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ABSTRACT 

In this work, we evaluate the flexibility of a modified Newton-Raphson (MNR) algorithm for finding electrophysiological sources in both 

simulated and real data, and then apply it to different penalized models in order to compare the sources of the EEG theta rhythm in two 
groups of elderly subjects with different levels of declined physical performance. As a first goal, we propose the MNR algorithm for 

estimating general multiple penalized least squares (MPLS) models and show that it is capable to find solutions that are simultaneously 

sparse and smooth. This algorithm allowed to address known and novel models such as the Smooth Non-negative Garrote and the Non-

negative Smooth LASSO. We test its ability to solve the EEG inverse problem with multiple penalties -using simulated data- in terms of 

localization error, blurring and visibility, as compared with traditional algorithms. As a second goal, we explore the electrophysiological 

sources of the theta activity extracted from resting-state EEG recorded in two groups of older adults, which belong to a longitudinal study to 

assess the relationship between measures of physical performance (gait speed) decline and normal cognition. The groups contained subjects 

with good and bad physical performance in the two evaluations (6 years apart). In accordance to clinical studies, we found differences in 

EEG theta sources for the two groups, specifically, subjects with declined physical performance presented decreased temporal sources while 

increased prefrontal sources that seem to reflect compensating mechanisms to ensure a stable walking. 

 

Keywords: Aging-related disorders; electrophysiological sources; modified MNR; inverse problem; multiple penalized least squares; gait 

speed disorder. 

 

RESUMEN 
En este trabajo, evaluamos la flexibilidad de un algoritmo modificado de Newton-Raphson (MNR) para encontrar fuentes 
electrofisiológicas en datos reales y simulados, y luego lo aplicamos a diferentes modelos penalizados para comparar las fuentes del ritmo 

theta de EEG en dos grupos de sujetos de edad avanzada con diferentes niveles de disminución del rendimiento físico. Como primer 

objetivo, proponemos el algoritmo MNR para estimar modelos generales de mínimos cuadrados penalizados múltiples (MPLS) y 

demostramos que es capaz de encontrar soluciones que son simultáneamente dispersas y suaves. Este algoritmo permitió abordar modelos 

conocidos y novedosos como el Garrote Liso No negativo y el LASSO Liso No negativo. Probamos su capacidad para resolver el problema 

inverso del EEG con múltiples penalizaciones -utilizando datos simulados- en términos de error de localización, desenfoque y visibilidad, 

en comparación con los algoritmos tradicionales. Como segundo objetivo, exploramos las fuentes electrofisiológicas de la actividad theta 

extraída del EEG en estado de reposo registrado en dos grupos de adultos mayores, que pertenecen a un estudio longitudinal para evaluar la 

relación entre las medidas de disminución del rendimiento físico (velocidad de la marcha) y la normalidad. cognición. Los grupos contenían 

sujetos con buen y mal desempeño físico en las dos evaluaciones (6 años de diferencia). De acuerdo con los estudios clínicos, encontramos 

diferencias en las fuentes theta de EEG para los dos grupos, específicamente, los sujetos con un rendimiento físico disminuido presentaron 
fuentes temporales disminuidas mientras que fuentes prefrontales aumentadas que parecen reflejar mecanismos de compensación para 

garantizar una marcha estable. 

 

 

Palabras clave: trastornos relacionados con el envejecimiento; fuentes electrofisiológicas; MNR modificado; problema inverso; múltiples 
mínimos cuadrados penalizados; trastorno de la velocidad de la marcha. 
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INTRODUCTION 
Population aging, caused in the first place by the increase in life expectancy and the decrease in the birth rate, is 

currently one of the most important challenges of society. In these times, older adults live longer, but with an 
increase in their chronic conditions that can cause functional limitation, disability and dependency, which 
generates high health care costs, both for the family and for the health system (Abizanda and Rodríguez, 2015). 

Currently, there is a higher prevalence and a tendency to increase disability in the elderly population, as a 
consequence of the combination of pathophysiological changes related to aging, chronic diseases and acute or 
intercurrent processes, all of which are also influenced by the psychosocial environment (Clegg et al., 2013). For 

this reason, it is necessary to develop tools that allow detecting and differentiating the elderly who present a 
state of vulnerability and greater risk of developing disability. Vulnerabilities can be reflected both in physical 

and cognitive performance, which in turn can be a consequence of early structural changes in the brain, 
suggesting the possibility to find brain biomarkers of physical performance decline with aging. Early evaluation 
of signs and symptoms related to some functional deterioration would contribute to the early detection of frail 

elderly people, susceptible to primary and secondary intervention that reduce or delay the appearance of adverse 
outcomes (Morley, 2016). 

Current advances in Neuroimaging techniques have allowed the evaluation of alterations of the central nervous 
system, in particular the spatial distributions of abnormalities and changes in structural or anatomical brain 

connectivity. Although these techniques present a very good spatial resolution, they possess low temporal 
resolution and they are also highly invasive, exposing the subject or patient to radioactive substances or 
powerful magnetic fields. Besides, the initial and ongoing operating costs along with poor accessibility of 

Neuroimaging equipment would make impossible a widespread use in older adults. On the other hand, 
techniques like the Electroencephalography (EEG) offer direct measurements of the electromagnetic activity 

generated in the brain that is macroscopically reflected on the scalp. These techniques are non-invasive and 
provide the necessary temporal resolution to study the dynamics of brain processes. Electrophysiological studies 
have shown high sensitivity for the detection of functional alterations of the brain related to multiple 

pathologies (Niedermeyer and da Silva, 2005; Moretti et al., 2012; Rodriguez et al., 2014). 

In particular, the EEG allows the study of both evoked and spontaneous cerebral electrical activity, whose 

origin is fundamentally in the cerebral cortex, and could become a research tool to identify those older adults 
susceptible to disability. However, one of the major drawbacks is the low spatial resolution of the EEG, as it 
measures electric potentials on a small set of electrodes located on the scalp. To overcoming this issue in vivo 

one needs to solve the so-called EEG inverse problem (IP), which consists in estimating the neural current 

sources generated inside the brain (primary current density, PCD, j), from the electric potentials (voltage 

differences, V) measured with the EEG technique on the scalp surface. The mathematical relation between 
these magnitudes is given by:  

 

ε
1 3 3 1 1

·
Ne Ne Ng Ng Ne
V K j

 (0.1) 

 
where the noisy nature of the EEG recordings is explicitly taken into account through the vector of errors ( ε ). 

