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Introduction: Excessive alcohol consumption leads to a myriad of detrimental

health effects, including alcohol-associated liver disease (ALD). Unfortunately,

no available treatments exist to combat the progression of ALD beyond

corticosteroid administration and/or liver transplants. Dihydromyricetin (DHM) is

a bioactive polyphenol and flavonoid that has traditionally been used in Chinese

herbal medicine for its robust antioxidant and anti-inflammatory properties. It is

derived from many plants, including Hovenia dulcis and is found as the active

ingredient in a variety of popular hangover remedies. Investigations utilizing

DHM have demonstrated its ability to alleviate ethanol-induced disruptions

in mitochondrial and lipid metabolism, while demonstrating hepatoprotective

activity.

Methods: Female c57BL/6J mice (n = 12/group) were treated using the Lieber

DeCarli forced-drinking and ethanol (EtOH) containing liquid diet, for 5 weeks.

Mice were randomly divided into three groups: (1) No-EtOH, (2) EtOH [5% (v/v)],

and (3) EtOH [5% (v/v)] + DHM (6 mg/mL). Mice were exposed to ethanol

for 2 weeks to ensure the development of ALD pathology prior to receiving

dihydromyricetin supplementation. Statistical analysis included one-way ANOVA

along with Bonferroni multiple comparison tests, where p ≤ 0.05 was considered

statistically significant.

Results: Dihydromyricetin administration significantly improved aminotransferase

levels (AST/ALT) and reduced levels of circulating lipids including LDL/VLDL, total

cholesterol (free cholesterol), and triglycerides. DHM demonstrated enhanced

lipid clearance by way of increased lipophagy activity, shown as the increased

interaction and colocalization of p62/SQSTM-1, LC3B, and PLIN-1 proteins.

DHM-fed mice had increased hepatocyte-to-hepatocyte lipid droplet (LD)

heterogeneity, suggesting increased neutralization and sequestration of free

lipids into LDs. DHM administration significantly reduced prominent pro-

inflammatory cytokines commonly associated with ALD pathology such as TNF-α,

IL-6, and IL-17.
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Discussion: Dihydromyricetin is commercially available as a dietary supplement.

The results of this proof-of-concept study demonstrate its potential utility and

functionality as a cost-effective and safe candidate to combat inflammation and

the progression of ALD pathology.
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1. Introduction

Alcohol use disorder (AUD) affects over 280 million people
worldwide, and in the United States alone, it affects over 18 million
people, leading to approximately 140,000 deaths annually (1, 2).
This ranks AUD third on the list of preventable causes of death
and morbidity. Unfortunately, the rates of alcohol misuse are
on the rise, with unhealthy drinking patterns contributing to a
higher incidence of mortality, particularly due to alcohol-associated
liver disease (ALD) (3–5). The liver is the primary site of alcohol
metabolism, and when ALD manifests, it is in a progressive order.
This progression includes alcohol-associated fatty-liver disease
(AFLD), alcohol-associated steatohepatitis (ASH) and fibrosis,
to ultimately cirrhosis. The stages of ALD are characterized
by disruptions in lipid metabolism and transport, altering the
levels of free fatty acids, triglycerides, total cholesterol, and
lipoproteins that result in injury due to lipotoxicity, oxidative
stress, and inflammation (6). Available FDA-approved medications
have limited success in treating patients for AUD, and there
are no approved pharmaceutical or nutritional therapies for
ameliorating ALD beyond the administration of corticosteroids as
anti-inflammatory agents or in the worst-case scenarios, a liver
transplant (7). The lack of effective therapies for ALD is due, in
part, to the multifactorial systemic responses that are associated
with heavy ethanol (EtOH) intake and the multi-organ damage that
can result from excessive EtOH consumption.

Plant-derived products, including members of the polyphenol
families, are traditionally used worldwide for the treatment of liver
disorders that include hepatic-driven metabolic imbalances (8–
10). Polyphenols can regulate homeostasis by acting on nuclear
receptors in response to the cellular environment and metabolic
sensors. Emerging studies have demonstrated the effects of
dietary polyphenols on dyslipidemia by reducing circulating levels
of low-density lipoprotein (LDL), very low-density lipoprotein
(VLDL), and promoting high density lipoprotein (HDL) levels,

Abbreviations: AFLD, alcohol-associated fatty-liver disease; ALD, alcohol-
associated liver disease; ALT, Alanine aminotransferase; AMPK, AMP-
activated protein kinase; ASH, alcohol-associated steatohepatitis; AST,
Aspartate aminotransferase; Atg, autophagy-related genes; AUD, alcohol use
disorder; CE, cholesteryl ester; DHM, Dihydromyricetin; EtOH, ethanol; FFA,
free fatty acid; HDL, high density lipoprotein; LC3B, microtubule-associated
protein 1 light chain 3 beta; LD, lipid droplet; LDC, Lieber DeCarli; LDL,
low-density lipoprotein; mTOR, mammalian target of rapamycin; OXPHOS,
oxidative phosphorylation; PCC, Pearson’s Correlation Coefficient; PGC-
1α, PPARG coactivator-1α; PKA, protein kinase A; PLIN-1, perilipin-1;
p62/SQSTM-1, sequestosome-1; ROS, reactive oxygen species; SDS-PAGE,
sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SIRT1, sirtuin-1;
TG, triglyceride; VLDL, very low-density lipoprotein.

while improving liver function as noted by improved aspartate
and alanine aminotransferase (AST and ALT) levels (10–13).
Dihydromyricetin (DHM), a polyphenol and bioactive flavonoid
found in many plants such as Hovenia dulcis, has been used for
centuries in Traditional Chinese Medicine and is still used today
(14), namely, as the active ingredient of popular hangover remedies.

