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Adenomyosis is a common benign gynecological disorder and an important factor
leading to infertility in fertile women. Adenomyosis can cause deep lesions and is
persistent and refractory in nature due to its tumor-like biological characteristics,
such as the ability to implant, adhere, and invade. The pathogenesis of
adenomyosis is currently unclear. Therefore, new therapeutic approaches are
urgently required. Exosomes are nanoscale vesicles secreted by cells that carry
proteins, genetic materials and other biologically active components. Exosomes
play an important role in maintaining tissue homeostasis and regulating immune
responses andmetabolism. A growing body ofwork has shown that exosomes and
their contents are key to the development and progression of adenomyosis. This
review discusses the current research progress, future prospects and challenges in
this emerging therapeutic tool by providing an overview of the changes in the
adenomyosis uterine microenvironment and the biogenesis and functions of
exosomes, with particular emphasis on the role of exosomes and their
contents in the regulation of cell migration, proliferation, fibrosis formation,
neovascularization, and inflammatory responses in adenomyosis.
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1 Introduction

Adenomyosis (AM) is a benign gynecological disorder characterized by diffuse or
limited hypertrophic hyperplasia due to invasion of the myometrium by the
endometrial glands and mesenchyme, causing infertility in fertile women (Gordts
et al., 2018). The typical clinical symptoms of AM are pelvic pain, abnormal uterine
bleeding, and infertility, which seriously affect the physical and mental health of
affected women (Abbott, 2017). In recent years, the prevalence of AM has been rising
annually, especially in younger populations. Studies have shown that some women
display typical symptoms and ultrasound features of AM as early as during their pre-
reproductive period (Pinzauti et al., 2015; Upson and Missmer, 2020). Although the
pathogenesis of AM remains unclear, it is thought to be associated with endometrial
damage and involution, hormonal factors, myometrial stem cell metaplasia, and
immunogenetic factors (Zhai et al., 2020). AM and Endometriosis (EM) were
considered different manifestations of the same disease in the past. Since Franklin
first proposed the concept of “adenomyosis” in 1925, people have gradually realized
the difference between the two. However, because the pathological changes of both
involve the ectopic endometrium, the symptoms of the two are similar, and the two
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often appear together in clinical practice, so the treatment
methods also have similarities. However, compared with EM,
AM-related research is less. A search of PubMed with the
subject term “adenomyosis” identified only 1,603 articles as
of December 31, while there were 19,019 EM articles in the same
period. It can be seen that there is still a lot of research space for
AM, which is worthy of further exploration by researchers.

For AM, western medical treatment is predominantly
based on hormonal drugs, such as oral contraceptives,
gonadotropin-releasing hormone agonists, levonorgestrel-
releasing intrauterine system, mifepristone, and androgen
derivatives. Although medical treatments are efficacious,
they are associated with significant adverse effects and
recurrence after discontinuation (Vannuccini et al., 2018).
Total hysterectomy is the radical treatment for AM, but
conservative surgery with uterus preservation is often
performed for patients who want to preserve the uterus to
maintain fertility. The latter surgical approach involves focal
resection of AM lesions only, and is applicable to AM with
limited lesions. However, focal resection is not suitable for
diffuse AM with extensive lesions due to its inability to
completely remove the lesions, and is associated with a high
risk of recurrence (Grimbizis et al., 2014; Tsui et al., 2014). It
can be seen that the current treatment of AM has its
limitations. Seeking a new and effective treatment method
is an urgent problem to be solved in the field of AM research.

Exosomes (EXOs) are small extracellular vesicles with a
diameter of 30–150 nm derived from intracellular lysosomal
particles that are invaginated and released into the extracellular
matrix (ECM) after fusion with the cell membrane (Théry et al.,
2006). EXOs contain a wide range of proteins, lipids and genetic
materials, and their inherent ability to carry multiple active
substances through cells and high affinity for target cells have
gained increasing attention in recent years (Zhang et al., 2019b).
Under physiological and pathological conditions, almost all cell
types release EXOs for intercellular communication (Yang et al.,
2020). EXOs have been reported to regulate various biological
processes such as growth and development, tissue homeostasis,
aging and metabolism under physiological conditions, and
participate in the development and progression of
inflammatory diseases, autoimmune diseases, and tumor-like
diseases under pathological conditions (Milane et al., 2015;
Zhang et al., 2019a; Pegtel and Gould, 2019; Mirzaei et al.,
2021). It is reported that female reproductive tissues such as
ovaries, fallopian tubes, endometrium, decidua, and placenta
can produce EXOs (Foster et al., 2016; Simon et al., 2018). Due
to these characteristics of EXOs, many researchers have found
that EXOs play an important regulatory or therapeutic role in a
variety of gynecological diseases, including cervical cancer
(Fang et al., 2022), endometrial cancer (Fan J. T. et al.,
2021), intrauterine adhesions (Ebrahim et al., 2018), EM
(Zhou et al., 2020) and so on. More and more researchers
have begun to explore the correlation between EXOs and
AM. In this review, we provide an overview of studies
focused on EXOs and the contents they carry, summarized
the association and mechanism of action of EXOs and AM,
and explored the potential research value and future prospects
of EXOs in the diagnosis and treatment of AM.

2 Retrieval method

All relevant articles were retrieved from PubMed using the terms
“exosomes”, “EVs”, “miRNAs”, “adenomyosis”, “endometriosis”,
“mechanism”, “diagnosis”, and “therapy” from inception to
December 2022, and were screened based on whether the studies
have investigated the association between EXOs and AM.