The number of electrodes is Ne  and the number of sources Ng  corresponds to the number of grid points of 

the discretization of the source space inside the brain. The 3Ng  elements of the column vector 

1 1 1
, , ,..., , ,
x y z Ngx Ngy Ngz
j j j j j jj  correspond to the three components of the PCD vector field for each point in 

the grid. The matrix K  is known as the Electric Lead Field (ELF), and summarizes the geometric and electric 
properties of the conducting media (brain, skull and scalp).  

Solving this mathematical problem is challenging due to three major problems. First, the number of sources 
inside the brain is usually much greater than the number of electrodes distributed on the scalp surface 

(Ng Ne ), implying that there exist an infinite number of source spatial configurations that generate the same 

electric potential distribution on the scalp (non-uniqueness). Second, the system is ill-conditioned because of the 
high similarity between the columns of the ELF, implying that small changes in the data can lead to totally 

different configurations in the sources (instability). This is particularly problematic since, in practice, the little 
errors in measurements due to external (non-brain-related) sources of noise are inevitable. Third, there is no 

clear way to obtain a ground truth in real EEG experiments, i.e., it is not possible to know, independently of the 
EEG measurements, what is the underlying spatial distribution of electrical sources in the brain originating 
these measurements.  
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These problems are addressed by including additional information on the solution, which can be done by 

imposing physical or mathematical constraints, or by taking into account anatomical or physiological 
knowledge about the feasibility of the estimated solutions. However, the additional information selected leads 
to a specific EEG inverse solution. This, together with the lack of a ground truth, makes difficult to evaluate 

which method offers a distribution more similar to the real brain activations. Depending on the selected 
additional information, the large amount of different inverse solutions can be divided into two groups: dipole 

solutions, which assume that the PCD is a discrete set of current dipoles (Scherg and von Cramon, 1986; Scholz 
and Schwierz, 1994); and distributed inverse solutions, which assume that the current density is spatially 
distributed, having a value for each position in the brain (Hämäläinen and Ilmoniemi, 1994; Pascual-Marqui et 
al., 1994). The dipolar models adjust the orientation and magnitude of an a priori fixed number of dipoles, being 

appropriate when sources are expected to be small but it is not very accurate when estimating spread sources 
throughout the brain. On the other hand, distributed inverse models are more plausible when estimating sources 
covering large areas of the brain (Bosch-Bayard et al., 2001; Trujillo-Barreto et al., 2004).  

To mathematically addressing the EEG IP, one of the most straightforward and established approach is through 
its formulation as a penalized linear regression model and the use of Tikhonov regularization (Dale et al., 2000). 

Two important inverse solutions that follow from this approach are the Minimum Norm (MN) (Hämäläinen 
and Ilmoniemi, 1994) and the Low-Resolution Electromagnetic Tomography (LORETA) (Pascual-Marqui et 

al., 1994). However, recent advances in penalized least squares regression have brought attention to the use of 

non-quadratic penalty functions of the coefficients to estimate, usually based on their 
1
l -norm, which can 

produce sparser solutions (Fan and Li, 2001). It has been shown that they are especially useful when the 

number of unknowns is much greater than the amount of data (Tibshirani et al., 2005), which is the case in the 
EEG IP. Some attempts have also been made to propose models with specific combinations of quadratic and 
non-quadratic penalties (Gorodnitsky and Rao, 1997; Nagarajan et al., 2006). A general multiple penalized least 

squares (MPLS) model allows us to address combinations of any number of penalty terms, quadratic or not 
(Valdés-Sosa et al., 2006), and its solution can be found from the optimization problem: 

 
1

ˆ argmin
RT

r r
r

P
j

j V Kj V Kj j   (0.2) 

Given the impossibility of knowing which inverse solution is the best one from the many methods proposed 
(Grech et al., 2008), in this context we follow the strategy of proposing this kind of flexible models that can 

adjust solutions to the data at hand (Valdés-Sosa et al., 2006). Another advantage of using this model would be 
the possibility of testing many different solutions in the same framework, which allows a more fair comparison 
of their performance. Previous works have studied the performance of some particular cases of this general 

model, such as LASSO, LASSO Fusion, and the Elastic Net, using traditional algorithms in simulated and real 
EEG data (Vega-Hernández et al., 2008). 

In this work, we introduce a general Modified Newton-Raphson (MNR) algorithm to solve any of the models 
that can be represented by Eq. (1.2), which can be seen as an extension of the Minorization-Maximization 

approach for these methods. This allows us to compute –within the same computational implementation– 
several different inverse solutions, as well as addressing novel solutions based on the Adaptive Lasso and 
Smooth Lasso models that have never been applied to EEG IP before.  

 

METHODOLOGY 

MNR ALGORITHM FOR MPLS METHODS 

In this section, we present a modified Newton-Raphson (MNR) algorithm to implement Multiple Penalized 
Least-Squares (MPLS) models. The theoretical background for the formulation of the general MPLS model and 

a Table of many known and some novel specific models are given in the Appendix (section A). This Appendix 
also gives a brief literature review on different algorithms that have been proposed/used for estimating specific 

PLS models.  

The MNR algorithm can be seen as an extension of the MM algorithm (Hunter and Li, 2005) for MPLS 

methods, but are closely related to classical NR techniques. The objective function and its gradient of the MPLS 
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methods represented by Eq. (1.2) can be re-written in the standard statistical notation (assuming that 

0
r
g , for 1, ,r R ) as: 

β y Xβ y Xβ β
1

1

2

RT r

r

f , with β
1

rNr r r

r i
i

g , 

 β X y Xβ β
1 1

sgn
rNR

r r r rT
r i i i

r i

f g  

where 
r r
β L β  can be seen as a vector function that models the correlation structure of β . The linear 

operators r
r N p

L  can be set to 
r

p
L I  to imply independence of 

i
 or to any other matrix structure 

(e.g. first and second differences operators that are used to model sparse and smoothness, respectively). The 

scalar function 
:

r r T
i i

L β  represents the i -th entry of ( )
r

θ β , where 
:

r

i
L  is the i -th row of 

r
L , while the 

sign function is represented as “sgn”. 

