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using novel weighted food
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adipocytokine signaling pathway
associated with the development
of type 2 diabetes
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2Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea,
3Department of Internal Medicine, College of Medicine, Seoul National University, Seoul,
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Introduction: The influence of dietary patterns measured using Recommended

Food Score (RFS) with foods with high amounts of antioxidant nutrients for Type

2 diabetes (T2D) was analyzed. Our analysis aims to find associations between

dietary patterns and T2D and conduct a gene-diet interaction analysis related to

T2D.

Methods: Data analyzed in the current study were obtained from the Korean

Genome and Epidemiology Study Cohort. The dietary patterns of 46 food items

were assessed using a validated food frequency questionnaire. To maximize the

predictive power of the RFS, we propose two weighted food scores, namely

HisCoM-RFS calculated using the novel Hierarchical Structural Component

model (HisCoM) and PLSDA-RFS calculated using Partial Least Squares-

Discriminant Analysis (PLS-DA) method.

Results: Both RFS (OR: 1.11; 95% CI: 1.03- 1.20; P = 0.009) and PLSDA-RFS (OR:

1.10; 95% CI: 1.02-1.19, P = 0.011) were positively associated with T2D. Mapping

of SNPs (P < 0.05) from the interaction analysis between SNPs and the food

scores to genes and pathways yielded some 12 genes (CACNA2D3, RELN,

DOCK2, SLIT3, CTNNA2, etc.) and pathways associated with T2D. The

strongest association was observed with the adipocytokine signalling pathway,

highlighting 32 genes (STAT3, MAPK10, MAPK8, IRS1, AKT1-3, ADIPOR2, etc.)

most likely associated with T2D. Finally, the group of the subjects in low,

intermediate and high using both the food scores and a polygenic risk score
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found an association between diet quality groups with issues at high genetic risk of

T2D.

Conclusion: A dietary pattern of poor amounts of antioxidant nutrients is

associated with the risk of T2D, and diet affects pathway mechanisms involved in

developing T2D.
KEYWORDS

type 2 diabetes, recommended food score, polygenic risk scores, case-control study,
dietary patterns
1 Introduction

Diabetes is one of the most significant global public health

concerns, imposing a heavy global burden on public health and

socioeconomic development. Although incidence has started to

decrease in some countries, the prevalence of diabetes has

increased in recent decades in other developed and developing

countries (1). Type 2 diabetes (T2D) makes up around 90% of cases

of diabetes (2), and according to the World Health Organization,

the number of people diagnosed with T2D is on the rise annually,

even among young people (2).

The development of T2D is caused mainly by an interplay of

unhealthy lifestyles and environmental and genetic factors. While some

of these factors are under individual control, such as lifestyle, others are

not, such as increasing age, sex, and genetics. Diet has also been firmly

attributed to the risk of T2D (3, 4). This association has been confirmed

in many prospective studies (5–8). In addition, T2D is an increasingly

prevalent metabolic disorder causing severe micro- and macrovascular

complications, namely, cardiovascular disease (CVD), retinopathy,

neuropathy, and nephropathy (3, 9). Moreover, the beneficial effects

of weight loss or lifestyle modification have been reported to prevent,

delay, and reduce disease incidence (2, 10).

Therefore, valid estimation of overall dietary patterns (habitual

food and nutrient intakes) has become a fundamental aspect of

studying the relationships between diet and health status (8). General

dietary habits can provide insights beyond the role of nutrients and

single foods (2, 11). Some of the indices are based on national nutrition

recommendations and national dietary guidelines that assess overall

nutritional patterns, including the healthy eating index, alternate

healthy eating index, healthy diet indicator, Recommended Food

Score (RFS), diet quality index, Diet Quality Score, Mediterranean

Diet Score (MDS), and Alternate Mediterranean Diet Score (aMDS).