3 EXOs

3.1 Biogenesis and composition of EXOs

Extracellular vesicles (EVs) are small membranous vesicles
released from cells into the ECM and can be broadly classified as
apoptotic vesicles (4,000 nm in diameter), microparticles/
microvesicles (MPs/MVs) (100–1,000 nm in diameter) and EXOs
(30–150 nm in diameter) (Porro et al., 2015). The first two types of
vesicles can be released directly from the plasma membrane of the
cell, while the biogenesis of EXOs involves double invagination of
the plasma membrane and lysosomal degradation. This process can
be divided into four stages: 1) Formation of a cup-like structure
containing cell surface proteins and soluble proteins through
invagination of the plasma membrane; 2) Formation of early
endosomes (EEs) from the trans-Golgi network and endoplasmic
reticulum; 3) Maturation of EEs into late endosomes (LEs) or
multivesicular bodies (MVBs) through carrier selection
mechanisms; and 4) Degradation of MVBs by fusion with
lysosomes or autophagosomes or fusion of MVBs with the
plasma membrane to release intraluminal vesicles (ILVs, which
will turn into EXOs) (Raposo and Stoorvogel, 2013; Hessvik and
Llorente, 2018; Kalluri and LeBleu, 2020). The endosomal sorting
complex for transport (ESCRT) machinery is a key mediator of
EXOs biogenesis. Components of ESCRT can bind to
transmembrane cargoes in endosomes and sort them into EXOs
(Katzmann et al., 2001; Henne et al., 2013). ESCRT consists of five
complexes: ESCRT-0 is an ubiquitinated complex that aggregates
cargoes and initiates the cargo sorting pathway; ESCRT-I, ESCRT-II,
and ESCRT-III direct the budding of ILVs; and the Vps4 complex
promotes ESCRT-III-mediated membrane fission (Henne et al.,
2011; Juan and Fürthauer, 2018). In addition, other accessory
proteins of ESCRT, such as Tsg101 and Alix, are also involved in
formation and release of EXOs. These complexes recognize and sort
ubiquitinated cargoes through precise partitioning. However, it was
found that maximal inhibition of the ESCRT machinery in
mammalian cells does not prevent the formation of EXOs
(Stuffers et al., 2009). Thus, the biogenesis of EXOs may involve
both ESCRT-dependent and ESCRT-independent mechanisms.
ESCRT-independent EXOs biogenesis is closely related to the
role of lipids and proteins. Trajkovic first reported ESCRT-
independent biogenesis of proteolipid protein (PLP)-containing
EXOs in oligodendrocytes. This mechanism of formation was
dependent on ceramide, a lipid that facilitates the inward
budding of ILVs by inducing lipid aggregation (Trajkovic et al.,
2008). It has been shown that the RAB protein family can control the
basic functions of vesicles by recruiting specific effector proteins
(Galvez et al., 2012). RAB5 is now known to be involved in the
regulation of EEs formation and fusion and is also a facilitator of EEs
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maturation into LEs (Simonsen et al., 1998). RAB31 can drive the
formation of EXOs as ILVs in MVBs (Wei et al., 2021). The
conversion from RAB5 to RAB7 allows MVBs to fuse with
lysosomes and autophagosomes (Huotari and Helenius, 2011),
and RAB27 (including RAB27a and RAB27b) regulates the
release of ILVs from MVBs upon fusion to the plasma
membrane (Ostrowski et al., 2010) (Figure 1A).

The biogenesis of EXOs is diverse, but regardless of the pathways
of EXOs formation and release, EXOs are cellular vesicles with a
lipid bilayer membrane enriched in lipids, proteins, nucleic acids,
and other active substances from cells. EXOs membrane proteins
include membrane transport- and fusion-related proteins, adhesion
factors, antigen presentation-related proteins (e.g., MHC-II),
tetraspanins (including CD9, CD63 and CD81), and heat shock
proteins (including HSP60, HSP70 and HSP90), which are involved
in targeted cellular transport and adhesion as well as T-cell
activation (Zhang et al., 2018a; Jeppesen et al., 2019; Zhu et al.,
2021). On the other hand, internal EXOs proteins include
cytoskeletal proteins (including actin and microtubulin), ESCRT
complexes, RAB family, enzymes and other cytoplasmic proteins
(Zhang et al., 2018a; Jeppesen et al., 2019; Kalluri and LeBleu, 2020).
The membrane of EXOs is mainly composed of lipids, including
sphingomyelin, phosphatidylcholine, cholesterol and ceramide
(Trajkovic et al., 2008; van Meer et al., 2008; Skotland et al.,

2017; Skotland et al., 2019), which are mainly involved in signal
transduction. EXOs carry specific nucleic acids such as DNA,
mRNAs and noncoding RNAs, among which miRNAs are
delivered to target cells as the main cargoes carried by EXOs to
exert their corresponding regulatory role (Cheng et al., 2014)
(Figure 1B).

3.2 Uptake and internalization of EXOs

There is increasing evidence demonstrating that EXOs are
released into the intercellular space and then taken up by
recipient cells. It has been found that the uptake and
internalization of EXOs are accomplished through four pathways
(Mulcahy et al., 2014). First, the EXOs membrane fuses directly with
the target cell membrane (Parolini et al., 2009). Second, the
membrane protein of EXOs can bind to the membrane protein
receptor on the target cell, which in turn activates signaling
pathways in the target cell (Rana and Zöller, 2011; Record et al.,
2014). Third, EXOs membrane proteins can be cleaved by proteases
in the ECM, and the cleaved protein fragments can bind to receptors
on the target cells. Last, EXOs are taken up by the recipient cells
through endocytic mechanisms, including clathrin-dependent
endocytosis, caveolae-dependent endocytosis, lipid raft-mediated

FIGURE 1
(A). Biogenesis of EXOs: (a) plasmamembrane invagination to form cup-like structures; (b) early endosomes formation; (c) early endosomes mature
into late endosomes or MVBs; (d) degradation of MVBs releases ILVs, i.e., EXOs; (B). Composition of EXOs: EXOs are lipid bilayer membrane structures
carrying lipids, proteins, nucleic acids and other substances; (C). Internalization of EXOs: (a) direct fusion; (b) binding to membrane protein receptors; (c)
protein fragments bound to target cell membrane receptors after protease shearing; (d) mechanism of endocytosis.
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endocytosis, phagocytosis and macropinocytosis (Doherty and
McMahon, 2009). Upon uptake by the recipient cell, EXOs
release their cargoes to mediate intercellular communication
processes (Figure 1C).

3.3 Function of EXOs

EXOs were first discovered in sheep reticulocytes in 1983 and
were initially thought to be a form of cellular excretion (Pan and
Johnstone, 1983). Though, as science and technology advance, EXOs
have been found to perform various functions, the diversity of which
depends mainly on the type of cells from which they originate. EXOs
are naturally present in body fluids such as blood (Caby et al., 2005),
saliva (Han et al., 2018), cerebrospinal fluid (Street et al., 2012), and
urine (Pisitkun et al., 2004). Almost all types of cells release EXOs,
and the contents of EXOs vary depending on the cell source. EXOs
deliver their contents to recipient cells to mediate the corresponding
biological response, and this EXOs-mediated response can
participate in the development and progression of disease
(Hessvik and Llorente, 2018). Recently, researchers have found
that EXOs may be involved in biological processes such as
immune response, cell migration, cell proliferation, and tumor
invasion (Wang et al., 2019b), and play an important role in the
diagnosis and treatment of neoplastic diseases, neurodegenerative
pathologies, autoimmune diseases, and infectious diseases
(Figure 2).