In 2021, the global natural product (i.e., herbal medicine)
market was valued at nearly $152 billion, highlighting the growing
consumer preference for natural remedies over synthetic products
(15, 16). In fact, the market for hangover cures was valued at
$1.8 billion in 2021, and is expected to grow over 14.6% by
2028 (17), led by plant-based herbal products. Building evidence
suggests that DHM improves steatosis (18–20) while providing
hepatoprotective effects and restoring metabolic processes (19, 21).
Regarding alcohol, commercially available DHM is used for its anti-
veisalgia effect and is instructed to be administered before, during,
and after consuming large amounts of ethanol.

To expand on this further, our group has begun to investigate
the effects of DHM on ethanol-induced disturbances in lipid
metabolism, steatosis, and inflammation. We recently reported
that administration of 5 and 10 mg/kg of DHM delivered via
intraperitoneal (i.p.) injection significantly protected the livers of
mice from ethanol-induced steatosis and improved mitochondrial
health via the AMP-activated protein kinase (AMPK), sirtuin-
1 (SIRT1), PPARG coactivator-1α (PGC-1α) signaling pathway
(18, 21). The AMPK-SIRT1-PGC-1α pathway is a key regulator
of energy homeostasis through its effects on metabolic and
mitochondrial activity, namely, lipid oxidation, mitochondrial
biogenesis, and autophagy (22–26). Autophagy is an evolutionarily
conserved process that plays an important role in liver physiology,
and is induced through AMPK pathway activation (27). Typically,
autophagy promotes the proteolytic degradation and recycling
of damaged proteins and organelles, including lipid droplets
(LDs), in response to environmental cues, such as starvation and
energy requirements. LD catabolism is mediated by lipolysis and
lipophagy, a form of selective macro-autophagy that targets lipid
droplets (28).

Along with steatosis, inflammation plays a critical role in
the development and progression of ALD. Chronic alcohol
consumption leads to the activation of several inflammatory
pathways including NF-κB and toll-like receptor 4 (TLR4) signaling
pathways, and inflammasome activation (29). These pathways are
responsible for elevation of pro-inflammatory cytokines which
promote liver inflammation and injury via increased oxidative
stress and mitochondrial dysfunction (30). Furthermore, chronic
alcohol consumption leads to disruption of the gut barrier, leading
to bacterial translocation and release of endotoxins into the
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liver. These endotoxins activate Kupffer cells, which leads to
further increases in production of pro-inflammatory cytokines
and oxidative stress resulting in exacerbated liver inflammation
and injury (31). Overall, the inflammatory response in ALD is a
complex process which involves multiple cell types, mediators, and
pathways. Targeting inflammatory responses early could prove to
be an important therapeutic strategy for ALD.

Alcohol-associated fatty-liver disease and ASH are
characterized by the accumulation of fat primarily found in
the form of lipid droplets and increased inflammatory signaling
through TNF-α, IL-1β, IFN-γ, IL-17, and IL-6 (32, 33). In the
current investigation, we tested the hypothesis that oral DHM
improves ethanol-induced disruptions in lipid homeostasis by
reducing levels of harmful lipids, leading to decreased levels of
circulating pro-inflammatory cytokines.

2. Materials and methods

2.1. Lieber DeCarli Diet (LDC)

Female wild-type c57BL/6J mice (Jackson Laboratories, Bar
Harbor, ME) weighing ≥ 19 g and ≥ 10 weeks of age at the
beginning of the study were individually housed in cages with
shredded filter paper and wooden blocks for enrichment and
to prevent malocclusion from receiving a liquid-only diet. Mice
were acclimated for 2 weeks in temperature (22◦C), light, and
humidity-controlled (40–60%) conditions with a 12 h light/dark
cycle. During acclimation weeks, mice were given free access to the
liquid Lieber DeCarli diet with no ethanol (Bio-Serv, Flemington,
NJ, USA) following the model described by Bertola et al. (34), with
modifications. After the acclimation period, mice were randomly
assigned to groups (where feed was given ad libitum): (1) No-EtOH
(n = 12); (2) EtOH [(n = 12) 5.5% (v/v)]-containing LDC diet;
and (3) DHM (n = 12; 6 mg/mL) + EtOH-containing LDC diet,
for a total of 5 weeks. Every morning, fluid intake was recorded
by measuring the meniscus on the graduated feed tube. Mice
in the DHM group were exposed to ethanol-only for 2 weeks
prior to DHM supplementation, which lasted for the remainder
of the study; the feeding paradigm was isocaloric between groups.
DHM, [(2R, 3R)-3, 5, 7-trihydroxy-2-(3, 4, 5-trihydroxyphenyl)-
2,3-dihydrochromen-4-one], HPLC grade, >98%, MW 320.25 was
purchased from Master Herbs Inc., Pomona, CA. The LDC diet is
a robust forced-drinking model that induces severe liver disease
with a potential for a high mortality rate. Therefore, for this
proof-of-concept study, a single dose of 6 mg/mL was used as
a comparison to the 10 mg/kg dose delivered via i.p. in our
previous publications. After the study period ended, mice were
euthanized via CO2 exposure followed by cardiac puncture. Blood
was collected and kept at room temperature for 45 min and
serum was separated by centrifugation for 10 min at 10,000 × g
in 4◦C and stored at −80◦C until use; livers were harvested
and frozen in nitrogen-isopentane and stored at −80◦C until use
or fixed in 10% formalin and embedded in paraffin. Animals
used in the study were considered and handled in adherence to
the University of Southern California’s Department of Animal
Resources Institutional Animal Care and Use Committee (IACUC)
policies and guidelines.