The RFS, MDS, and aMDS based on foods and food groups are
y Study; METs, metabolic

body mass index; GRG,

, Hierarchical Structural

riminant analysis method;
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dence intervals.

02
relatively more straightforward in assessing overall dietary patterns and

are based on food groups and nutrients (9, 11).

Recently, the pathophysiological influence of gene–lifestyle or

gene–environment (G × E) interactions on the risk of T2D is

currently under intensive research. Evidence of G × E interactions

on the risk of development of T2D has been reported in many

prospective studies reviewed here (3, 4). Here, G × E interaction

analyses focusing on gene–diet interaction using RFS and SNPs while

controlling for other confounding lifestyle factors like smoking,

alcohol and coffee consumption, income and education levels, and

so forth, were carried out for the Korean adult population. Odds

ratios (ORs) with 95% confidence intervals (CIs) for the association

and interaction analyses were calculated. Furthermore, the subjects

were grouped into low, intermediate, and high diet quality groups

using the food scores and genetic risk groups using an estimated

global polygenic risk score (PRS), and interaction analyses between

the groups were performed. Data from the Korean Genome and

Epidemiology Study (KoGES) consortium, a prospective cohort study

conducted in Korea in 2021, was used for our analysis (12–14).

However, a previous study using RFS for the Korean population

could not show an acceptable association with the risk of T2D (11,

15, 16). This may be because the contributing power of each food

item is different from each other: some food items contribute more

than others. Therefore, weighted food scores were developed to

maximize the unweighted RFS’s interaction and predictive power.

One score, HisCoM-RFS, was proposed using a novel statistical

model called the Hierarchical Structural Component model

(HisCoM). HisCoM estimates the weights for each food item used

in the RFS calculation. HisCoM-RFS was contrasted for comparable

results in different association analyses with PLSDA-RFS, another

weighted food score calculated using the known partial least

squares-discriminant analysis (PLS-DA) method. It finds another

set of weights for each food item without considering food group

categories. Both approaches assume a linear relationship exists

between food items and the outcome T2D.

2 Materials and methods

2.1 Study population

The study participants were recruited through the Korean

Genome and Epidemiology Study (KoGES), a consortium
frontiersin.org
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established for the identification of gene–environment factors and

their interactions in commonly known diseases, such as T2D,

hypertension, metabolic syndrome, obesity, and cardiovascular

disease in Koreans (12). KoGES is a project comprising six

prospective cohort studies categorized into population-based and

gene–environment model studies extensively explained elsewhere

(13, 14). We focused on the KoGES Ansan–Ansung study cohort

whose data collection was initiated in 2001–2002 (baseline), with

follow-up examinations conducted every 2 years. The participants

were unrelated Korean individuals (N = 10,038) aged 40–69 years,

representing urban (Ansan) and countryside (Ansung) populations.

Our analyses involved data from the baseline recruit (17). Among

the KoGES cohorts, the KoGES Ansan–Ansung cohort was chosen

because it possesses the Frequency Food Questionnaire and has a

more extended follow-up period than other cohorts.
2.2 Genotype data

The genotype data of the above participants were obtained

through the Korea Association Resource (KARE) project, which

was established in 2007 to conduct a large-scale genome-wide

association study (GWAS) of the participants recruited through

the KoGES Ansan–Ansung cohorts (18). The participants’ common

standard variant genotype data were generated using the Affymetrix

Genome-Wide Human SNP array 5.0. The chip comprised around

50 million autosomal single-nucleotide polymorphisms (SNPs).