3.3.1 Immunomodulation
In 1996, EXOs began to attract the attention of immunologists

for their role in antigen presentation. Epstein‒Barr virus (EBV)-
transformed B lymphocytes can secrete EXOs, which carry MHC
class II molecules and can present processed antigen fragments to
CD4+ T cells during the initiation phase of an immune response,
suggesting that EXOs are involved in the host’s adaptive immunity
(Raposo et al., 1996). Dendritic cells (DCs) were also found to secrete
EXOs bearing MHC class I complexes, which can promote CD8+ T
cell-dependent antitumor immune responses in mice (Zitvogel et al.,
1998). Toll like receptors (TLRs) are important components of the
innate immune system and are the determinants of the recognition
of microbial pathogens and the initiation of the immune system
(Wicherska-Pawlowska et al., 2021). Tumor cells can induce TLR-
mediated NF-κB activation and protumoral inflammatory process
by secreting a large number of EXOs containing miRNA-21 and
miRNA-29a and binding to TLR8 and TLR7 in immune cells,
leading to tumor growth and metastasis (Fabbri et al., 2012).
Plebanek et al. found that EXOs released from nonmetastatic
melanoma promote the differentiation and polarization of
macrophages and participate in the killing and phagocytosis of
tumor cells. These EXOs that carry immunomodulatory factors
may be related to PEDF, a tumor suppressor with potent
antiangiogenic and anticancer effects (Craword et al., 2013;
Plebanek et al., 2017). In addition, Veronica found that colorectal
cancer cells can induce apoptosis in T cells by releasing EXOs
carrying Fas ligands and TNF-related apoptosis-inducing ligands

FIGURE 2
Function of EXOs: (A). EXOs from distinct cellular sources, including B lymphocytes, dendritic cells and tumor cells, shed EXOs with cargos that can
influence the innate and adaptive immune system; (B). EXOs regulate cell Proliferation, invasion, andmetastasis; (C). EXOs promote angiogenesis. TGF-β,
transforming growth factor-β; MMPs, matrix metalloproteinases; VEGF, vascular endothelial growth factor.
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(Huber et al., 2005). Therefore, EXOs have a bidirectional regulatory
effect on the immune system, which can result in immune activation
or immunosuppression depending on the role of the factors they
carry (Figure 2A).

3.3.2 Cell proliferation, invasion, and metastasis
Studies have shown that a key factor in promoting tumor

metastasis is the formation of a microenvironment conducive to
tumor metastasis at a specific site, namely, pre-metastatic niche
(PMN). EXOs secreted by tumor cells are the key mediators of PMN
formation (Liu and Cao, 2016). Popularly speaking, tumor cells are
“seeds”, PMNs at specific sites are equivalent to “soil”, and EXOs are
similar to “fertilizers”, which optimize the environment for tumor
cell colonization, growth and metastasis. Feng et al. found that
ovarian cancer exosomal proteins can enhance the progression of
metastasis of ovarian tumors, and identified tumorigenic miRNAs in
ovarian cancer-derived EXOs, including miRNA-99a-5p, miRNA-
21 and miRNA-940, which can promote the formation of PMN
(Feng et al., 2019). Experimental evidence (Yuan et al., 2021) showed
that breast cancer cell-derived EXOs plays an important role in
promoting bone metastasis of breast cancer, which is related to the
transfer of miRNA-21 to osteoclasts to form PMN. A proteomic
study of EXOs in pancreatic cancer showed that EXOs specifically
express 362 proteins that are known to play a role in cell
proliferation, cell migration, and tumor metastasis (Emmanouilidi
et al., 2019). In addition, EXOs derived from highly metastatic cell
lines were found to carry proteins that play more potent roles in
adhesion, invasion, growth, and metastasis (Yu et al., 2017). By
analyzing the EXO proteomics in various tumor models, it was
found that tumor cell-derived EXOs could also direct organ-specific
metastatic implantation (organotropism) of tumor cells by
expressing specific integrins that mediate fusion with target cells,
such as the EXO integrins α6β4 and α6β1, which are associated with
lung metastasis, and αvβ5, which is associated with liver metastasis
(Hoshino et al., 2015) (Figure 2B).

3.3.3 Pro-angiogenesis
EXOs derived from endothelial cells have pro-angiogenic and

immunomodulatory effects (Wortzel et al., 2019). Angiogenesis and
inflammation are key processes during tumorigenesis, in which
abnormal angiogenesis has a central role in tumor development,
characterized by excessive production of vascular endothelial growth
factor (VEGF) (Jászai and Schmidt, 2019). Tumor cells can trigger
epithelial-mesenchymal transition (EMT), angiogenesis and
immune escape through the release of EXOs (Xie et al., 2019).
Hypoxia is one of the characteristics of tumor development, and the
detection of proangiogenic factors (ANFs) enriched in tumor cell-
derived EXOs under hypoxia suggests that tumor cells can activate
several signaling pathways to promote angiogenesis and to regulate
the tumor microenvironment through the secretion of EXOs. These
factors include the transforming growth factor-β(TGF-β), VEGF,
matrix metalloproteinases (MMPs), certain miRNAs, and long
noncoding RNAs (lncRNAs), and the associated pathways are the
TGF-β/Smad pathway, JAK-STAT pathway, and Wnt4/β-catenin
pathway (Aslan et al., 2019). Studies showed that dysregulation of
miRNAs can affect some key pathways involved in tumor
progression, and EXOs, as the carrier of miRNAs, can mediate
miRNAs to promote angiogenesis (Tiwari et al., 2018). Wang et al.

found that miRNA-BART10 andmiRNA-18a were overexpressed in
nasopharyngeal carcinoma (NPC) tissues and participated in the
angiogenesis of NPC by activating VEGF, while EXOs loaded with
antagomiRNA-BART10-5p and antagomiRNA-18a could inhibit
the angiogenesis of NPC (Wang et al., 2020a). These studies
suggested that the regulation of EXOs on diseases is two-way,
which mainly depends on the factors they carry. Using this
feature can block the development of diseases and play a
therapeutic role (Figure 2C).

3.4 Clinical trials of EXOs

In view of the regulatory effect of EXOs on physiological and
pathological changes, the isolation and application of EXOs are
developing towards clinical trials. Through literature review, the
performance of EXOs as a means of diagnosis and treatment has
been tested in several clinical trials. In a phase-I trial, the researchers
purified EXOs from DCs, loaded MHC class I peptides, and injected
them intradermally and subcutaneously to 15 melanoma patients.
EXOs therapy was tolerated up to 21 months. During this period, no
obvious toxic reaction was observed, and a few patients had mild
inflammatory reaction at the injection site. One of them exhibited a
specific melanoma antigen T cell-response and a reduction in
tumour size. The clinical trial highlighted the feasibility of large
scale EXOs production and the safety of EXOs therapy (Escudier
et al., 2005). A non-randomized phase I/II clinical trial showed that
EXOs derived from DCs pulsed with SART1 presents a strong
potential as a vaccine for esophageal cancer, which is well
tolerated and can regulate the patient’s immune response (Narita
et al., 2015). In a phase-II trial, the potential of EXOs as biomarkers
has also been confirmed. The experimental results showed that
insulin resistance is associated with Alzheimer’s disease (AD). EXOs
rich in neurons carry insulin signal mediators, which can be used as
biomarkers of cerebral insulin resistance to track changes in
cognitive ability in AD treatment (Mustapic et al., 2019). At
present, a clinical trial on the safety and tolerance of inhaled
MSC-EXOs for healthy volunteers is underway (NCT04313647).
Another clinical trial to evaluate the safety and efficacy of MSC-
EXOs in promoting the healing of large and refractory macular holes
(MHs) is also in progress (NCT03437759).