We can now follow the same rationale used by the minorization-maximization (MM) algorithm of Hunter and 

Li (2005). To avoid numerical problems when 0 , they proposed to use an approximation of the objective 

function ( f β ), obtained by perturbing every function 
r
g  for 1, ,r R , using some small 0 , as: 

 

0

g t
g g dt

t
 

The local quadratic approximation of this equation for all penalty functions in the MPLS model leads to: 

 

2 2

2

r r r

i i
r r r

i r

i

g
g g  

The NR technique can then be used to locally minimize the perturbed objective function f β  through their 

first and second derivatives: 

 
2

r r rT T T
r

r r rT T
r

f

f

β X y X X L D L β

β X X L D L
, 

where 1 2
diag , , ,

r

r r r r

N
d d dD  with /

r r r r

i i i
d g  for 1, ,

r
i N  and some very 

small 0 . The solution is found for some 0
k

, using the iterative formula: 

 

1
1 2

1

k k k k

k

k r r r kT T T
k r

f fβ β β β

β X X L D L X y β

 

Note that 0f fβ β  and 0f fβ β  uniformly whenever 0 . Thus, any limit 

point of the estimated sequence 
1 2
, ,β β  represents a critical point of the original objective function f β  

(Hunter and Li, 2005). In our case, the objective function may be more complex if it contains convex and 
concave penalty functions with correlation structure. In those cases, the MNR algorithm can be stuck at saddle 

or local stationary points. However, the function f β  is convex for the known PLS methods based on the 

LASSO-type penalty, e.g. FdLASSO (Tibshirani et al., 2005), FnLASSO (Land and Friedman, 1996) and 
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SLASSO (Hebiri, 2008). Thus, for these cases the MNR implementation and specifically, the canonical version 

( 1
k

) achieves the global minimum. The parameter  can be selected similarly to Hunter and Li (2005): 

 min : 0
2

r r

i iRM
, for 1, ,

r
i  and 1, ,r R , 

where max{ 0 }
r

M g , for 1, ,r R , and 0  is the convergence parameter 

| | / 2
j
f β . The parameter  becomes smaller through iterations, but it is usually fixed after the first 

iteration to avoid numerical instability (Hansen, 1998). 

The canonical version of the MNR algorithm extended here for MPLS models is as follows: 

MNR algorithm for MPLS ( y
1n
, X

n p
, 

1
, ,

R
, L L

1
, ,

R
) 

1. Start with : 0k k  and set 
810 , 

810 , maxiter 100  and I
p

. 

2. Set 1k k  and compute β X X X y
1k T T

. 

3. Set θ L β
r r k

 for 1, ,r R  and compute 

D
1 1

diag / , , /
r r

r r r r r r r
g g  

4. If 1k , then set max{ 0 }
r

M g  and min : 0
2

r r

i iRM
. 

5. Set L D L
r r rT

r
 and compute δ X y X X β

kT T
. 

6. If / 2
j

 for all 1, ,j p  such that 
j

, then go to Step 8. 

7. If maxiterk , then go to Step 2. 

8. Ending step: if convergence is reached then the solution is β βˆ k
. 

 

This algorithm depends on regularization parameters 
1
, ,

R
, which can be selected from a given grid of 

values or automatically determined according to the singular values of X . The selection of the ‘optimal values’ 

for these parameters is a complex process that will not be considered here in detail. This is usually done by 
evaluating information criteria such as Akaike (AIC), Bayesian (BIC) or generalized cross-validation (GCV). 
For this purpose, the estimation of the degrees of freedom can be done as proposed in Hunter and Li (2005). In 

order to avoid the selection of optimal parameters in an R-dimensional grid, in our implementation we prefer to 

set 
r r

 and the proportions 0
r

, for 1, ,r R , subject to 1
r

. The 
r

 represent prior 

assumptions about relative penalty contribution and allow simplifying the selection process to estimate only the 

parameter . In the analysis of real EEG noisy data, it is not easy to ensure that the heuristic criteria would 

lead to the best trade-off between data fitting and penalization, i.e. to find the optimal value of the 
regularization parameters. Although there is no way to accurately know the active sources in the brain, in these 

situations it is always possible to use physiological and empirical knowledge about the specific brain process in 
study to select the most appropriate representation of its electrophysiological sources, among those given for 
different regularization parameters. 
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NOVEL INVERSE SOLUTIONS BASED ON THE ADAPTIVE LASSO 
One particular model that can also be handled with the latter approach is the Adaptive LASSO (Zou, 2006), 

whose objective function is: 

 β y Xβ y Xβ
1

2

T

j j
j

f ,    0
j

. 

This means that the MNR algorithm can be exploited to implement the nonnegative garrote (NNG) method 
(Breiman, 1995), which is stated as: 

 
w

w y x

2

1 12

1
ˆ argmin

2

p p
ols

j j j j
j j

w w ; with 0,j

j ols
j

w   

where 
ols
β  represents the OLS estimator. This is analogous to the following formulation: 

β

β y Xβ
2

2
1

1 1ˆ argmin
2

p

jols
j j

;   s.t. sgn( ) sgn( )ols
j j

 

This can be seen as an extension of the Adaptive LASSO method with sign constraints over β  and weights 

1/ ols
j j

. 

As originally conceived, the nonnegative Garrote is limited to p n  situations; basically, because it depends 

heavily on the OLS estimator. However, it can be extended to the p n  scenario while keeping its natural 

flavor if we consider making it dependent on other reference estimators 
ref
β  and establish a more general 

approach (e.g. LASSO, ENET, SLASSO). Based on this model, it is evident that we can propose other 

extensions to include smoothness constraints into the NNG. A simple representation only uses an additional 
quadratic term, which we will call the smooth nonnegative Garrote (SNNG), as follows: 

 
β

β y Xβ Lβ
2 2

2 2
1

1 1ˆ argmin
2 2

p
sm

jref
j j

;   s.t. sgn( ) sgn( )ref
j j

 

which can be shown to be equivalent to: 

 
w

w y x Lw

2
2

2
1 12

1
ˆ argmin

2 2

p p
ref sm

j j j j
j j

w w ;   s.t. 0
j
w  

where L LD  and 
1 2

diag , , ,ref ref ref

p
D . This straightforward extension of the NNG with a 

smoothness term can also be seen as a type of Smooth LASSO (SLASSO) with weights in the 
1
l -norm term 

defined by the reference solution and non-negative constraints. Therefore, we also propose to test here the non-

negative version of the SLASSO which is equivalent to the SNNG but without the weights of the reference 
solution, i.e. setting all of them to one. We will call this model as the Non-negative Smooth LASSO (NNSL). In 
these two novel methods, the use of the proposed MNR algorithm does not directly ensure the nonnegativity of 

the solution. The use of an active set algorithm, similar to LARS, can provide a natural framework for including 
sign constraints. However, in practice, we restrict the solutions given by our MNR algorithm to have 
nonnegative values using the simple procedure of setting to zero all coefficients that take negative values after 

convergence of the estimation process. 
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RESULTS AND DISCUSSION  

SIMULATION STUDIES 

In this section, we use the proposed MNR algorithm for solving the EEG inverse problem with multiple 

penalties. We firstly simulated a one-dimensional toy example to compare the estimators obtained with the 
MNR and those obtained using standard algorithms. We also use a similar simulated example to test the SNNG 
estimator in contrast with other regularization methods. Then, we study a more realistic EEG simulation for a 

preliminary comparison between different inverse solutions using the MNR algorithm with the equivalent 
solutions using LARS algorithm, in terms of quality measures (localization error, visibility and blurring). 