2.2. Immunohistochemistry

Lipid droplets were stained using Oil Red O Staining
Kit (Lifeline Cell Technology, San Diego, CA, USA) on
frozen liver sections (10 µm thick). Liver sections were also
stained with Hematoxylin and Eosin (H&E) staining kit
(Abcam, Boston, MA, USA). Antibodies against p62/SQSTM-
1 (1:400, Cell Signaling Technology, Danvers, MA, USA); LC3B
(1:1,000, Cell Signaling Technology, Danvers, MA, USA); PLIN-1
(1:200, Cell Signaling Technology, Danvers, MA, USA); anti-
CD68 (1:250, Cell Signaling Technology, Danvers, MA, USA);
and Alexa Fluor 405, 488, and 647 secondary antibodies (1:250,
Cell Signaling Technology, Danvers, MA, USA) were used for
visualization. Images were acquired using Cytation 5 Cell Imaging
Multi-Mode Reader (BioTek, Winooski, VT, USA) and Zeiss
LSM880 w/Airyscan Confocal Laser Scanning Microscope (Carl
Zeiss Microscopy, White Plains, NY, USA), and were analyzed
using ImageJ software (ImageJ; Coloc2 Fiji software) and Zen
(Black and Blue versions) imaging analysis software (Carl Zeiss
Microscopy, White Plains, NY, USA). Lipid droplet density and
size were analyzed using whole image analysis on the ImageJ Color
Threshold software.

2.3. Immunoblotting

Protein expression (Atg7, PLIN-1, p62, CETP, and
LCAT) was analyzed using protein extracts (60–125 mg for
immunoprecipitation) from liver homogenates that were isolated
using Dynabeads Magnetic Beads (Thermo-Fisher Scientific, MA,
USA), and visualized via sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), where bands were detected by
chemiluminescent reaction. Signal density was quantified by
densitometry using ImageJ software: Atg7, PLIN-1, p62/SQSTM-1,
CETP, and LCAT were analyzed using immunoprecipitation, while
LC3B and Beta-actin antibodies purchased from Cell Signaling
Technology, CA were analyzed from Western blots (diluted
1:1,000, while 10 µg of antibody was used for IP).

2.4. Biochemical assays

The following assays were measured from serum: aspartate and
alanine aminotransferase (AST and ALT) levels were measured
using AST and ALT activity assays (Sigma Aldrich, St. Louis,
MO, USA). Free cholesterol and cholesteryl esters were measured
using the Cholesterol Fluorometric Assay Kit (Cayman Chemical,
Ann Arbor, MI, USA). LDL/VLDL levels were measured using
the Cholesterol Assay Kit (Abcam, Boston, MA). Circulating
triglyceride levels were measured from liver homogenates
(∼100 mg) and serum using Triglyceride Colorimetric Assay Kit
(Cayman Chemical, Ann Arbor, MI, USA).

Mitochondrial oxidative phosphorylation system (OXPHOS)
in complexes I, II, and IV were analyzed using Complex I Enzyme
Activity Colorimetric Assay Kit, Complex II Enzyme Activity
Microplate Assay Kit, and the Complex IV Rodent Enzyme Activity
Microplate Assay Kit (Abcam, Boston, MA, USA) using isolated
mitochondria that were purified from the liver tissues using
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FIGURE 1

DHM administration results in heterogeneous lipid droplet size and distribution. Histology images (scale bars: 200 µm) shown are (A) Hematoxylin
and Eosin and (B) Oil Red-O-stained liver sections demonstrating heterogeneity in LD size and distribution between groups (white circles); (C) Lipid
droplet size in each group (#0.0063, ##< 0.0001).

the Mitochondria Isolation Kit for Tissue (Abcam, Boston, MA,
USA).

Cytokine levels were measured using Proteome Profiler Array
Mouse Cytokine Array Kit Panel A (R&D Systems, Minneapolis,
MN, USA) and signal density was quantified by densitometry using
ImageJ software.

2.5. Statistical analysis

Immunohistochemistry images were analyzed using n = 3–
4 from each group and 4 different sections were analyzed per
sample. Biochemical assays were conducted using 3–4 samples
from each group. Data are presented as means ± standard
deviation. Statistical analysis included one-way ANOVA along with
Bonferroni multiple comparison tests using Prism 9.3 (GraphPad
Software, Inc., San Diego, CA, USA), where p ≤ 0.05 was
considered statistically significant.