4 Pathogenesis of AM

The uterus is an organ with a thick luminal wall, which consists
of the perimetrium (outer layer, visceral peritoneum), myometrium
(middle layer, composed of smooth muscles), and endometrium
(inner layer, mucosa). Since there is a lack of an “intermediate
buffer”, namely, a submucosa, between the myometrium and
endometrium, these two layers are in direct contact with each
other. The histological features of AM are the presence of
endometrial glands or mesenchyme in the myometrium
surrounded by smooth muscle hyperplasia. This process is
similar to the metastatic process of tumors, involving
endometrial invasion and adhesion, basalis layer injury, abnormal
smooth muscle function and ectopic endometrial proliferation-
apoptosis imbalance (Schrager et al., 2022). The pathogenesis of
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AM remains largely unknown, but two hypotheses have been
proposed, namely, the endometrial invagination hypothesis and
the metaplasia hypothesis (García-Solares et al., 2018).

Endometrial invagination mainly results from the activation of
the tissue injury and repair (TIAR) mechanism (García-Solares
et al., 2018). The TIAR mechanism was first proposed by
Leyendecker et al., who found that chronic or excessive uterine
peristalsis induces endometrial myometrial interface (EMI)
microdamage. Activation of the TIAR mechanism triggers repair
and inflammation, which in turn stimulates local IL-1 production
and cyclooxygenase-2(COX2) activation, ultimately leading to
increased production of prostaglandin E2(PGE2). COX2 and
PGE2 are potent inducers of aromatase activation (Leyendecker
et al., 2009; Leyendecker and Wildt, 2011), and testosterone is
aromatized by activated P450, leading to increased E2 synthesis
(Zarate-Perez et al., 2018). Progesterone is able to resist the action of
estrogen and alter the continuous proliferation of the endometrium.
However, the expression of progesterone receptor (PR) is
downregulated or absent in the ectopic lesions of AM patients
compared with healthy controls, resulting in progesterone
resistance. As a result, the proliferative effect of excess estrogen
cannot be countered by progesterone (Mehasseb et al., 2011;
Thieffry et al., 2022). The increase in estrogen not only induces
endometrial proliferation and repair through the estradiol receptor β
(ERβ), but also promotes the secretion of oxytocin through the
estradiol receptor α (ERα), which continuously stimulates the uterus
to be in a state of peristalsis and damage, causing the uterus to enter a
vicious cycle of chronic damage, proliferation and inflammation.
Excessive peristalsis of the uterus causes destruction of the
myometrium and facilitates invasion of the endometrial basalis
cells, resulting in the formation of AM (Leyendecker et al., 2009;
Leyendecker and Wildt, 2011) (Figure 3A).

Some patients with the Mayer-Rokitansky-Küster-Hauser
(MRKH) syndrome have been reported to suffer from AM
despite their primordial uteri that lack a functional endometrium
(Chun et al., 2013; Pinto et al., 2022). In such AM patients, the
formation of ectopic lesions cannot be explained by the theory of
invagination. Therefore, the metaplasia theory postulates that AM
lesions may also originate from the metaplasia of residual Müllerian
ducts (MDs) with differentiation potential within the myometrium.
This theory requires the understanding of the concept of
“archimetra”, which refers to the endometrium and the
subendometrial myometrium. During embryonic development,
the archimetra originates from the MDs and undergoes cyclic
changes regulated by hormones. On the other hand, the outer
muscular layer of the uterus does not develop from the MDs and
is called the neometra. Together, the archimetra and neometra make
up the uterus (Leyendecker et al., 1998). Residual MDs with
differentiation potential can transform into endometrial glands
and mesenchyme within the myometrium, resulting in ectopic
endometrium (Spencer et al., 2012). This theory could explain
the formation of deep infiltrative EM in the rectovaginal septum,
where the ectopic lesion originates from the metaplasia of residual
MDs (Donnez et al., 1995) (Figure 3B).

Many other factors may contribute to the formation of AM.
EMT refers to the process of epithelial to mesenchymal cell
transformation, which confers the ability of cell metastasis and
invasion. EMT is involved in processes such as embryonic
development, organ fibrosis, tissue damage and repair, and tumor
metastasis (Nieto et al., 2016; Zhang and Weinberg, 2018). Estrogen
can induce EMT through the Notch signaling pathway (Li et al.,
2018), Wnt/β-catenin signaling pathway (Zhou et al., 2012), and
TGF-β/Smad signaling pathway (Fan et al., 2014), thus promoting
AM formation. The decrease in E-cadherin paralleled by the increase

FIGURE 3
AM pathogenesis: A. Endometrial invagination: TIAR and EMIDmechanisms; B. Metaplasia hypothesis; C. EMT; D. Genetic and immune factors. EMI,
endometrial myometrial interface; EMID, endometrial-myometrial interface disruption; EMT, epithelial-mesenchymal transition; TIAR, tissue injury and
repair; TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth factor; IL-1, interleukin-1; COX2, cyclooxygenase-2; PGE2, prostaglandin
E2; ERα, estradiol receptor α; ERβ, estradiol receptor β; P450 arom, aromatase cytochrome P450; EECs, endometrial epithelial cells.
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in vimentin and N-cadherin is an important feature of EMT and a
pattern also observed in AM lesions, indicating that EMT promotes
the development of AM (Chen et al., 2010; An et al., 2017)
(Figure 3C). Endometrial components have been identified in the
myometrial lymphatics, which suggests that lymphatic
dissemination may be a pathway of basal endometrial
invagination. Guo et al. proposed the concept of endometrial-
myometrial interface disruption (EMID) based on the mechanism
of wound healing, which is a further refinement and complement to
the TIAR mechanism and the above mechanisms (Guo, 2020).
Iatrogenic injury and abnormal uterine peristalsis can lead to
EMID, platelet aggregation and tissue hypoxia. Consequently, the
increase in estrogen promotes excessive uterine peristalsis through
ERα and ERβ, and tissue hypoxia activates TGF-β, VEGF, and
COX2 signaling pathway (Figure 3A). Furthermore, genetic and
immune factors are also involved in the formation of AM.
Altogether, these findings demonstrate that AM is a complex and
refractory condition that involves the cross-talk and interaction
among multiple mechanisms (Figure 3D).