Comparing MNR to classical procedures in MPLS models 
As a first study, we compare the performance of the proposed algorithm in the estimation of models based in 

the combination of two penalties that have been already calculated by other classical procedures: FdLASSO and 
SLASSO. We also test the MNR algorithm in the calculation of a model based in a single penalty: FnLASSO. 
The FdLASSO is currently implemented using an interior point algorithm as shown by Tibshirani et al., (2005), 

while SLASSO and FnLASSO are implemented using a very well-known transformation to a LASSO problem, 
which in turn is implemented with the LARS algorithm (Tibshirani et al., 2005; Zou and Hastie, 2005).  

In all examples, we simulate 100n  observations and 200p  predictors using the model y Xβ ε , 

where 
2

exp( 0.015 50 )
j

j  for 30 70j , 1
j

 for 95 105j  and 150j , while 

0
j

 otherwise. The correlation between any pair of predictors 
i

x  and 
j

x  is varied with values  0.5, 

0.75, 0.9, 0.95, 0.99; while the components of 
j

x  and ε  are standard normal. This allows to assess the effect of 

correlated predictors on the convergence of the MNR procedure. 

In the FdLASSO method, we reformulate the problem using the auxiliary parameter 0 1 , i.e., the 

penalty function is rewritten as 
1 2

1g g , where 
1

1
,
jj

g β β  

2

1
( )

jj
g β Lβ Lβ , with L  being the first differences operator. In this example, we set 0.001  

to enhance the smoothness features in the solution and we select the parameter  that minimizes the BIC 

criterion evaluated in a predetermined range. The FdLASSO was implemented using the proposed MNR 

algorithm, such that after selecting the optimal  parameter, the final estimator 
MNR

β  was computed. We 

compare this solution with 
S

β , which is the one given by the standard procedure (Tibshirani et al., 2005). 

A boxplot of the maximum of absolute differences between the MNR and classical estimators, i.e. 

max{| | : 1, , }
MNR S

j j
j p , was computed over 50 simulated datasets for each value of the correlation 

among predictors, as shown in Figure 1 (right panel). As can be seen, the median of the maximum differences 

are lower than 5% of the maximum coefficient value (which is the unit), for all correlations among predictors. 

Hence, the coefficients plot for 
MNR

β  and 
S

β  are almost superimposed, as shown in Figure 1 (left panel) for a 

particular dataset with 0.5 . 
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Fig. 1. Simulated example for comparing FdLASSO solutions implemented with the classical procedure (β
S

) and with the 

MNR algorithm (β
MNR

). Left: plot of estimated and simulated coefficients for a dataset with correlation among predictors of 

0.5 . Right: boxplot of maximum of absolute differences between the MNR and classical estimators for 50 simulated 

datasets for different values of the correlation between predictors. 

Using the same simulated examples, we computed the boxplot of the maximum of absolute differences between 
the MNR and classical estimators for the SLASSO and FnLASSO. Figure 2 shows that the MNR algorithm 

also allows obtaining very accurate estimators for these methods, which are mainly affected when the 
correlation between predictors is very high (over 0.95). The latter does not have a direct consequence over the 

convergence of the algorithm; the hidden cause here is that the selected value for the parameter  did not lead 

to an effective regularization. In this situation ( p n ), very small or high values for  lead to severe ill-

conditioned problems that are difficult to solve with accuracy with the current techniques. This problem is 
avoided when the penalty function is appropriate and the regularization parameters are properly selected. 

 
Fig. 2. Simulated example for comparing FnLASSO (left) and SLASSO (right) solutions implemented with the classical 
procedure LARS and the MNR algorithm. The boxplot of the maximum of absolute differences between both estimators are 
shown for each case, considering 50 simulated datasets and different values of correlation among predictors (shown in the 
abscissa). 

A preliminary study of the newly proposed estimators, the smooth nonnegative garrote (SNNG) and the 

nonnegative Smooth LASSO (NNSL) is also presented here using the same set of simulated data, comparing 
their solutions versus Ridge L and SLASSO estimators. Figure 3 shows typical solutions for these methods, as 

we checked that the effect of correlated predictors was minimal (i.e. estimators from differently correlated 
predictors were very similar). The SNNG estimator seems to be an improved version of the Ridge L estimator: 
the most salient features are enhanced and the less significant ones are discarded. In general, the use of the non-

negativity constraint in the NNSL, and the use of a previous estimator in the SNNG, allow obtaining sparser 
solutions. This suggests that these models produce simpler solutions which are more interpretable in statistical 
analyses.  
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Fig. 3. Simulated example for comparing solutions given by the Ridge L, Smooth LASSO, SNNG and NNSL models, 

applied on the same dataset. The last three methods were implemented with the MNR algorithm proposed in this study. 

In all cases, the estimator corresponding to the isolated coefficient suffers from the insufficient data problem, 

since the use of a smoothness requirement, leads this coefficient to be over-shrunk. In particular, the SNNG 
method makes a bad estimation of the isolated coefficient because it uses a very high weight for this component. 
Note that this is very small in the Ridge L estimator. In this simulated example, we do not make preferential 

distinctions between the SNNG and the NNSL, but we conjecture that if the reference estimator is a good 
approximation, then the SNNG estimator would be the best alternative. 