3. Results

3.1. DHM administration ameliorates
ethanol-induced changes in hepatic and
circulating lipid content while improving
aminotransferase levels

To investigate the utility of oral DHM, mice in the DHM
group received ethanol-only treatment for 2 weeks prior to DHM
supplementation to assure the initiation and development of
ALD pathology. A hallmark of early ALD is hepatic steatosis,
characterized by the accumulation of LDs throughout the liver
and disruptions in lipid homeostatic conditions (35–37). H&E
and Oil Red O-staining of liver tissue sections demonstrated
increased steatosis in the EtOH group which was alleviated by
DHM treatment (Figures 1A, B; scale bars 200 µm). LDs are
synthesized by nearly all cells, and size varies considerably among
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FIGURE 2

DHM administration ameliorates ethanol-induced changes in circulating and hepatic lipid content and improves aminotransferase levels. DHM
effect on levels of circulating: (A) Aspartate aminotransferase (AST) levels (90.029, 990.0006, and 9990.024), (B) Alanine aminotransferase (ALT)
levels (∗0.027, ∗∗0.0014, and ∗∗∗0.0046), (C) Circulating levels of free cholesterol (#0.0097 and ##0.0227), (D) Levels of LDL/VLDL are reduced in the
DHM group, (E) Levels of cholesteryl esters are increased in the DHM group, (F) Levels of hepatic triglycerides are increased in the DHM group,
(G) Levels of circulating triglycerides are reduced in the DHM group (∗0.022), and (H) immunoprecipitation of CETP expression is reduced with DHM
and levels of LCAT are increased in the group fed DHM.

different cell types in response to environmental cues, particularly
in the liver. Chronic ethanol consumption alters hepatocyte LD
properties, including increased size and cellular distribution (38).
Interestingly, mice in the DHM group exhibited a wide range of
lipid accumulation and distribution in addition to significantly
larger LDs, compared to all groups. In a previous study, it was
shown that heterogeneous lipid distribution within the hepatocyte
population, similar to what is observed in the DHM group,
is a potential hepatoprotective social organization that reduces
lipotoxicity within the overall region, compartmentalizing lipids
within a cell population (39). The authors also reported that
LD heterogeneity is not only reversible and variable (depending
on intracellular-environmental factors) but also allows for the
reduction of lipotoxicity between cells by exchanging LD content
over time. We found a wide range of noticeable hepatocyte-to-
hepatocyte LD heterogeneity, which was more prominent in the
group receiving DHM. LD size was also found to be varied across
groups, with the mean LD sizes in the No-EtOH group measuring
at 3.64 µm2, EtOH-only at 7.37 µm2, and DHM measuring at
9.88 µm2. Mice receiving EtOH had larger LDs than the No-EtOH
group (#0.0063; Figure 1C), and the difference was even greater in
the mice fed DHM (##< 0.0001; Figure 1C).

As a measure of overall hepatic health and function following
DHM administration, we next analyzed the levels of circulating

aspartate and alanine aminotransferases (AST and ALT). As shown
in Figure 2A, there was a significant decrease in AST levels in mice
receiving oral DHM compared to mice in the EtOH-only group
(90.029, 990.0006, 9990.024); Figure 2B shows significantly
lowered levels of ALT in mice receiving oral DHM when compared
to the EtOH-only fed mice (∗0.027, ∗∗0.0014, and ∗∗∗0.0046). The
levels of circulating lipids were measured and show that DHM
administration significantly lowers total free cholesterol levels,
(#0.0097, ##0.0227; Figure 2C). Although not significant, the levels
of LDL/VLDL were reduced with DHM administration, like those
measured in the No-EtOH group (Figure 2D). When interpreting
the results obtained from this study, it is important to note that
the LDC diet is considered as a high fat diet, where 35% of calories
are derived from FFAs: 23.5 g/L of monounsaturated and 5.2 g/L
unsaturated fats. The No-EtOH group is isocaloric to the other
groups and therefore is also receiving the high fat diet, which may
influence the amount and types of lipids in circulation compared to
the EtOH-receiving groups.

Lipid droplets are primarily composed of triglycerides (TGs)
and cholesteryl esters (CE) (37). Although TGs are not considered
determinants of lipotoxicity (6), conversion of free fatty acids
(FFAs) into TGs, as well as FFA utilization in CEs via esterification
(40), essentially acts to neutralize the reactivity of and damage
caused by excessive FFAs (41, 42). Accordingly, cholesteryl esters
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FIGURE 3

DHM increases ethanol-induced colocalization events between p62/SQSTM-1 and perilipin 1 (PLIN-1). Confocal images (scale bars 5 µm) from the
livers of mice receiving the LDC diet confirm the presence and interaction between p62/SQSTM-1 and perilipin 1 (PLIN-1). As shown: p62/SQSTM-1
(green), perilipin 1 (red), and nuclei (blue). Colocalization events are circled between p62/SQSTM-1 + PLIN-1 (yellow/brown). The magnified image
from the DHM group highlights the nuclei (blue), p62/SQSTM-1 (green), and PLIN-1 (red) and the magnitude and distribution of colocalization events
on lipid droplets.

and hepatic TG levels were found to be increased in the group
receiving DHM (Figures 2E, F), while circulating TG levels
were normalized by DHM to levels similar to those measured
in the No-EtOH group (∗0.022; Figure 2G). Two facilitators of
cholesterol exchange and transport are cholesteryl ester transfer
protein (CETP) and lecithin-cholesterol acyltransferase (LCAT).
CETP is a known mediator in the transfer of cholesteryl esters
from HDL to LDL/VLDL (43). LCAT is a key enzyme involved
in the esterification of free cholesterol into cholesteryl esters and
facilitates the metabolism of cholesterol (44). As demonstrated in
Figure 2H, we found that CETP expression was increased in the
EtOH-only group compared to the DHM group, and found that
LCAT expression was highest in the DHM fed group.