5 Relevance of EXOs in AM
pathogenesis

Despite its benign nature, cell adhesion, invasion, and
angiogenesis are important pathological processes in AM
development, with similar biological manifestations as malignant
tumors. Intercellular communication is a key feature of tumor
progression and metastasis, and EXOs are important mediators
of cell migration, proliferation, and angiogenesis in the tumor
microenvironment. Mishra et al. (2021) found that endometrial
epithelium-derived EVs contain genes that specifically participate in
various biological processes that facilitate the pathogenesis of
endometrial diseases (e.g., EM, endometritis and endometrial
cancer) through regulation of inflammation, angiogenesis, and
cell proliferation. Several studies have confirmed that the
expression of genes carried by EXOs is also altered in eutopic
endometrium compared with normal endometrium (Schjenken
et al., 2019; Chen et al., 2020c). Therefore, it is hypothesized that
EXOs are involved in the pathogenesis of AM by mechanisms
similar to those in tumor development. AM and EM are highly
similar in pathogenesis, pathological changes, and symptomatic
manifestations, and the two are commonly seen together in
clinical practice (Leyendecker et al., 2015; Chapron et al., 2017).
There are currently few studies on EXOs in AM. By conducting a
comprehensive search and review of English studies of EM, we
explored the regulatory role of EXOs and their contents, mainly
miRNAs, in pathological alterations in AM.

5.1 EXOs promote cell migration and
invasion

The pathogenesis of AM is associated with enhanced
endometrial cell migration and invasion, and regulation of cell
migration and invasion affects the formation of ectopic lesions.
EXOs enhance cell invasion by inducing EMT. A recent in vitro
experiment showed that EXOs derived from ectopic endometrium

of AM patients can promote macrophage polarization, and
polarized macrophages can induce the EMT process of
endometrial epithelial cells (EECs) (Hu et al., 2023). MiRNA-
210-3p, a hypoxia-associated miRNA responsive to hypoxia
inducible factor-1α (HIF-1α), is highly expressed in EM. EXOs
containing miRNA-210-3p induce EMT through the activation of
the STAT3 pathway and promote cell metastasis and invasion
(Okamoto et al., 2015; Zhang et al., 2019c). In contrast to its
oncogenic activity in other cancers, miRNA-10b is minimally
expressed in AM lesions. miRNA-10b can directly target
ZEB1 and PI3K, induce EMT onset by downregulating
E-cadherin expression, and increase Akt phosphorylation to
promote invasion by endometrial glandular epithelial cells
(Nagathihalli and Merchant, 2012; Guo et al., 2015). Hang et al.
(2019) found that downregulation of miRNA-145-5p in ovarian
cancer cell-derived EXOs promoted cancer progression. When
miRNA-145-5p expression is low, Talin1 overexpression induces
EMT through activation of the Wnt/β-catenin pathway, thereby
promoting endometrial cell migration and invasion (Wang et al.,
2021). Chen et al. isolated EVs from AM patients, and AM-derived
extracellular vesicles (AMEVs) induced EMT of EECs and
conferred an invasive phenotype to EECs. AMEVs contain
20 EMT-related proteins, of which heat shock protein beta-1
(HSPB1) possesses the highest emPAI value. Downregulation of
E-cadherin is correlated with the upregulation of HSPB1, which
induces EMT and enhances the invasiveness of EECs (Chen et al.,
2020a).

5.2 EXOs regulate cell proliferation and
apoptosis

Abnormal proliferation and apoptosis of smooth muscle cells
(SMCs) in EMI is an important cause of AM. Abnormalities in the
EMI structure can alter the diastolic rhythm of the uterus while
causing tissue hypoxia and inducing a series of molecular changes
(Vannuccini et al., 2017; García-Solares et al., 2018). The HSP family
can exert cell proliferation and anti-apoptotic effects by activating
the innate immunity and acting as powerful immunomodulators.
AM patients have higher HSP60 and HSP70 levels in the eutopic and
ectopic endometrium than healthy controls, both of which can be
carried by EXOs to promote TLRs and estrogen-mediated
inflammation and cell proliferation (Ota et al., 1997; Rérole et al.,
2011; Khan et al., 2015; Jiang et al., 2017). Let-7a is a member of the
miRNA let-7 family, which is aberrantly expressed and regulates cell
proliferation and apoptosis in a variety of diseases. Zhang et al.
(2018b) found the downregulation of let-7a in EXOs found in the
venous blood of lung cancer patients promoted tumor cell
proliferation and thus accelerated cancer progression, a process
mediated and regulated by EXOs. Huang et al. (2021) found that
let-7a was downregulated in EMI smooth muscle cells, which in turn
affected the expression levels of various components of the Hippo-
YAP1 axis and promoted smooth muscle cell proliferation. Co-
culture of umbilical cord-derived mesenchymal stem cell (UC-
MSC)-derived EXOs and endometrial stromal cells (ESCs)
enhanced the viability of ESCs and promoted cell proliferation
(Lv et al., 2020). MiRNA-21 is known to be involved in cell
proliferation, differentiation and apoptosis, and is associated with
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the proliferation and invasion of many tumor cells (Wang et al.,
2020b). MSC-EXOs that carry miRNA-21 can promote cell
proliferation and inhibit cell apoptosis by attenuating hypoxia-
mediated ER stress and inhibiting p38/MAPK phosphorylation
(Chen et al., 2020b). MIR22HG is a lncRNA and an oncogene in
many cancers. Both MIR22HG and miRNA-2861 were significantly
downregulated in AM patient tissues. Cell proliferation assays
revealed that MIR22HG may upregulate miRNA-2861 through
demethylation, which in turn downregulates STAT3 and
MMP2 and inhibits endometrial cell proliferation, suggesting that
MIR22HG and miRNA-2861 overexpression may be potential
therapeutic target genes for AM (Yu et al., 2021). Taken together,
these data suggest that EXOs can regulate cell proliferation and
apoptosis through the proteins and miRNAs they transport, thus
participating in the development of AM. Moreover, these findings
also hint that certain proteins or miRNAs may be therapeutic targets
for AM.

