug treatment. The main clinical manifestations of
microvillus inclusion disease (MVID) are refractory diseases
accompanied by severe watery diarrhea, failure to thrive, and
metabolic acidosis. Newly discovered mutations in the myosin
Vb (MYO5B) gene have been identified as causative factor for
microvillus inclusion diseases (Gonzales et al., 2017). MYO5B
deficiency produced a pathological process of isolated cholestasis
(Cartón-García et al., 2015). Likewise, another study has the same
implications as previous studies; MYO5B (myosin 5B) mutation-
induced microvillus inclusion disease (MVID) causes fatal
autosomal recessive congenital diarrheal disorders (Dhekne et al.,
2018).

2.4 The participation mechanism of myosins
in the pathophysiology of autoimmune
disorders

2.4.1 Molecular mechanisms of myosins in the
central nervous system

In response to the pathological conditions, the physiological
shape of axons is altered in several diseases, such as Alzheimer’s and
Parkinson’s diseases. The contraction dysfunction via myosin motor
is one of the significant reasons that lead to the altered axons
morphology (Riccobelli, 2021). Additionally, different types of
myosin can be found in particular conformations. Galectin-3
(MAC-2) in microglia dynamically adjusts the state of actin/
myosin-based contractions to lead to the retraction of filopodia/
lamellipodia to damage myelin surrounding the central nervous
system axons in multiple sclerosis (Reichert and Rotshenker, 2019).
Phosphorylation of myosin-light-chain kinase was moved to the
inactivated state under treatment with an A2A (Adenosine A2A
Receptor) receptor agonist, which could decrease blood-brain
barrier permeability in multiple sclerosis disease A2A (Liu et al.,
2018).
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In recent years, it has been suggested that Alzheimer’s disease
might not only be a neurological disease but also an autoimmune
disease. Meanwhile, research on Parkinson’s disease and its potential
association with autoimmune diseases is strongly being pursued.
Autoimmune mechanisms include inflammatory factors, the Golgi
network, and gene mutations. TNF (Tumor Necrosis Factor)-α
elevated inflammatory factor expression induced hippocampal
neuron downregulation while accelerating the degradation of
myosin light chain 2-activated caspase-3 activation and apoptosis
in Alzheimer’s and Parkinson’s disease (Guo et al., 2019). The
dysfunction of myosin proteins is a crucial intracellular process
for the pathogenesis of Alzheimer’s and Parkinson’s diseases.
Research has shown that all myosin Myo1 and 2 retrieved from
the endosome and the vacuole participate in the recycling traffic of
the trans-Golgi network (Nguyen et al., 2021). An alternative theory
is that the activation of LRRK2 (Point mutations in leucine-rich
repeat kinase 2) kinase caused the combination of RILPL2 (Rilp-like
proteins 2) and phosphorylated LRRK2 to interfere with myosin
Va’s role in ciliogenesis (Dhekne et al., 2021). Tau depends on
myosin ATPase activity and reduces the phosphorylation of
regulatory myosin light chains in Alzheimer’s disease Tau (Wang
et al., 2019). Myosin monomers can aggregate rod-like morphology,
including liposomes and viruses, by interacting with α-synuclein in
Alzheimer’s and Parkinson’s diseases (Glass et al., 2019).

Diabetic encephalopathy, the most common form of type
1 diabetes, is an autoimmune disease and immune-mediated
form of neurological disorder. In this disease, myosin light chain
kinase (MLCK) activates the JNK signaling pathway to facilitate
neuronal apoptosis in high glucose-induced hippocampal neurons
(Xu et al., 2021). The pathogenesis of diabetic encephalopathy is
caused by autoimmunity, mainly the regulatory JNK/MLCK
signaling pathway (Xu et al., 2021).

2.4.2 Molecular mechanisms of myosin in the
peripheral nervous system

There are other nerve symptoms, such as sublingual muscle
weakness and abnormal gastric motility, caused by Parkinson’s
disease. More research associated with Parkinson’s disease
pathogenesis. Neuromuscular pathology found that MyHC2L was
associated with muscle fiber abnormalities in the larynx and
pharynx in patients with Parkinson’s disease (Hoover and
Murphy, 2020). Myosin-7B (MYO7B) is a critical endocytosis
regulator in the cell-to-cell transmission of misfolded α-synuclein
in Parkinson’s disease (Zhang et al., 2020b).