EEG realistic simulations 
The synthetic data used to explore the performance of the MNR algorithm was based in creating two groups of 
current density distributions. The first group includes three primary current density (PCD) distributions, each 

one simulated as a spherical three-dimensional Gaussian source with amplitude of 10 nA/mm2 and width of 1 
mm (sparse simulation), but with the maximum located in three different anatomical structures of a brain space 

of 3862 generators: postcentral gyrus (Postcentral), occipital pole left (Occipital) and cingulate region left 
(Cingulate). The Talairach Coordinates (Talairach and Tournoux, 1988) of the maximum value of each 
simulated PCD appear in the top row of Figure 4. The second group consisted in three different sets of current 

density distributions. Each set contained seven simulated primary current densities: a “centroid” PCD with 
maximum in the same location and anatomical structures of those in the first group, and the others derived 
from this centroid by moving the maxima in just one grid point. All these PCDs were also simulated as 

spherical three-dimensional Gaussian sources but with amplitude and width of 10 nA/mm2 and 10 mm 
(smooth simulation), respectively. “Centroid” PCDs of this second group are also shown in Figure 4.  

The simulated voltages V  were obtained through Eq. (1.1), where j  is the simulated PCDs, K  is the Lead 

Field (computed for an array of 19 electrodes from the 10/20 system, using the common average reference). 

Additive Gaussian noise was generated with zero mean and standard deviation 
noise

, to have a peak signal-to-

noise ratio (
10

  20 log max /
noise

pSNR V ) of about 15 db.  
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Fig. 4. Sagittal (Postcentral, Cingulate) and Coronal (Occipital) views of six simulated PCDs. The first group of sources 
(middle row) were simulated as spherical 3D Gaussian sources with width of 1 mm, while the second group (bottom row) 
corresponded also to spherical 3D Gaussian sources of 10 mm-width. In both cases, sources had the maxima located in the 
same places, determined by the Talairach coordinates shown in the first row. 

Figure 5 shows the estimated inverse solutions for the first group of simulations, corresponding to the Ridge 
model, the LASSO and FnLASSO (both calculated using LARS and MNR) and the ENET L estimated with 

the MNR algorithm. As expected, the Ridge L solution offered overspread activations with some local maxima 
near the simulated ones but showing other “ghost” or spurious sources that make this solution difficult to 
interpret. LASSO and FnLASSO estimators offered sparse sources, but with more difficulties in locating the 

maxima and showing some ghost sources too. In this example, the models computed with the MNR algorithm 
were very similar in localization to those computed with the LARS algorithm, but with a slightly increased 

sparsity. Finally, the ENET L solution is usually smoother than those estimators based on 
1
l -norm, but still 

with a similar level of sparsity as the simulated source. Although some of the solutions showed sources near the 
simulated maxima, in general, very sparse activations are difficult to locate with any of the models, as we found 

in the previous section. 
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Fig. 5. Sagittal ((Postcentral, Cingulate) and Coronal (Occipital) views of estimated PCDs for simulations created as 
spherical 3D Gaussians of 1mm-width. Solutions for the six different models were thresholded at 50% of its maximum value, 
i.e. the minimum value was set to the half of the maximum value in each case. 
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Figure 6 shows the PCDs estimated from the data simulated using the “centroid” PCDs of the second group of 

non-sparse simulations. Ridge L was estimated using classical Tikhonov regularization and the LQA-Fext 
algorithm was also used to compute the SLASSO model. In general, all methods offered a much better 
reconstruction of true activations, showing mostly a single source and with a similar location. LASSO and 

FnLASSO produced sparse solutions with very similar localization of their maxima and that of the main source 
of the Ridge L solution, which anyway shows another maximum and a more spread source distribution. The 

bottom row shows the estimators that imply a combination of 
1
l -norm and 

2
l -norm penalties: SLASSO and 

ENET L. These solutions present sources with localization similar to that obtained from the models using the 

1
l -norm penalty, but with an intermediate level of sparseness/smoothness with respect to the 

2
l -norm solution. 

The level of smoothness varied for the solution estimated with the MNR and the LQA-Fext algorithm 
(Sánchez-Bornot et al., 2008). In both groups of simulations, the “combination” methods SLASSO and ENET L 

showed an intermediate level of sparsity between LASSO and Ridge L as they seemed to adjust to the better 
estimator of the source, so they appear to be a better alternative when ground truth is not known. 

 
Fig. 6. Sagittal views of estimated PCDs with width of 10 mm of Cingulate region with five different methods: LASSO, 

Ridge L, FnLASSO, SLASSO and ENET L using the MNR algorithm and the SLASSO estimator using the LQA-Fext 
algorithm (bottom left). In every case the minimum was set to 50% of the maximum value. 

Using the whole set of simulations in the second group, we compared the solutions of the different methods in 
terms of localization error, visibility and blurring. These are well-known measures of the quality of the 

reconstruction that assess the ability to correctly locate the maximum, estimate its amplitude and estimate its 
width, respectively (Pascual-Marqui, 1999). Appendix (section B) shows their mathematical definitions together 

with an algebraic transformation of each measure to take them to a normalized range, such that perfect 
reconstructions lead to all measures being equal to 1. Based on the information of the quality measures 
computed for each inverse solution across the 7 locations in each simulation set, we created Figure 7, which 

summarizes the general tendency of these results and illustrates it with the centroid solution for the simulated 
Postcentral activation. 
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Fig. 7. Summary of comparison of different inverse solutions estimated by MNR algorithm in terms of the quality measures 

(normalized localization error (y-axis) vs. non normalized blurring (x-axis), while the normalized visibility is coded in a 
grayscale which is used as the background color of the name of each solution). The qualitative position of each model in this 
space is illustrated with the PCDs estimated from the Postcentral simulated centroid source (10 mm, see Figure 4 bottom-right 
panel), thresholded to 50% of the maximum value. 

As the simulated source has a 10 mm-width, we expected that the models based on 
1
l -norm (left column, 

LASSO, FdLASSO and FnLASSO) led to over-sparse solutions, reflected in the lowest blurring, while Ridge 

solutions based on 
2
l -norm were usually over-smooth, leading to blurring higher than 1. Those solutions based 

on the combination of 
1
l -norm and 

2
l -norm penalties (ENET and SLASSO) were able to reconstruct the 

activation with widths more similar to the real one, giving the values of blurring closer to 1. It is interesting to 
see that the visibility and blurring are not completely independent measures. The better the estimation of the 

blurring, the better the visibility. This could be explained by the re-distribution of the energy in the estimated 
solution, such that very sparse solutions concentrate the energy in a few voxels having values higher than the 

true simulated ones (i.e. visibility higher than 1, normalized visibility far from ideal value of 1), while the very 
smooth solutions distributes the energy in many nonzero activations, making the maximum to be smaller than 
the simulated one (i.e. very low visibility).  