3.2. DHM fed mice demonstrate
increased colocalization of lipophagy
proteins, p62/SQSTM-1, perilipin 1
(PLIN-1) and LC3B

Lipid droplet membranes are coated with various components,
including lipid droplet-associated proteins belonging to the
perilipin family (PLIN-1-5) that assist in the regulation of LD
synthesis and cytosolic lipase activity. Lipophagy involves the
recruitment of selective autophagy proteins such as sequestosome-
1 (p62/SQSTM-1), microtubule-associated protein 1 light chain 3

beta (LC3B), and PLIN-1, which when combined are recognized
as defense mechanisms against oxidative stress (45–48). Ethanol is
known to trigger the selective interactions of p62/SQSTM-1, LC3B,
and PLIN-1 using in vitro models during LD clearance (45). To
assess the effect of DHM on ethanol-induced interactions between
selective autophagy-associated proteins, we analyzed the presence
and interactions between p62/SQSTM-1; LC3B; and PLIN-1. We
began by confirming the interaction between p62/SQSTM-1 and
PLIN-1 using liver sections that were stained for p62/SQSTM-
1 (green), PLIN-1 (red), and nuclei (blue). As illustrated in
Figure 3 (scale bars 5 µm), we confirmed the presence of and
interactions between p62/SQSTM-1 and PLIN-1 in all three groups
as shown from their colocalization. Mice receiving ethanol had
noticeably higher levels of p62/SQSTM-1 + PLIN-1 interactions
than the No-EtOH group (Figure 4B). DHM-fed mice had even
greater colocalization events between PLIN-1 and p62/SQSTM-1,
where the interactions were widely distributed across LD surfaces,
compared to the EtOH-only group (Figure 3 inset).

Autophagy is a diverse mechanism that follows several
pathways based on cellular demands. There are over 32 different
autophagy-related genes (Atg) that activate the formation of
double-membrane structures that deliver cytoplasmic components
to lysosomes for degradation. Atg7 is a ligase that has ubiquitin
E1-like activity which facilitates interactions and complexations
between other autophagy-related genes. These subsequently
interact with other Atg proteins, forming a much larger complex
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FIGURE 4

DHM enhances the colocalization and expression of lipophagy-associated proteins in mice exposed to chronic ethanol. DHM administration
increases the colocalization and interaction between p62/SQSTM-1 + PLIN-1 + LC3B. (A) Confocal images (upper and lower (magnified) scale bars
on images are 10 and 5 µm, respectively) show the expression and colocalization of p62/SQSTM-1 (green), PLIN-1 (red), and LC3B (blue) between
groups. (B) Colocalization of p62/SQSTM-1 + LC3B + PLIN-1 as quantified by Pearson’s Correlation Coefficient (PCC) shows a significant increase in
colocalization between PLIN-1 + p62/SQSTM-1 (∗0.04; brown puncta). (C) Colocalization of p62/SQSTM-1 + LC3B is increased in mice fed EtOH
(##0.008; cyan puncta) and highest in EtOH + DHM fed mice (#< 0.0001). (D) Differences in (immunoprecipitated) protein expression levels of Atg7,
PLIN-1, and p62/SQSTM-1; (E) LC3B protein expression.

that binds to LC3B, a molecule that is essential for autophagosome
structure, formation, and cargo recognition (47, 49). LC3B
interacts with cargo adaptor protein (p62/SQSTM-1) that binds
to poly-ubiquitinated cargo, and is a classical selective autophagy
receptor (48).

Selective autophagy occurs when p62/SQSTM-1 and LC3B
interact (50), resulting in the formation of an autolysosome
that is directed to ubiquitinated PLIN-1 proteins found on LDs,
resulting in lipophagy activity. The colocalization of p62/SQSTM-
1 + PLIN-1 + LC3B is illustrated in Figure 4A (upper and
lower magnified images scale bars are 10 and 5 µm, respectively).
Additionally, we quantified levels of interactions by measuring
the correlation between two proteins using Pearson’s Correlation
Coefficient (PCC) analysis, where values closer to 1.0 confirm the
strength of correlation. As shown, interactions between PLIN-
1 + p62/SQSTM-1 were significantly higher in mice receiving DHM
with a mean PCC of 0.344 (∗0.04; brown puncta), compared to
the EtOH-only group with a mean PCC of 0.154 (Figure 4B).
Our results also show that mice in the group receiving EtOH-only
demonstrated an increased colocalization of p62/SQSTM-1 + LC3B

(## 0.008; cyan puncta) when compared to the No-EtOH group; the
increase was more apparent when comparing the No-EtOH group
to mice fed DHM (#< 0.0001) (Figure 4C). Our data show that
DHM-fed mice had a greater and wider range of colocalization
events and activity. Quantification (via immunoprecipitation) of
the expression levels of Atg7, PLIN-1, p62/SQSTM-1 were analyzed
(Figure 4D), and LC3B: β-Actin (via Western blots) are shown in
Figure 4E, supporting the findings from histological colocalization
analyses.