Additionally, diseases in the peripheral nervous system, such as
Guillain‒Barre syndrome and myasthenia gravis, are additional
autoimmune diseases caused by damage to the neuromuscular
junction. Charcot-Marie-Tooth disease (CMT), also called
hereditary motor and sensory neuropathy (HMSN), is a common
peripheral nerve monogenetic disease. CMT disease is characterized
by gradual onset and slow progressive weakness and atrophy of
distal limb muscles and other features of impaired sensation. Myelin
synthesis and actinomycin dysfunction are the basis of abnormal
spinal cord function in Charcot-Marie-Tooth disease. Charcot-
Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive
demyelinating neuropathy with childhood onset caused by loss-of-
function mutations in the myotubularin-related 2 (MTMR2) gene.
MTMR2mediates mTORC1-dependent myelin synthesis and RhoA

(Ras Homolog Family Member A)/myosin II-dependent
cytoskeletal dynamics to influence myelin membrane expansion
and longitudinal myelin growth Charcot-Marie-Tooth 4B1
(CMT4B1) (Guerrero-Valero et al., 2021).

The main inducement of heart failure and sudden cardiac death
in young adults and adolescents is myocarditis. Cardiac myosin, as
the major autoantigen, is the proegumenal cause associated with
autoimmune processes in myocarditis clinical cases. In a mouse
model, cardiac myosin is an autoantigen, especially in the later
phases of postinfectious myocarditis. Heart-reactive antibodies were
identified as cardiac isoforms of myosin due to autoimmunization
(Rose et al., 1987). The application of emulsified cardiac myosin
itself could establish an experimental autoimmune myocarditis
model (Lee et al., 2016). Cardiac myosin could stimulate the
production of heart-specific antibodies accompanied by cardiac
muscle striations and sarcolemma (Rose et al., 1987). In cardiac
myosin-immunized experimental autoimmune myocarditis mice,
activated extrathymic T lymphocytes expressed high levels of LFA-1
(Lymphocyte function-associated antigen 1) and IL-2R beta-chains
while inducing differentiated CD4-CD8- T cell movement to the
sites of the cardiac lesion (Hanawa et al., 1993). Myocarditis depends
on cardiac myosin heavy chain 6-specific T helper TH17 cells
imprinted in the intestine by a commensal bacteroides species
peptide mimic (Gil-Cruz et al., 2019).

2.4.3 Molecular mechanisms of myosins in the
muscle

Autoimmune polymyositis is an extensive inflammatory lesion
in muscles. The clinical manifestation usually presents with
myasthenia, accompanied by muscle pain, muscle atrophy
involving difficulty swallowing, or breathing, in terms of elevated
circulating levels of inflammatory markers. Congenital myasthenia
syndromes are a group of rare, inherited disorders characterized by
impaired function of the neuromuscular junction. MYO9A mutant
zebrafish were used as a quality model for studying congenital
myasthenic syndromes. MYO9A might impair the function of
neuromuscular junctions during embryonic development
(O’Connor et al., 2018). Drug therapy is an important adjunct to
immunological treatments. The novel agent of 3-n-butylphthalide
(NBP) associated with autoimmunity of the drug target was used for
the treatment of myositis and other muscular diseases (Chen et al.,
2018).

3 Discussion

Inbred strain mice are mainly chosen by laboratory due to the
stable gene homozygous, consisten phenotype, clear background.
The genetic background of Balb/C and C57BL/6J mice were used in
the autoimmune modeling experiment commonly. C57BL/6 is the
preferred genetic background for diet-induced obesity, multiple
sclerosis models, or chronic experimental autoimmune
encephalomyelitis. Balb/C mice are the most commonly used
animals in the research fields of tumor, inflammation, and
autoimmunity, while almost all of the mice derived myeloma
cells for cell fusion were obtained from Balb/C mice. Balb/C and
C57BL/6J mice have differences in the aspects of Th1 and
Th2 immune responses. Under the infection and allergic
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irritation, C57BL/6 mice are dominated by Th1 immune response
and IFNγ, while Th2 immune responses were easier to be triggered
in Balb/C mice. Balb/C mice tend to own the humoral response on a
larger scale than that in C57BL/6 mice (Zamora et al., 2021).

The human major histocompatibility (HLA) complex is a group
of closely linked genes located on the broken arm of human
chromosome 6. The autoimmune patients have a higher
incidence rate of genetic propensity, while HLA antigen is the
most known genetic risk factor for autoimmune diseases. On one
hand, HLA antigen offers the toxins or excessive pro-inflammatory
factors to body system (Bodis et al., 2018). On the other hand, HLA
gene polymorphisms might destroy the autoimmune state, such as
HLA-DQ2 and HLA-DQ8 related with celiac diseases, HLA-DRB1
related with rheumatoid arthritis, and HLA-b27 associated with
spondyloarthritis (Vandenbroeck, 2012). As the parameters used in
clinical testing, cardiac antigens and HLA expression were used in
the diagnosis of myocarditis (Rose, 2009).