Another interesting result is that using the Laplacian operator seemed to help find the correct location of the 
maximum activation, as the versions that did not use this operator in the penalty term (LASSO, ENET I and 

Ridge I) located the maxima to a more superficial location, closer to the sensors. The ENETL, SLASSO and 
FnLASSO showed the best localization and smaller blurring than Ridge L. This is in accordance with previous 

studies on linear solutions that claim that the Laplacian operator impose a more realistic, higher penalization to 
voxels in the boundary, as these have less neighbors (Pascual-Marqui, 1999). Although this typically takes the 
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maximum value to nearby voxels that are indeed closer to the simulated source in many simulations, it can also 

move the maximum to voxels surrounded by many neighbors, which can be far from the real source if the 
distance between neighbor voxels is large and/or there are few locations with all neighbor voxels being valid 
sources. 

Finally, it can be seen that SLASSO offered a very neat source, similar to the simulated one, although not 

perfectly located, while ENET L showed the maximum with a better location but also showing a second ghost 
activation. This suggests that these models can indeed be more flexible and adapt to the data in order to find 
sources with intermediate level of sparseness. However, these solutions are based on combination of penalties 

and therefore they strongly depend on the balance of the different regularization parameters. If the parameters 
are not well balanced, these solutions can be very similar to one of the extreme cases showing over-sparse or 
over-smooth sources. Future work is needed to test different options for finding the optimal regularization 

parameters, although in practice, other statistical, clinical or physiological information might be used to select 
the solution with the best balance, i.e. leading to sources with the most appropriate width (Vega-Hernandez et 

al., 2008). 

 

Source imaging of resting-state EEG data in elderly subjects 

Tests of physical performance provide objective measurements of the functional state of the elderly, and they 

have been shown to be effective to identify subjects more susceptible to disability, hospitalization and death 
(García-Agustín et al., 2018). Walking speed (or gait speed, GS) is a physical measure widely used in the 
clinical practice as a major predictor to evaluate the physical condition of elderly individuals. A decreasing gait 

speed has been linked to the global cognitive capacity, the executive function and the memory in non-demented 
elder adults (García-Agustín et al., 2020). Recently, there has been an increase in the number of studies on gait 

speed not only as an indicator of health status but also as a predictor of adverse health conditions related to a 
decline in the brain function in elder adults (Varma et al., 2016; Pinter et al., 2017). Main findings suggest that 
there is increased brain activation in the prefrontal cortex in response to cognitive tasks during the gait. Given 

the complex cognitive processes involved in gait speed, it has been hypothesized that the reduction of the motor 
functions could be an early and sensitive indicator of sub-clinical deficits among cognitively normal individuals 
(Mielke et al., 2012). 

In this work, we attempt to find and compare the electrophysiological sources of the resting-state brain rhythms 

in elder adults. The data set belongs to a prospective cohort study of the gait speed, performed in 2010 and 
2016, involving 96 functionally or physically active, community-dwelling elderly adults over 60 years old that 
regularly practice mild-to-moderate exercise in their communities. The study is explained in detail in García-

Agustín et al. (2020), and it aims at assessing the relationship of disorders in the physical performance with 
brain diseases, in order to reveal the central mechanism of degeneration. Here we explore the sources of the 
resting-state EEG measured in the second appointment (in 2016) to evaluate their changes according to the 

physical performance of the subjects, specifically to the gait speed. For this subset, we selected a balanced 
sample classified into two groups, depending on the evolution of the gait speed (GS) value registered in 2010 

and 2016 evaluations. GS was quantified from measuring the time spent to cover 4 meters at a normal pace and 
was expressed in meters per second (m/s). The groups had 15 subjects each that were matched in age and 
defined as follows: Group GG) Subjects that presented a good walk speed in 2010 and preserved their normal 

speed above 0.8 m/s in 2016. Group BB) Subjects that presented an abnormal speed equal or below 0.8 m/s, 
both in 2010 and 2016 evaluations. The EEG data were recorded with Neuronic EEG recording system 

MEDICID 5. Nineteen Ag/AgCl electrodes were placed on the scalp according to the international 10/20 
electrode placement system with the reference electrode on linked earlobes. Electrode impedance was kept 
below 10 kOhm. The application of the Fast Fourier Transform to clean segments of EEG provided the 

complex amplitude for oscillatory activities from 0.39 Hz to 19.89 Hz (frequency step of 0.39 Hz). We selected 
the average of those amplitudes in the theta band (4-7 Hz) as the input of the algorithm in order to find the 
electrophysiological sources of the theta rhythm (Niedermeyer and da Silva, 2005).  
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Fig. 8. Frontal and right views of the three-dimensional visualization of the estimated electrophysiological sources in the 
cortical surface, averaged across subjects of the two groups of elder subjects (GG: two columns to the left and BB: two columns 

to the right). Panel A shows the solutions based on only one penalty Ridge L, LASSO, LASSO Fusion, while Panel B shows 
the inverse solutions based on the combination of sparseness and smoothness ENET L, Smooth LASSO and Smooth non-
negative Garrote. All solutions are color-coded as shown in the colorbar, where the minimum value was taken as the 60% of 
the maximum in each case. Blue lines represent the iso-contours.  

The different methods showed the expected behavior as studied with simulations: Ridge L offered spread 
activations, while LASSO offered a very sparse solution. FnLASSO and ENET L showed sources with an 

intermediate size and SLASSO and SNNG in this case showed sparser solutions than ENET L, but all of them 
seem more realistic according to the known physiology than those of Ridge L and LASSO. All solutions gave 
the main activations in similar brain areas although with the maximum source in varied locations. 

The maximum of the solutions were located in the bilateral inferior frontal areas (mainly right hemisphere) for 
BB group and in inferior temporal regions (mainly right) for the GG group. These results are in agreement with 
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previous studies using only scalp EEG that related the lateralization of frontal theta rhythms with bad 

performance in gait speed. In a study of 15 elder adults, authors reported asymmetries in slow activities of the 
alpha and theta bands in subjects with the worst performance in gait speed. In particular, with a model of 
frontal asymmetry, they reported a significant association between asymmetry in the theta band focused on 

frontotemporal regions and the state of gait involvement in older adults (Vogt et al., 2010).  