There were 352,228 SNPs in 8,840 individuals left after quality

control (QC) analysis. SNPs having minor allele frequencies<0.05,

genotype calling rates<95%, and Hardy–Weinberg equilibrium P-

values<10−6 were removed. Only participants with consistent sex

and calling rates (>90%) were preserved. Missing values of existing

variants were imputed after QC, and PLINK (v1.90) (19) was used

during QC. The SNPs were mapped to the UCSC hg19 genomic

coordination. Missing genotype data were imputed using the Beagle

5.0 (20) software program.
2.3 Diagnosis of T2D subjects

After participants had fasted for at least 8 h, fasting plasma

glucose (FPG; mg/dL), fasting plasma insulin (FPI; IU/mL), and

triglycerides (TG; mg/dL) were measured. High-performance liquid

chromatography was used to measure glycosylated hemoglobin

(HbA1c). The following criteria were used to determine T2D

subjects: (1) taking medication any for T2D; (2) fasting plasma

glucose (FPG) ≥126 mg/dL, 2-h postprandial blood glucose

(Glu120) ≥200 mg/dL, or glycated hemoglobin (HbA1c) ≥6.5%;

and (3) age of disease onset ≥40 years. The following criteria

selected normal subjects: (1) FPG<100 mg/dL, Glu120<140 mg/

dL, and HbA1c<5.7% and (2) no history of diabetes (never been

diagnosed with T2D) (21, 22). If a subject does not meet these

criteria, then the subject is excluded from being a normal subject.
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2.4 Covariates

We selected 10 covariates as adjustment and lifestyle factors for

control during the analysis. This included age, sex, area (urban or

village), body mass index (BMI), smoking, alcohol consumption,

coffee consumption, metabolite equivalents (physical activity),

education level, and income level. The covariates were assessed

using self-administered questionnaires. The monthly household

income is categorized into eight groups (0.5, 0.5~1, 1~1.5, 1.5~2,

2~3, 3~4, 4~6, and >6 million Korean won). Here 1,000 Korean

won approximately corresponded to 0.9 US dollars. Smoking was

categorized into non-smokers as well as former, occasional, and

habitual smokers. Alcohol consumption was categorized into non-

drinkers, former drinkers, and current drinkers. Time spent during

five physical activity states (inactive, very light, light, moderate, and

intense) were classified into nine ranges (0; none, 1;<30 min, 2;

30~60 min, 3; 60~90 min, 4; 90~2 h, 5; 2~3 h, 6; 3~4 h, 7; 4~5 h, 8;

>5 h). These were converted to metabolic equivalents (METs)

according to (17) (1.0 for inactive, 1.5 for very light, 2.4 for light,

5.0 for moderate, and 7.5 for intensive). The BMI (kg/m2) of the

participants was computed by dividing the weight (nearest 0.1 kg)

in kilograms by the height (measured to the nearest 0.1 cm) in

square meters. A further detailed description of the characteristics

of the KoGES cohort can be found here (23). The list of the

covariates used in our analyses is shown in Supplementary Table 1.
2.5 Dietary assessment

Dietary assessment was done through a validated

semiquantitative food frequency questionnaire (FFQ) (24, 25),

which records the consumption frequencies and portion sizes of

106 (Ansan and Ansung study) food items and drinks consumed

during the previous year. The FFQ consisted of nine categories:

never or seldom, once a month, one to two times a week, two to

three times a week, three to four times a week, five to six times a

week, once daily, twice daily, or more than three times daily.

Furthermore, their daily frequency of meals was recorded as one

meal a day, two meals a day, three meals a day, more than four

meals a day, or irregular.
2.6 Recommended food score

Intake information from the FFQ was used to calculate the

study subjects’ RFS. RFS measures the overall dietary pattern of the

individuals, a food tally based on reported consumption of foods

bearing high amounts of antioxidant nutrients, consistent with the

current American dietary guidelines of Kant et al., modified for the

Korean population (11, 15, 16). A total of 45 food items (10 food

groups) and one response for “daily frequency of meals” was

selected and used to calculate the RFS score. Participants were

assigned one point for each recommended food and regular eating
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pattern (three meals a day) if they ate it at least once a week or more.