Cardiac-specific protein α-myosin, though absent from the
thymus, could expand peripheral blood T cells, indicating it
might be a clinically important autoantigen in fulminant
myocarditis (Axelrod et al., 2022). For regulatory T cells
dominance, under non-inflammatory conditions, T cells specific
for myocardial antigens specific associated α-myosin heavy chain
peptides differentiated into expanded clones of regulatory T cells.
Under the cardiac infection and/or genetic variations in peripheral
tolerance, effector T cell derived cytokines inhibit expansion of
regulatory T cells that contributes to the inflammatory damage to
the heart in autoimmune myocarditis (Lichtman, 2013). Transgenic
expression of α-MYHC (such as MYH6) in thymic epithelium
conferred tolerance to cardiac myosin and prevented myocarditis,
demonstrating that α-MYHC is a primary autoantigen in mediating
central and peripheral T cell tolerance. For example: MYH6 is
suggested to be targeted on CD4+ T cell in a spontaneous mouse
model of myocarditis (Lv et al., 2011).

In cases with severe complications, large deposits of anti-tropo-
myosin antibody were most commonly found on the blood vessel
wall. This autoimmunity is also controlled by many factors, which
are affected by intra- or extra-cellular factors. Internal factors
include intracellular calcium, ATP, endogenous enzymes, and
related proteins. Internal Factor 1: calcium ion. 1) Intracellular
calcium is an important element of the weakening and
destruction of the complete structure of myofibrils. The elevation
of calcium directly or indirectly induced the combination of actin
andmyosin to form actin-myosin protein (Awinda et al., 2022). Two
theories exist to explain the reason. One is that when calpain is
activated, the action could spur the dissociation of myofibrillar
protein (Koohmaraie et al., 1989). The other is the calcium ion
theory (Koohmaraie et al., 1989). When calpain declines, calcium
ions alone lead to further collapse and breakage in muscle fibers.
This weakened myofibrillar skeleton is formed by calcium ions
rather than calpain (Berchtold et al., 2000). Some studies have
found a beneficial association between increased acculturation
and mental health, whereas others have found a detrimental
association or no relationship at all. Other studies tend to study
the activation of calpain, primarily in terms of calcium ions, and
activated calpain promotes the degradation of myofibrillar skeletal
proteins, directly or indirectly influencing the connection of
actomyosin transverse bridges (Geesink et al., 2001).

Internal Factor 2: ATP. The sustainable consumption of ATP
rapidly causes an increase in hydrolysates such as AMP (Adenosine
monophosphate) and IMP (Inosinic acid) (Okitani et al., 2008).
Only ADP, calcium ions, or ATP have been ineffective in the
dissociation of actomyosin (Benjakul et al., 2007). However, IMP,
AMP, and the high concentration of phosphate radical (PO4

3-)
facilitated the dissociation of actomyosin, which was irreversible.
Internal Factor 3: endogenous enzyme. Among the various
endogenous enzymes, the three main proteins include calpsin,
lysosomal protease (cathepsin), and proteasome. Calpsin is a
calcium-activated protease, and there are two isoforms of calpsin,
μ-calpsin andm-calpsin, which are very similar in their structure but
are very different in their function within organisms. Released
amounts of Ca2+ activate μ-calpsin to induce the degradation of
actin, myosin, and troponin in myofibrillar fibers (Tatsumi et al.,
1993). Cathepsin would have been in the form of a proenzymer, and
cathepsin further reduced the proteins based on the degradation of
calpsin (Dutaud et al., 2006). The proteasome showed a similar effect
as cathepsin to further reduce the proteins (Sentandreu et al., 2002).

Other potential external factors include ions, high pressure, and
phosphorylation. The combined action of MgCl2 and
pyrophosphate PO4

3− triggers the natural dissociation of actin
myosin. High-pressure treatment changes the osmotic pressure of
cells, resulting in the rupturing of cell walls so that a variety of
enzymes in the lysosome are released, which leads to an increased
degree of hydrolysis of myosin and actin, affecting the dissociation
of actomyosin. Myosin light chain phosphorylation is a complicated
process (Lee et al., 2022) and is influenced by many factors,
including Ca2+ concentration, calmodulin, myosin light chain
kinase, and protein kinase A and C. Myosin light chain
phosphorylation promotes myosin regulated light chain
phosphorylation (Anis et al., 2022) or inhibits myosin light chain
phosphorylase activity through activation of Rho kinase. Thus, they
did see some increase in myosin regulated light chain
phosphorylation, leading to muscle contraction or sarcolemma
migration (Hirano and Hirano, 2022; Lei et al., 2022).

The most immediate response is inflammation at the site of
autoimmune diseases and the recruitment of additional cells of the
immune system, including neutrophils. Tissue deformation,
necrosis, infiltration, and fibrosis cause the body to release
proinflammatory cytokines and immune factors that initiate
autoimmune responses (D’Amico et al., 2022). This pathological
progress weakens the immune response and can lead to organ
inflammation and damage. Otherwise, cytokines are immune
system signaling chemicals, and their production is a first step in
causing inflammation (Zhan et al., 2021). Autoimmune diseases are
believed to be connected to an inflammatory process initiated by the
body’s immune response.