5.3 EXOs promote neovascularization

Neovascularization is necessary for endometrial invasion into
the myometrium, and COX-2, MMP-2 and VEGF are involved in
the process of neovascularization (Tokyol et al., 2009; Huang et al.,
2014). COX-2 upregulates VEGF expression mainly through derived
prostaglandins (PGs) (Cheng et al., 2004). MMP-2 is involved in the
degradation of the ECM, which enables stromal cells to invade blood
vessels (Li et al., 2006). VEGF can induce chemokine (C-X-C motif)
ligand 1 (CXCL1) expression in endometrial epithelial cells by
activating the NF-κB signaling pathway to stimulate
neovascularization (Lai et al., 2016). These proangiogenic factors
can be transported by EXOs to mediate angiogenesis in AM (Aslan
et al., 2019). It was reported that mesenchymal cell-derived EXOs
are internalized into endothelial cells, and EXOs isolated from
ectopic endometrial mesenchymal cells are enriched in
proangiogenic factors, which together suggest that EXOs promote
and regulate angiogenesis in a paracrine manner (Harp et al., 2016).
When EXOs isolated from endometrial MSCs, which have
immunomodulatory and regenerative functions, were co-cultured
with mouse embryos, they induced endometrial angiogenesis,
vascular differentiation and tissue remodeling by triggering the
release of proangiogenic factors such as VEGF and platelet-
derived growth factor (PDGF) from the embryos, which in turn
facilitated neovascularization in AM lesions (Blázquez et al., 2018).
Some researchers also collected endometrial specimens from EM
patients, isolated ESCs from them, and then centrifuged to obtain
EXOs. It was found that lncRNA HOX transcript antisense RNA
(HOTAIR) was upregulated in ectopic endometrial tissue, which
could be transported from ESCs to surrounding cells by EXOs. It can
not only promote cell proliferation, migration and invasion of ESCs,
but also promote angiogenesis after co-culture with human
umbilical vein endothelial cells (HUVECs). Overexpression of
miRNA-761 can reverse the effect of HOTAIR on ESCs and
HUVECs through the HOTAIR/miRNA-761/HDAC1 axis,
providing a new therapeutic target for EM (Zhang et al., 2022b).
Further studies are warranted to investigate the role of EXOs in these
proangiogenic signaling pathways and to examine the effect of
blocking these pathways in the treatment of AM.

5.4 EXOs promote fibrosis formation

Both AM and EM lesions undergo EMT, fibroblast-to-
myofibroblast transdifferentiation (FMT), and smooth muscle
metaplasia (SMM) to gradually form fibrosis (Liu et al., 2016a;
Shen et al., 2016). The miRNA-29 family is closely linked to the EMT
process and was found to inhibit endometrial fibrosis by blocking
the TGF-β1/Smad pathway (Li et al., 2016). Wang et al. (2019a)
intramuscularly injected EXO-miRNA-29 into mice with renal
fibrosis, and found that EXO-miRNA-29 reduced the extent of
fibrosis by inhibiting the TGF-β1/Smad pathway. miRNA-214
also plays a role in fibrotic disease. miRNA-214-containing EXOs
are produced by ectopic ESCs, and injection of EXOs loaded with
miRNA-214 mimics into EM mice reduced the expression of
fibrosis-associated proteins (Wu et al., 2018). Cellular
communication network factor 2 (CCN2) plays a central role in
the development of fibrotic diseases. It was reported that serum
EXOs of EM patients have lower miRNA-214-3p and higher
CCN2 expression than those of healthy controls, and EXO-
miRNA-214-3p can inhibit fibrosis by targeting CCN2 (Zhang
et al., 2021). Therefore, it can be speculated that EXOs carrying
miRNA-29 and miRNA-214 may inhibit fibrosis in AM by
downregulating the expression of fibrosis-related factors.
Alternatively, these findings also indicate that the downregulation
of the above miRNAs may promote fibrosis in AM.

5.5 EXOs regulate immune responses

Several studies confirmed that the pathogenesis of AM is
associated with the host immune responses (Kozachenko et al.,
2017; Bourdon et al., 2021). Activation of the immune system of AM
patients leads to the release of a plethora of cytokines, which induces
changes in the local immune microenvironment and ultimately
influences the development of AM. The stimulator of interferon
genes (STING) pathway is associated with the innate immune
response. Compared with eutopic endometrium, STING is
upregulated in the epithelial cells of ectopic endometrium, and its
expression level is correlated with the extent of intraepithelial
lymphocyte infiltration, which are cells that induce a chronic
inflammatory response in AM (Qu et al., 2020). In contrast, in a
study of mouse skin melanoma cells (B16F10), STING agonist
(STINGa) delivered by EXOs recruited more CD8+ T cells and
induced a more potent antitumor response than STINGa alone,
suggesting that EXOs could be used as an effective drug carrier for
cancer treatment (McAndrews et al., 2021). The inconsistency in the
findings on the STING pathway may be attributed to differences in
disease type, cell type and EXOs origin, which make comparisons of
the results and conclusions difficult. Immune checkpoints, such as
the programmed cell death protein 1 (PD-1) and its ligand 1 (PD-
L1), are signaling molecules expressed by immune cells that act as
gatekeepers of the immune response (Abril-Rodriguez and Ribas,
2017). Studies have shown that EXOs can carry immune
checkpoints, such as T cell immunoglobulin domain and mucin
domain-3 (TIM-3) and PD-L1 (Gao et al., 2018; Poggio et al., 2019).
Galectin-9 is a ligand for TIM-3, and TIM-3/Galectin-9 expression
is upregulated in AM, which in turn suppressed immune responses
by negatively regulating T cells (Liu et al., 2016b; Huang et al., 2020).
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Increased TIM-3 expression in tumor cells delivered by plasma
EXOs can negatively regulate antitumor responses and accelerate
tumor progression through activation of Galectin-9 (Gao et al.,
2018). Overexpression of PD-1/PD-L1 in ectopic and eutopic
endometrium may be regulated by high levels of estrogen,
leading to EXOs-mediated immune dysfunction (Chen et al.,
2018a; Yang et al., 2018; Wu et al., 2019). The above results
suggest that EXOs can cause immune disorders in the uterine
microenvironment by releasing multiple immune-related
proteins, inducing immune escape and promoting the formation
of AM lesions. These findings also provide new insights to the use of
EXOs in guiding immunotherapy for AM.

6 Application prospects of EXOs in AM

The above discussion demonstrates that EXOs are involved in
the development of AM, and there are substantial differences in their
levels between healthy controls and AM patients, suggesting that
EXOs and their contents can be used as diagnostic markers and
therapeutic targets for AM.

Pathological tissue biopsy is the gold standard for AM diagnosis,
but it cannot be used as a continuous monitoring tool because of its
invasive nature. Liquid biopsy refers to the search of biomarkers in
body fluids, including circulating tumor cells (CTCs), circulating
tumor DNA (ctDNA), free cell RNA, and EXOs. Liquid biopsy is a
reliable noninvasive diagnostic tool for many diseases and is now
gradually being utilized in clinical practice as a replacement of tissue
biopsy (Ignatiadis et al., 2021). It has been reported that EXOs-
miRNA is not only involved in the occurrence and development of
cancer, but also can be used as a biomarker for cancer diagnosis,
prognosis and grading basis. For example, the combination analysis
of miRNA-1290 and miRNA-375 in EXOs can predict the overall
survival of patients with prostate cancer, reflecting the strong
potential of EXOs as biomarkers (Endzelins et al., 2017; Dai
et al., 2020). Wu et al. used the weighted correlation network
analysis (WGCNA) to validate the effectiveness of EXOs-RNAs
as diagnostic biomarkers for EM (Wu et al., 2020). Chen et al.
isolated EVs from lesions and peripheral blood of AM patients and
found 211 proteins that were co-expressed in two types of EVs. In
particular, HSP90A, STIP1 and TAGLN-2 were not expressed in
blood EVs from non-AM patients, suggesting that these proteins
may serve as potential diagnostic markers for AM (Chen et al.,
2022). Based on the above discussion, EXOs and their contents can
participate in the development of AM by promoting cell migration,
proliferation, neovascularization, and fibrosis. Therefore, EXOs can
be used as a noninvasive “liquid biopsy” to assess the health status of
the endometrium. In the future, it is expected that EXOs and their
contents will be used as an early diagnostic tool for AM, which will
facilitate the implementation of reliable and effective prophylactic
and therapeutic measures for AM and prevent the development
of AM.