Moreover, the different sources found in the two groups might reflect the cerebral mechanisms underlying the 
mobility which is related to physical performance. The prefrontal cortex is related not only to complex motor 
functions such as walking, but also to active memory that stores information related to the location of objects in 

space to guide movement and executive functions that are closely associated with starting actions (start of the 
movement) (Suzuki et al., 2008). These motor areas connect with each other through cortico-cortical 
connections to develop the movement strategy and from there connect to the primary motor areas that execute 

the movement (Varma et al., 2016). Therefore, our results support the hypothesis of Allali and colleagues, who 
reported that the increased activity of the prefrontal and supplementary cortex observed in elder adults is a 

reflection of compensation strategies that ensure stability in the rhythm of walking and that fail in those with 
gait disorders (Allali et al., 2014). 

CONCLUSIONS 

The main objective of this study is to evaluate the ability of the MNR algorithm to estimate different inverse 

solutions with several penalizations or constraints. Although the algorithm has been used before in specific 
studies (Valdés-Sosa et al., 2005), here we formalize it as a general technique and illustrate its potential 
application for solving MPLS methods. Known techniques such as the LQA and MM algorithms can be seen as 

variants of the MNR technique but have been constrained to implement particular methods. Using simulated 
data, we showed that the MNR technique offered similar solutions as other state-of-the-art methods and could 
be applied for estimating general MPLS models that allows recovering sparse and smooth estimates using the 

corresponding penalty functions and combinations in a consistent and robust way. Sparsity-inducing models 
such as LASSO and LASSO Fusion always showed inverse solutions that were focused and concentrated 

around a few nonzero points. The use of models that combine sparseness and smoothness such as Elastic Net 
and Smooth LASSO provided solutions with a smooth patches of activations, indeed showing sources with 
widths that were closer to the size of the real simulated source. The flexibility of the algorithm and its 

implementation allowed us to explore novel inverse solutions that can include other constraints. In particular, 
we proposed an extension for the NNG method for the p>>n scenario, which can convey the advantages of that 

model to this challenging scenario. We showed that the MNR technique can also be applied to general 
nonlinear optimization problems such as Smooth LASSO or Adaptive LASSO. Combining these models, we 

proposed a novel solution called Smooth Non-negative Garrote, which can use different reference solutions 
(besides Ordinary Least Squares) and combine sparsity, smoothness and nonnegativity constraints. We also 
propose a similar model which do not use a reference solution and therefore it is just a non-negative version of 

the Smooth LASSO. Future works could establish a general algorithmic framework for exploring other new 
methods such as extending SCAD (Smoothly Clipped Absolute Deviation) (Fan and Li, 2001) for estimating 

smooth features. 

In this work, we also explored the usefulness of the estimators obtained with the MNR algorithm when applied 

to the EEG inverse problem. Firstly, we found using realistic simulations that EEG sources could be 
reconstructed both in the case of sparse, smooth and patch-smooth situations. Solutions showed ghost sources 
and were not always able to exactly localize the main sources, as in other linear methods (such as LORETA or 

Ridge L, and Minimum Norm or Ridge I). However, results were consistent with the numerical simulations and 
in many cases, the additional physiological information about the experiment or the clinical situation could help 

in extracting relevant information.  

Finally, sources of real resting state EEG data from a study of EEG changes related to physical performance in 

elderly subjects, were obtained with the MNR using both classical and novel models. Results were consistent 
with the literature about the different sources of theta activity in subjects with preserved or declined physical 

performance, as reflected by the gait speed. Specifically, results indicate that the increase in the magnitude of 
theta activity sources in the supplementary and prefrontal areas in elder adults with reduced gait speed (BB 
group) is related to the deficit in multisensory co-activation in these areas, which function as compensatory 

mechanisms against peripheral sensory deficit. This suggests that impaired executive functions lead to chronic 
impairments in gait speed. Altogether, these results serve as a preliminary validation of the MNR methodology, 
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while at the same time offered a promising hypothesis about the feasibility of using EEG source imaging as 

potential biomarkers for early physical decline in elder adults. 

Several limitations of the MNR algorithm should be studied and addressed in future works. First, similarly to 

LQA and MM algorithm, the method still gives low nonzero values to coefficients that should be zero and 
shows a slow convergence. In this sense, we should mention that computing flexible EEG inverse solutions 

from models that use combination of penalties always takes more time than direct computations such as Ridge 
(LORETA and Minimum Norm solutions) and other more efficient algorithms such as LARS. Although this 
can hinder its use in clinical applications, in our study we found that the slowest solution took less than 6 

seconds of computational time. Therefore, this would be a relevant limitation only in studies involving a large 
number of subjects or those needing to compute solutions for many time or frequency points. Second, an 
important issue is the appropriate choices of regularization parameters with respect to variable selection. The 

accurate estimation and accurate variable selection can be conflicting goals. Third, the use of nonnegative 
constraints for the new models proposed here is not optimal. Although some of these issues have been already 

addressed with other approaches (e.g. a Bayesian approach to learn the regularization parameters), we think 
that all of these limitations might be effectively overcome with the use of techniques based on selection of 
variables. These methods perform the selection and estimation processes simultaneously, being the LARS 

algorithm a good example. They replace the search for an optimal regularization parameter by the stopping 
criteria in the path of solutions and allow naturally the estimation of only those coefficients that contribute to 

the solution with a positive (or negative) sign. Therefore, future research should be devoted to the development 
of an active-set algorithm that can estimate general MPLS models and include nonnegative solutions. Finally, 
future works should be dedicated also to a more thorough validation of the MNR using other general measures 

of the quality of the reconstruction such as ROC measures, as well as studying the robustness of the solutions to 
noise in the realistic EEG setting. 
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Appendix 

Section A. Theoretical Background 

Consider a multiple lineal regression model and rewrite Eq. (1.1) using a more standard statistical notation and 

terminology, as follows: 

 
y X β ε

1 1 1n n p p n
 

where the columns 1
( ,..., )n

p
x x

 of the design matrix X  are the predictors, 
n

y
 is the response vector, 

p
β

 is the vector of coefficients to be estimated and 
n

ε  is the error term, with the typical simple 

assumption that 
2(0, )
n

Nε
, where 

2

 is the variance of the noise component and n  represents the size-

n identity matrix. The case 
p n

, corresponding to an underdetermined scenario, has led to a huge amount 

of scientific work on how to estimate models with many new extensions of regularization techniques in the last 

decade (Voronin, 2012). These techniques produce biased but stable linear solutions when using 2
l

-norm 

penalties, being ridge regression (Hoerl and Kennard, 1970) the classical example. The advent of the least 
absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) and the emergence of the more general 

penalized least squares (PLS) formulation (Fan and Li, 2001), allowed the recovery of sparse solutions, where 
only a small number of coefficients are nonzero, while Ridge does not produce sparse estimators.  