At present, improvement in more targeted biological agents has
spring up, while a serial of effective biological medicine were
invented, including Belimumab, Sirukumab, Rituximab,
Tocilizumab, Infliximab, Etanercept, Etc. Also, the symptoms of
myasthenia could be alleviated by drugs on myosin immunized
experimental autoimmune myositis model, like butylphthalide,
while the mechanism of butylphthalide is based on the increase
of Ca2+-ATPase activities of muscle mitochondrial membrane and
the decrease of IFN-γ (Interferon-γ) mRNA expression (Chen et al.,
2018). In 2021, N Engl J Med published that Omecamtiv (a novel
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myosin agonist), significantly improved composite cardiovascular
endpoints in patients with heart failure with reduced ejection
fraction (Bellumkonda et al., 2021). In 2022, JAMA confirmed
that Omecamtiv significantly improved the capacity of exercise in
heart failure with reduced ejection fraction patients, that other anti-
heart failure drugs do not get with similar characteristics (Lewis
et al., 2022). In addition, there have been numerous development of
myosin targeted drugs, such as Mavacamten capsules (the first oral
heart-specific allosteric inhibitor of cardiac myosin, treatment for
hypertrophic cardiomyopathy, which reduced the ATPase activity of
cardiac myosin heavy chain, inhibited myocardial overcontraction,
and increased diastolic compliance); Aficamten (CK-3773274) (a
cardiac myosin inhibitor, treatment for hypertrophic
cardiomyopathy, which directly bound to cardiac myosin,
reduced myocardial contractility and excessive contraction). The
new findings published in the 2022 Nature could help researchers to
design new myosin-related drugs that overcome autoimmune
diseases. The T lymphocytes were sequencing to rebuild their
receptors, specific peptides of alpha myosin were determined in
T lymphocytes based on the receptors. There have been
demonstrated that specific peptides interestingly were found in T
lymphocytes in myocarditis patients, while T lymphocytes from
patients have the same source of antigen (Axelrod et al., 2022). In the
future, scientists expect to gain more experience from the specific
myosin related antigen and develop more specific targeted drugs for
years to come.

4 Conclusion

In conclusion, it is particularly important to understandmyosin-
related autoimmune diseases. Myosins are involved in autoimmune
diseases, and take part in the pathological process of immune
responses. Additionally, myosin dysfunction causes dystonic
cramps, abnormal muscle contractions, and chronic energy
deficiency that can lead to severe symptoms presented by
autoimmune diseases. Although research on the role of myosin
in the occurrence and development of autoimmune diseases is still in
its infancy, it is of great clinical relevance, and its mechanism remain
to be further studied.
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Glossary

α-MYHC Alpha myosin heavy chain

A2A Adenosine A2A Receptor

AD Autosomal dominant

ADP Adenosine diphosphate

ALS Amyotrophic lateral sclerosis

AMP Adenosine monophosphate

ATP Triphosadenine

CaM Calmodulin

CMT Charcot-Marie-Tooth Disease

CMT4B1 Charcot-Marie-Tooth type 4B1

FLNA Filamin A

FLT3 Fms Related Receptor Tyrosine Kinase 3

HLA Human major histocompatibility

HMSN Hereditary motor and sensory neuropathy

IBD Inclusion body disease

IFNγ Interferon gamma

IgG Immunoglobulin G

IMP Inosinic acid

IL-2R Interleukin 2 receptor

JNK c-Jun N-terminal kinase

LFA-1 Lymphocyte function-associated antigen 1

LRRK2 Point mutations in leucine-rich repeat kinase 2

MLC2 Regulatory light chain 2

MLCK Myosin light chain kinase

MS Multiple sclerosis

MTMR2 Myotubularin-related 2

MVID Microvillus inclusion disease

MYH2 Myosin Heavy Chain 2

MYH6 Myosin Heavy Chain 6

MYH9 Non-muscle myosin heavy chain 9

MYHCA Myosin heavy chain alpha

Myo1C Myosin 1c

MYO5B Myosin Vb

MYO7B Myosin-7B

MYO18A Myosin 18 alpha

NBP 3-n-butylphthalide

PBS Prune belly syndrome

Pi Phosphoric acid

PO4
3- Phosphate radical

Rilpl2 Rilp-like proteins 2

RhoA Ras Homolog Family Member A

TNF Tumor necrosis factor

UNC45B Uncoordinated mutant myosin chaperone 45B

Vav1 Vav guanine nucleotide exchange factor 1

IFN-γ Interferon-γ
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