3.3. DHM reverses ethanol-induced
reductions in mitochondrial oxidative
phosphorylation activity

Chronic ethanol consumption leads to loss of mitochondrial
function and increased production of reactive oxygen
species (ROS), promoting oxidative stress, particularly in the
mitochondria. Damage, brought on by increases in ROS to
mitochondrial proteins and DNA, decreases mitochondrial
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FIGURE 5

DHM reverses ethanol-induced reductions in mitochondrial function. DHM-fed mice demonstrate improvement in mitochondrial oxidative
phosphorylation systems as shown by restored activity in (A) complex I, (B) complex II (∗0.03), and (C) complex IV.

function due to the breakdown of these complexes (51). Lipid
metabolism takes place in the mitochondria, where fatty acids
undergo β-oxidation. We measured mitochondrial health by
analyzing the activity of complexes I, II, and IV from isolated
mitochondria. Our results show that DHM had a significant effect
on restoring complex II activity (∗0.03; Figure 5B). Although the
changes were not significant, DHM led to increases in complex I
activity (Figure 5A), while normalizing the activity of complex IV
(Figure 5C).

3.4. DHM supplementation reduces
pro-inflammatory and hematopoietic
cytokines

Next, we investigated the effects of DHM on ethanol-induced
inflammation. The livers of mice were stained with CD68, a
biomarker for immune cells of the monocyte lineage, such as
monocytes and macrophages. As illustrated in Figure 6, mice in
the EtOH-only group had larger bursts of monocyte/macrophage
infiltration clouds (green puncta) when compared to the No-
EtOH and DHM-fed mice. These observations were further
confirmed by conducting a cytokine panel assay that measured
several different circulating pro-inflammatory cytokines from
serum (Supplementary Figure 1). We found that oral DHM
administration reduced circulating levels of pro-inflammatory
cytokines and immune cell chemokines that are traditionally
associated with ethanol-induced inflammation. TNF-α promotes
acute inflammation and is one of the critical inflammatory
cytokines in ALD progression and liver injury, as it contributes to
the production of other pro-inflammatory cytokines (33). DHM
supplementation reversed the significant elevations in TNF- α

levels in mice receiving ethanol-only as demonstrated in Figure 7A
(∗, ∗∗, and ∗∗∗< 0.0001), while also normalizing levels of IFN-γ
(#< 0.0001, ##0.0018, and ##0.001) closer to those of the No-
EtOH group (Figure 7B). DHM receiving mice had reduced levels
of IL-1β (9< 0.0001, 990.027, and 9990.0007) compared to
the EtOH-only mice, with levels close to the No-EtOH group
(Figure 7C). Although IL-1β is not produced in a healthy liver, it

is secreted by activated inflammasomes during excessive alcohol
consumption and is an essential cytokine in giving rise to Th17 cells
that subsequently secrete IL-17 (52, 53).

Mice receiving EtOH-only had significantly higher levels
of circulating IL-17 overall, which was ameliorated with DHM
supplementation (Figure 7D; -1< 0.0001, -1-10.003, and -1-1-1< 0.0001).
IL-17 is a potent pro-inflammatory cytokine that has received
much attention for its synergistic effects with other inflammation
promoting cytokines during ALD pathogenesis that were also
reduced in the DHM-fed group, such as IL-6 (Figure 7E; ∗0.007),
IL-1β, and IL-1α (Figure 7F; -1< 0.0001, -1-10.047, and -1-1-1< 0.0001)
(52–54). IL-17 induces the expression of hematopoietic cytokines
and chemokines such as granulocyte-macrophage-colony
stimulating factor (Figure 8A: GM-CSF; #< 0.0001, ## 0.003,
and ###0.0001), macrophage-colony stimulating factor (Figure 8B:
M-CSF; -1,-1-1, -1-1-1< 0.0001), granulocyte-colony stimulating factor
(Figure 8C: G-CSF; ∗< 0.0001, ∗∗0.005, and ∗∗∗0.0004), neutrophil
activating and chemotactic chemokine, CXCL1 (Figure 8D;
#< 0.0001, ##0.0001, and ###< 0.0001), and B-cell recruiting
CXCL13 (Figure 8E; ∗0.023, and ∗∗0.002) (53, 55–58). DHM-fed
mice had lower levels of IL-3 (Figure 8F; #0.035), a cytokine that
amplifies acute inflammation (59) and works in coordination
with GM-CSF to promote pathogenic clearance during chronic
inflammation (60). Additionally, CXCL2/MIP-2 (macrophage
inflammatory protein-2), is synthesized by a variety of immune
cells to recruit neutrophils in response to damage and acute
liver injury (61). CXCL2 was significantly increased in mice
receiving EtOH-only, and that increase was reversed with DHM
supplementation (Figure 8G; #,##< 0.0001).

3.5. DHM supplementation increased
production of protective
anti-inflammatory cytokines in mice
treated with ethanol

Mice receiving DHM supplementation had increased anti-
inflammatory cytokine levels compared to mice fed EtOH-only.
IL-1ra is a receptor antagonist to members of the IL-1 family of
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FIGURE 6

DHM reduces the increase in monocyte infiltration seen in mice
exposed to chronic EtOH. Images (scale bars: 100 µm)
demonstrating smaller bursts of monocyte infiltration clouds (green
puncta) when compared to mice in the EtOH-only group.

pro-inflammatory cytokines, and has neutralizing and protective
effects against IL-1 activity (62). Mice in the DHM group had
levels of IL-1ra that were nearly identical to the No-EtOH group
and significantly lower than the EtOH-only group (Figure 9A; ∗,
∗∗< 0.0001). Following excessive ethanol intake and burn injury,
IL-27 has been shown to promote liver regeneration by enhancing
liver progenitor cell expansion and differentiation as well as
intestinal barrier repair following ethanol intoxication (63, 64). In
our study, as shown, DHM-fed mice had significantly higher levels
of IL-27 in circulation than that of the No-EtOH group (Figure 9B;
∗0.034) and nearly twice as much as those in the EtOH-only group.