The PLS methods were firstly designed to deal with sparse estimators and thus, they can be seen as variable 
selection techniques. However, they can also be used to represent methods that lead to smooth estimators and 

even include combination of penalty terms that may involve concave and convex functions. In this broad sense, 
the Fused LASSO (FdLASSO) (Tibshirani et al., 2005), together with the Elastic Net (ENET) (Zou and Hastie, 
2005) and the Smooth LASSO (SLASSO) (Hebiri, 2008), can be seen as particular instances. In general, these 

PLS methods can be represented as instances of a more general model that has been named as Multiple PLS 
(MPLS) (Vega-Hernández et al., 2008; Sánchez-Bornot et al., 2008), and can be expressed as:  

β

β y Xβ y Xβ β
1

argmin
2

T

              (A.1) 

where the functional term 

( ) ( )

1 1

rNR
r r

r i
r i

gβ

 represents a sum of several convex and non-convex 

constraints or penalty terms. The penalty functions 
( ) :rg

, for 
1,..., ,r R

 are symmetric, non-

negative, non-decreasing and continuous over 
0,

. They are in general evaluated at the components of 

vectors 

r r
θ L β

, where 
r

r N p
L  are linear operators, e.g., the matrix of first or second differences. The 

regularization parameters r  establish the relative importance of the corresponding constraints. It can be easily 

shown that LASSO and Ridge are particular instances of this equation by setting 1R , p
L I

 and using the 

corresponding 1
l

 and 2
l

 penalty functions. These and other examples are given in Table 1. 

On the other hand, there are a few variable selection procedures that cannot be represented as a PLS method, 
such as the “best subset selection”. For coping with the well-known instability of this method, Breiman 

introduced the Nonnegative Garrote (NNG) as a variable selection technique that shrinks and zeroes the 
ordinary least squares (OLS) estimator in order to give intermediate results between OLS and subset selection 

(Breiman, 1995). However, one important limitation of NNG is that is restricted to the 
p n

 case, which 
hinders its applications to general problems. In this work we notice that the NNG can indeed be included in the 

general MPLS formulation, as shown in Table 1. 
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Table 1: Known models represented as instances of equation A.1. Here L  is the second differences operator 

and Ω  can be the matrix of first or second differences, or any other roughness operator. The 
β
ols

 is the 
ordinary least squares solution. 

Name Penalty term Function definition 

Ridge I 

1

p

i
i

g
 

2g
; 
θ β

 

Ridge L 
2g
; 
θ Lβ

 

LASSO g
; 
θ β

 
Fusion LASSO 

(FnLASSO) 
g

; 
θ Lβ

 

Fused LASSO 
(FdLASSO) 

(1) (1) (2) (2)
1 2

1 1

p p

i i
i i

g g
 

1
g

; 
θ β

1

 

   

2
g

; 
θ Ωβ

2

 

Smooth LASSO 
(SLASSO) 

1
g

; 
θ β

1

 
2 2g

; 
θ Ωβ

2

 

Elastic Net L 
(ENET L) 

1
g

; 
θ Lβ

1

 
2 2g

; 
θ Lβ

2

 

Adaptive LASSO 
(ALASSO) 

1

 
p

i i
i

g
 

g
; 
θ β

 

with 0 for 1,...,
i

i p
 

Nonnegative Garrote 
(NNG) 

g
; 
θ β

 

with 1/ for 1,...,ols
i i

i p
 

β β β β0 if 0; 0 if 0ols ols

 
 

From the computational point of view, the local quadratic approximation (LQA) (Fan and Li, 2001) and the 
minorization-maximization (MM) (Hunter and Li, 2005) algorithms provide a numerical engine to implement 
several of the PLS methods. These algorithms are based on the Newton-Raphson (NR) technique, which uses a 

second-order Taylor approximation for the objective function to be minimized. In this sense, they inherit the 
virtues of the NR guaranteeing convergence at least to a local minimum, but they cannot deal with general 

MPLS models. To overcome this difficulty, Valdes-Sosa and colleagues introduced a generalized MM method 
for the estimation of massive autoregressive models of neuroimaging data (Valdés-Sosa et al., 2006), and for 
solving the M/EEG inverse problem (Vega-Hernández et al., 2008). Another drawback is that neither LQA nor 

MM produce true sparse solutions and depend on an additional parameter to assure numerical stability (Li et. 
al., 2006). Alternatively, the least angle regression (LARS) (Efron et al., 2004) and the Shooting algorithm (Fu, 
1998; Friedman et al., 2007), offer efficient implementations for specific PLS methods (e.g., LASSO, ENET) 

with the advantage that they make variable selection and estimation simultaneously. Some other specific 
algorithms have been proposed to handle particular instances with specific difficulties, such as the lower bound 

based smoothed Quasi-Newton algorithm to compute “group bridge” solutions efficiently (Cao et al., 2016) but 
with an application scope less extensive than that of LQA and MM. Mørup et al. (2008) introduced a version of 
the LARS algorithm to implement the LASSO with nonnegative constraints and Chen et al. (2017) presented an 

improved-LARS algorithm, which combines LARS with Principal Component Analysis and Independent 
Weight evaluation. Chang et al. (2018) proposed a variant of the Adaptive LASSO (named Tukey-LASSO), 

with an accelerated proximal gradient algorithm which showed to provide better estimates as compared with 
the Adaptive LASSO and other robust LASSO implementations. 
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Section B. Quality Measures of the reconstruction. 

Localization Error: Euclidean distance (in mm) between the maximum values of the estimated and real current 

densities: true
Err r r

, where true
r

 and r  denote the vector positions of the maximum of real and 

estimated PCD, respectively.  

Normalized Localization Error: 

1
2
b

Err
ErrN

R
, where b

R
 is the radius of the brain (95 mm for the fitted 

sphere used in this work). 

Blurring: Measure of the width or spatial dispersion of the solution. Here we compute the ratio between the full-

width-at-half-maximum (FWHM) of the estimated and real current densities: true

FWHM
Blurr

FWHM
. The 

FWHM was defined in Fuchs et al. (1999) as the volume of voxels with strength above 50% of the maximum 
PCD divided by the total volume of the brain (number of voxels times the volume of a voxel).  

Normalized Blurring: 

1
exp 2BlurrN Blurr

Blurr
. 

Visibility: The ratio between the maximum values of estimated and simulated PCD: 

max PCD

max PCD
true

Vis

.  

Normalized Visibility: 

1
exp 2VisN Vis

Vis
. 

 
 