EXOs are a natural transport system with many characteristics
of an ideal drug carrier, such as long circulating half-life, low
immunogenicity and toxicity, inherent ability to target tissues,
and good stability and biocompatibility. EXOs can overcome the
limitations of most liposomal or polymeric drug delivery systems
and can be used therapeutically by overexpressing a kind of content

in EXO donor cells or loading an exogenous drug (Turturici et al.,
2014; Rani and Ritter, 2016). Other than total hysterectomy, there
are no other methods to eradicate AM. MiRNAs, as important
cargoes carried by EXOs, can function as biomarkers and
therapeutic tools for AM. Xiao et al. found that bone marrow
mesenchymal stem cells (BMSCs) in rats suffering from
mechanical injury can transfer miRNA-340 to ESCs via EXOs,
which can play an antifibrotic role in endometrial diseases and
injury (Xiao et al., 2019). CCN2 plays a central role in the
development of fibrosis, and EXOs enriched in miRNA-214-3p
can downregulate CCN2 expression to inhibit the fibrosis of the
endometrium (Zhang et al., 2021). EEC-derived EXOs can inhibit
B-cell CLL/lymphoma 9 (BCL9) expression by delivering miRNA-
30c to block the Wnt/β-catenin signaling pathway, thereby
attenuating the tumor-like behavior of ectopic endometrial
epithelial cells (ecto-EECs) in EM (Zhang et al., 2022c). Studies
on EXOs in AM treatment are scarce, but EXOs are expected to
modulate the relevant pathways for AM treatment by up- or
downregulating the expression of EXO contents listed in Table 1.
Due to the high targetability of EXOs, their application as a drug
carrier has gained great interest from researchers in the treatment of
tumors and inflammatory diseases. Curcumin is an anti-
inflammatory antioxidant and antitumor agent, but its relative
instability and low bioavailability limit its clinical application in
the treatment of tumors and inflammatory diseases. Sun et al. (2010)
loaded EXOs with curcumin by physical entrapment and found that
exosomal curcumin have increased solubility, stability and
bioavailability, which promoted the activation of monocytes and
hence improved the anti-inflammatory activity of curcumin.
Currently, drug loading by EXOs for the treatment of EM-like
diseases has not been reported, but related studies in other
disease areas have provided insights to the implementation of
such studies in the future. Although the therapeutic efficacy of
EXOs in AM has not been adequately confirmed in clinical trials,
their therapeutic potential should not be underestimated (Figure 4).

However, in order to realize the diagnosis and treatment
function of EXOs, accurate positioning and identification cannot
be ignored. The tracking imaging of EXOs in vivo helps to
determine: 1) The applicability of EXOs as a targeted drug
carrier; 2) Role in intercellular communication; 3) The half-life of
EXOs. The biological distribution of EXOs can be confirmed by
labeling method, which can be divided into exogenous labeling
method and endogenous labeling method. Exogenous labeling
mainly refers to the surface modification with fluorescent
membrane dye such as Dil (Qi et al., 2022), PKH67 (Hu et al.,
2022) or PKH26 (Chen et al., 2018b) after extraction. The
endogenous labeling is mainly achieved by genetic engineering of
EXOs donor cells. The choice of EXOs imaging methods is diverse,
such as in vivo imaging system, flow cytometry, microscopy,
immunohistochemistry, gLuc activity measurement, magnetic
resonance, etc. How to choose depends on the labeling method
and research purpose (Sadovska et al., 2015). The pharmacokinetic
study of EXOs is ongoing. However, the efficiency and clearance rate
of EXOs transporting content to target cells seem to be related to the
nature of the content and the metabolic state of the target cells,
which needs to be further clarified. Lai et al. designed a highly
sensitive and universal EVs reporting system, which realizes in vivo
imaging of EVs by biotinylation of EVs with biotin ligase, and can
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track the biodistribution of EVs and the clearance rate of exogenous
EVs (Lai et al., 2014). Fan et al. optimized the EXOs detection
biosensor and screened a Raman biosensor. The sensitivity of
detecting EXOs through it is adjustable, which helps to achieve
differentiated applications. The biosensor can successfully detect
tumor with an average diameter of 3.55 mm, which can be used for
postoperative tumor recurrence monitoring, and can distinguish
tumor patients from healthy subjects, reflecting the clinical
application potential of EXOs as diagnostic markers (Fan C.
et al., 2021).

7 Summary and outlook

EXOs carry a variety of biomolecules, such as lipids, proteins,
and nucleic acids. EXOs are released by source cells through
exocytosis and then internalized by the target cells through
various ways. EXOs can regulate the properties of the target
cells, resulting in beneficial and detrimental effects. Therefore,
EXOs can be used as a mediator for intercellular bioinformation
exchange, and such biological signal changes are involved in the
physiological and pathological processes of the organism. In
recent years, EXOs have created a great research boom in

various disease areas, and their versatility in translational
medicine allows them to be used for the diagnosis, prevention
and treatment of diseases (He et al., 2018). Based on the
aforementioned findings, EXOs can affect the development of
AM by regulating cell migration, invasion, proliferation and
apoptosis, promoting neovascularization and fibrosis
formation, as well as regulating immune responses. EXOs may
become a novel tool for the diagnosis and treatment of AM in the
future. However, despite research demonstrating the importance
of EXOs and the miRNAs, proteins, and other components they
contain in the onset, progression, diagnosis, and treatment of
AM, their mode of action remains unclear due to the lack of data.

Despite the benefits and potential of this new diagnostic and
therapeutic tool, there are still some important concerns that need to
be addressed. The biodistribution and pharmacokinetics of EXOs in
AM have not been fully understood, and these problems have
become a major obstacle to the clinical application of EXOs.
Although some miRNAs have been mentioned in this review that
can be used for AM treatment through EXOs, the pathogenesis of
AM is an extremely complex process that is difficult to regulate
simply through a few EXO-miRNAs. Therefore, more highly
sensitive EXO-miRNAs that are involved in various aspects of
AM or play key roles in different stages of AM will need to be

TABLE 1 The roles of EXOs and their contents in AM.