4. Discussion

Despite the detrimental health effects associated with high
ethanol intake, individuals continue to partake in excessive
drinking behavior, as evidenced by the increasing rates of alcohol
sales and alcohol-related mortality and morbidity. ALD is the
leading cause of liver disease in the United States, where
alcohol accounts for up to 50% of cirrhosis-related mortality
(65) and 20% of mortality worldwide (66). Therefore, targeting
ethanol-induced steatosis and the mechanisms that lead to
the dysregulation of lipid homeostasis are key for preventing
lipotoxicity and the systemic metabolic dysfunction that eventually
affects multiple organ systems (6). Considering the growing interest
and consumer preference for herbal therapies (i.e., polyphenols
and flavonoids), the present study tested the hypothesis that
the bioactive polyphenolic-flavonoid DHM, improves ethanol-
induced lipid imbalance and steatosis in part by restoring lipophagy
activity and reducing pro-inflammatory cytokines. The data
presented here supports the hypothesis that DHM can counteract
the progression of ALD pathology caused by damage due to
inflammation and the dysregulation in lipid homeostasis due to
chronic ethanol consumption.

The liver is the primary site for the breakdown of ethanol
and is one of the major organs for lipid metabolism and is,
therefore, highly susceptible to damage and lipotoxicity. Elevated
levels of lipids is a major factor that leads to hepatic injury
caused by lipotoxicity and oxidative stress. Cellular defense
mechanisms neutralize FFAs via their conversion into TGs through
esterification. Lipid droplets are primarily composed of TGs
and CEs, acting as energy stores, subsequently minimizing the
lipotoxicity of FFAs that would otherwise occur in the cell (37,
42). Cholesteryl esters are reverse transported to the liver from
circulation and peripheral tissues via high-density lipoproteins,
where they are stored in LDs or metabolized for bile acid synthesis
(67). The increased levels of CEs, hepatic TGs, and LD size
in our study, combined with the reduction in circulating TGs,
suggest increased synthesis and hepatic sequestration of TGs and
CEs in the DHM-fed mice. Taken together, the results from our
study indicate the possibility of increased FFA neutralization and
containment in LDs as a protective measure against lipotoxicity
by FFAs. Chronic ethanol consumption disturbs metabolic flux
through various pathways. As mentioned earlier, the LDC diet is
regarded as a high fat diet, providing excess dietary free fatty acids
to all groups. Future studies will also consider the effect of a high
fat diet when measuring circulating lipid content in the No-EtOH
group(s) and comparing them to EtOH-fed group(s).

Chronic ethanol consumption alters metabolic processes,
including hepatocyte LD properties that include LD membrane
protein composition, resulting in increased size and differential
tissue distribution (38). Lipophagy, a subtype of macroautophagy,
is associated with the degradation of LDs via engulfment
by autophagosomes and subsequent fusion with lysosomes.
Ethanol can stimulate autophagy through multiple mechanisms,
including the modulation of mammalian target of rapamycin
(mTOR) through AMPK signaling pathways. Excessive ethanol
consumption is associated with decreased AMPK activation, which
in turn activates mTOR in the liver and inhibits autophagy (21,
68). Previous work found that DHM can improve autophagy
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FIGURE 7

DHM supplementation ameliorates elevations in pro-inflammatory cytokines seen in mice given chronic EtOH. (A) DHM-fed mice show significant
decreases in levels of TNF-α compared to EtOH-only mice (∗, ∗∗, and ∗∗∗< 0.0001). Normalization of levels of (B) IFN- γ (#< 0.0001, ##0.0018, and
##0.001) and (C) IL-1β (9< 0.0001, 990.027, and 9990.0007) to those similar to those in the No-EtOH group is shown. DHM-fed mice show
significant decreases in (D) IL-17 (-1< 0.0001, -1-10.003, and -1-1-1< 0.0001) compared to EtOH-only mice. EtOH-only mice show a significant increase
in (E) IL-6 (*0.007) expression compared to No-EtOH mice. (F) IL-1α (-1< 0.0001, -1-10.047, and -1-1-1< 0.0001) levels are significantly reduced in
DHM-fed mice compared to EtOH-only mice.

activity by activating AMPK, inhibiting mTOR, and reversing
ethanol-induced AMPK-deficiency (21, 69, 70). Results from the
current study demonstrate the downstream activity of AMPK-
autophagy related activity and offer a glimpse into the possible
downstream effects on lipophagy, as demonstrated by the enhanced
expression and interactions between lipophagy protein complexes
p62, LC3B, and PLIN-1.

Members of the PLIN family of LD-associated proteins are
essential for regulating triglyceride synthesis, packaging TGs into
LDs, and lipolysis. PLIN-1 positively contributes to the formation
of larger LDs and is expressed on the membranes of larger,
more mature LDs (36, 38, 71, 72). Studies have also shown that
lipolysis is enhanced and regulated via proteasomal degradation of
PLIN1 (73–75). Activation of protein kinase A (PKA) via AMPK
signaling leads to the phosphorylation of PLINs (76), which are
then subjected to ubiquitination and are tagged for proteasomal
degradation. This results in effective priming of LD surfaces for

recognition and recruitment of autolysosomal bodies through
the activities of selective mechanisms such as those directed
by p62/SQSTM-1 (46, 77). Lipolysis and lipophagy are tandem
pathways in hepatocytes. Lipolysis is the process in which FFAs
are released from TGs, which takes place during lipophagy (in
lysosomes), and preferentially targets the degradation of large
LDs. The increased presence of PLIN-1 and interactions with p62
and LC3B in the DHM-fed mice demonstrates the possibility of
enhanced lipophagic activity, which potentially results in greater
lipid clearance over time.