Contents in
EXOs

Pathway Function References

miRNA-210-3p STAT3 Induces EMT and promotes metastatic cell invasion Okamoto et al. (2015), Zhang et al. (2019c)

miRNA-10b ZEB1/E-Cadherin
PI3K/Akt

Inhibit metastatic invasion of cells Guo et al. (2015)

miRNA-145-5p Wnt/β-catenin Inhibition of EMT and suppression of metastatic cell invasion Hang et al. (2019), Wang et al. (2021)

HSPB1 HSPB1/E-Cadherin Induces EMT and enhances endometrial epithelial cell invasion Chen et al. (2020a)

HSP60, HSP70 TLR4 Promote TLRs, E2-mediated inflammatory response Ota et al. (1997), Rérole et al. (2011), Khan et al.
(2015), Jiang et al. (2017)

let-7a Hippo-YAP1 Inhibit apoptosis Zhang et al. (2018b), Huang et al. (2021)

miRNA-21 p38/MAPK Promote apoptosis Chen et al. (2020b)

MIR22HG, miRNA-
2861

STAT3/MMP2 Inhibits the proliferation of SMCs Yu et al. (2021)

COX-2 VEGF/COX-2 Promotes p38-mediated cell proliferation Cheng et al. (2004)

MMP-2 VEGF/MMP-2 Inhibits STAT3- and MMP2-mediated endothelial cell
proliferation

Li et al. (2006)

VEGF NF-κB Upregulates VEGF-mediated angiogenesis via PGs Lai et al. (2016)

PDGF VEGF/PDGF Participate in degradation of extracellular matrix Blázquez et al. (2018)

miRNA-761 HOTAIR/miRNA-761/
HDAC1

Reversing the effect of HOTAIR on cell proliferation, migration,
invasion and angiogenesis

Zhang et al. (2022b)

miRNA-29 TGF-β1/Smad Accelerates neovascularization Li et al. (2016)

miRNA-214-3p miRNA-214/CCN2 Stimulates CXCL1-mediated neoangiogenesis Zhang et al. (2021)

STING STING/NF-kB STING/
IRF3

Induces endometrial angiogenesis, differentiation and tissue
remodeling

Qu et al. (2020)

TIM-3 TIM-3/Galectin-9 Inhibits fibrosis Liu et al. (2016b), Gao et al. (2018), Huang et al. (2020)

PD-L1 PD-1/PD-L1 Inhibits CCN2-mediated fibrosis process Chen et al. (2018a), Yang et al. (2018), Wu et al. (2019)
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identified. Studies have shown that miRNA-26-5p is significantly
downregulated while miRNA-6795-3p is upregulated in EM
dysmenorrhea patients. MiRNA-215-5p expression is lower
whereas miRNA-6795-3p expression is higher in EM infertile
patients than in other EM patients (Wu et al., 2022). The clinical
symptoms of AM are equally complex, and there is still a lack of
reliable evidence regarding whether the common EXO-miRNAs
differ among AM patients with different clinical mresearch
directionsanifestations. Studies (Greening et al., 2016) have
shown that EXOs of EECs origin are influenced by the hormone
levels of the menstrual cycle, and when applying EXO contents for
the diagnosis and treatment of AM, the dominant EXOs should be
screened according to the menstrual cycle. In the future, it may be
possible to select relevant EXOs as drug carriers to exert therapeutic
functions in AM and improve the current status of hormonal drug
therapy. At present, there are many drug loadingmethods, which are
generally divided into direct loading and transformation of EXO
donor cells. The former includes co-incubation of drugs and EXO
donor cells, electroporation and EXO transfection, while the latter
includes donor cell activation and transfection (Familtseva et al.,
2019). However, all forms have their limitations, and new efficient
drug-loading methods need to be further developed.

The effectiveness and safety of EXOs as drug carriers still need to
be verified. The formation of AM is slow, so blocking or reversing
AM also takes a long time, and requires continuous intervention.
Therefore, it is clear that a new biocompatible scaffold needs to be
designed to extend the biological activity of EXOs for continuous
treatment. It should also be noted that there are rhythmic
contractions and periodic shedding of the endometrium, so the
targeting and stability of the EXOs drug delivery system are
particularly important. In any case, the surface engineering of
EXOs seems to be an essential part before clinical application.

The modification engineering of EXOs is mainly divided into two
categories, genetic engineering and chemical modification. Their
purpose is to enhance the targeting specificity and therapeutic
stability of EXOs delivery systems. Genetic engineering is to fuse
the targeting ligand with the EXOs membrane protein, and then the
donor cells can produce EXOs showing the targeting ligand. At
present, the most widely used membrane proteins are LAMP-2b,
lactadherin, and platelet-derived growth factor receptors (PDGFRs)
(Barile and Vassalli, 2017). Chemical modification is bioconjugation
of targeting ligand with surface proteins (Liang et al., 2021). The
surface engineering of EXOs has been carried out in some diseases
(Cheng et al., 2018; Zhang et al., 2022a), but has not been reported in
the field of AM. In addition, other biological information of the
donor cells may be delivered into the target cells/organs in the
process of targeted therapy, which may affect the therapeutic effect
or even accelerate the disease process. Hence, it is necessary to fully
understand the biogenesis and internalization of EXOs and pay
attention to the selection of suitable EXO donor cells. And the
appropriate drug delivery route also deserves further discussion. At
present, intravenous injection and subcutaneous injection are widely
used, and intrauterine injection seems to be more suitable for the
treatment of AM. Lin et al. treated thin endometrium SD rats by
intrauterine injection of EXOs, which could promote endometrial
regeneration and improve pregnancy outcome (Lin et al., 2021).
This provides a good inspiration for us to explore the appropriate
route of administration of AM in the future. Chen et al. (2020a) used
differential centrifugation combined with density gradient
centrifugation to extract AMEVs. The authors did not separate
EXOs from EVs because there was no direct criterion for
distinguishing, isolating and identifying subpopulations of cell-
derived EVs. Therefore, how to effectively extract AM-derived
EXOs and their contents may be a topic of future research.

FIGURE 4
Strategies for EXOs application: (A). Loading of EXOs with exogenous or endogenous miRNAs; (B). Exploration of appropriate route of
administration; (C). Targeted binding of EXOs to recipient cells.
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Although there are many challenges for EXOs to overcome as
noninvasive diagnostic tools and drug carriers, nanomedicine is an
area that is rapidly evolving. It is hopeful that with continued study
into the molecular makeup of EXOs and their contents, as well as the
gradual advancement of gynecological molecular biology and genetic
engineering techniques, EXOs will become an ideal diagnostic tool for
AM and open new avenues to the treatment of AM.
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