Released FFAs are then further broken down in the
mitochondria, where they undergo β-oxidation. This system works
in tandem with the oxidative phosphorylation system (OXPHOS),
which is located in the mitochondrial inner membrane, composed
of four respiratory chain complexes (I-IV), and is key for
driving ATP production (51). As such, mitochondrial health and
function is determined by the analysis of OXPHOS-complex
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FIGURE 8

DHM administration reduces levels of hematopoietic cytokines and chemokines which are increased during chronic alcohol consumption.
Expression of (A) granulocyte-macrophage-colony stimulating factor (GM-CSF; #< 0.0001, ## 0.003, and ###0.0001), (B) macrophage-colony
stimulating factor (M-CSF; -1,-1-1, -1-1-1< 0.0001), and (C) granulocyte-colony stimulating factor (G-CSF; ∗< 0.0001, ∗∗0.005, and ∗∗∗0.0004) significantly
decreases with DHM administration. Expression of chemokines (D) CXCL1 (#< 0.0001, ##0.0001, and ###< 0.0001) and (E) CXCL13 (∗0.023 and
∗∗0.002) is also reduced in DHM-fed mice. Expression of pro-inflammatory cytokine (F) IL-3 (#0.035) and pro-inflammatory chemokine (G) CXCL2
(#,##< 0.0001) is reduced following DHM administration.

activity (78). Previous studies have demonstrated the effect of
DHM on mitochondrial health, effectively reversing stress-induced
deficiencies in mitochondrial function (19, 21, 79, 80). Our
data demonstrates a positive effect of DHM on mitochondrial
function restoration, particularly in Complex II. The increase
in lipophagy activity is possible when mitochondrial function
is efficient, as measured by complexes I, II, and IV. This data
further supports the potential benefit of DHM on reversing
ethanol-induced OXPHOS deficiencies and in turn, improving
overall function.

In addition to direct induction of oxidative stress-induced
inflammation, alcohol disrupts gut permeability, causing
endotoxin/lipopolysaccharide (LPS) translocation to interact
with TLR4 which results in the generation of inflammatory
cytokines via NF-κB signaling pathway activation (31, 81). The
increased oxidative stress and increased TLR4/NF-κB transcription
upregulates and activates inflammasome, an intracellular protein
complex that leads to the cleavage of pro-inflammatory cytokines

like IL-1β (82). In ALD, pro-inflammatory cytokines such as TNF-
α, IL-1β, and IL-17 are produced by alcohol-induced activation of
liver innate immunity (30). In addition, leukocyte chemoattractants
and hematopoietic cytokines can recruit and proliferate immune
cells in the liver, exacerbating the inflammatory response. IL-3
is a hematopoietic cytokine that regulates the differentiation,
proliferation, and survival of various immune cells. DHM has been
shown to suppress the production of hematopoietic cytokines that
regulate the differentiation, proliferation, and survival of various
immune cells such as IL-3, M-CSF, and G-CSF in LPS-stimulated
macrophages (83). Furthermore, our study shows that DHM
decreases the expression of CXCL1 and CXCL13, chemokines that
are involved in the recruitment and activation of neutrophils and
B cells, respectively, in hepatic inflammatory processes (84, 85).
Evidence shows that inflammation plays an essential role in the
initiation and progression of ALD (86). Results from our study
support the published reports on the immuno-modulatory activity
of DHM, and offer a glimpse on the protective effects of DHM
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FIGURE 9

DHM increases production of anti-inflammatory cytokines
compared to mice fed EtOH-only. Expression of (A) IL-1ra (∗,
∗∗< 0.0001) is significantly reduced in mice receiving DHM
compared to those fed EtOH-only. In addition, levels of circulating
(B) IL-27 (∗0.034) in the DHM-fed group are significantly higher than
that in the No-EtOH group.

against the damaging effects of ethanol-induced inflammation
and injury (87, 88). The mechanism of action of DHM in
reducing inflammation in ALD is believed to be multifactorial.
As demonstrated in this study, DHM supplementation led to
significant decreases in inflammatory signaling through reductions
in the prominent pro-inflammatory cytokines associated with ALD
pathology. Interestingly, DHM supplementation led to a significant
increase in IL-27, a cytokine that has demonstrated protective
action on the gut barrier by promoting anti-inflammatory
functions, regenerative activity in the liver and intestines, and
promoting intestinal barrier repair following ethanol intoxication
and burn injury (63, 64).

The results from our study align with various animal and
human studies investigating DHM for its robust antioxidant
activity (79, 89), ability to reverse dyslipidemia (18, 21, 90, 91),
having anti-alcohol intoxication effects (92), and amelioration of
non-alcohol-associated fatty liver disease (19).

With the rates of ethanol-related health effects continuing to
rise, particularly ALD, the need for therapeutic intervention is
imperative. DHM is a natural compound that is widely available as a
dietary supplement and has demonstrated the potential to mitigate
the progression of ALD development caused by disruptions in lipid
metabolism and transport in mice. As a natural product that is
readily and commercially available, our findings help set the stage
for the rapid advancement of DHM to improve liver health against
the damaging effects of excessive ethanol consumption.
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