The food items (and their corresponding points) for the RFS were as

follows; daily frequency of meals (1), grains (1), legumes (4),

vegetables (16), seaweeds (2), fruits/juices (12), fish (5), dairy

products (3), nuts (1), and tea (1). Then, the score ranged from 0

to 46 points, and a higher score implies a better diet quality. The

food items and their corresponding points for the RFS are shown in

Supplementary Table 2. Subjects with increased consumption of

foods rich in high antioxidant nutrients were given a higher score

and lower scores to issues with lower consumption. All these

antioxidant foods are healthy, and bad/unhealthy foods like sugar

or sweets were not considered in the construction of this RFS.
2.7 HisCoM-RFS based on the
HisCoM model

The calculated RFS assumes that each food item in a given

category contributes equally to the diet quality of an individual.

However, it is more reasonable to think that some food items

contribute more than others. Therefore, we calculated a weighted

food score using the RFS called HisCoM-RFS (Hierarchical

Structural Component model (HisCoM) to analyze food scores)

to capture this information. HisCoM estimates each food item’s

weight and the significance level between the food category and the

outcome T2D. The HisCoM used here (Figure 1A) is a modification

of the Pathway-based approach using HierArchical components of

collapsed RAre variants Of the High-throughput sequencing data

(PHARAOH) model (26) that was developed by our laboratory.

PHARAOH employs ridge penalization to control for any

correlations between variables. It assumes that the biomarkers

have a linear relationship with a phenotype of interest while

analyzing entire pathways simultaneously.

For HisCoM, let yi define a phenotype (T2D) of the ith

(i = 1, :,N)  subject and assume that it independently follows an

exponential family distribution. Let Tk be the number of food items

in the kth food category. Let gitk denote the food score of the t
th item

in the kth food category for the ith subject. Let witk denote a weight

assigned to gitk and bk indicate the coefficient connecting the kth

food category to the phenotype. Specifically, the relationship

between the food scores of each food item and the case–control

phenotype is established in such a way that;

logit(pi) = b0 +  oK
k=1½oTk

t=1gitkwitk�bk
Therefore, HisCoM-RFS is calculated as follows:

HisCoM� RFS  =oK
k=1½oTk

t=1gitkwitk�bk
where   HisCoM estimated w and b . The logit(pi) is the logit

function from logistic regression models explaining the log of odds

(ratio of T2D subjects to normal subjects).

To estimate parameters HisCoM, the alternating least squares

(ALS) algorithm was used, which was initially proposed by de

Leeuw et al. (27) and adopted for the generalized structured

component analysis (GSCA) (28) and later for the penalized log-

likelihood function (26). PHARAOH employed the ALS algorithm
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in its penalized log-likelihood part (26). This ALS algorithm

consists of two steps that iterate until convergence;

Step 1: For fixing the weight coefficient estimates witk , update

the food category coefficient estimates bk , in the sense of

least squares.

Step 2: For fixing food category coefficient estimates bk , update
the weight coefficient estimates witk , in the sense of least squares.

We use a penalization approach to consider potential

correlations between food items and categories. In this study, we

adopt a ridge-type penalty to control multicollinearity between food

items (l1)   only and not between food categories (l2 = 0) so that

the phenotype is a linear combination of the food items and not the

food categories. The significance of the estimated parameters was

tested through the permutation by resampling the phenotypes.
2.8 PLSDA-RFS based on the
PLS-DA method

In addition to the HisCoM method, another weighted food score

called PLSDA-RFS was calculated using the commonly known partial

least squares regression (PLS-R) for discriminant analysis (PLS-DA)

method (29). PLS-DA is derived from PLS-R, where the response

vector assumes discrete values (T2D) and considers the correlation

between T2D and the food items while maximizing the covariance

between T2D and the weights calculated (30, 31). PLS-DA incorporates

T2D and RFS information in defining the scores and loadings (weights)

used to calculate PLSDA-RFS. However, PLS-DA does not consider the

food groups during the weight and coefficient calculation. PLSDA-RFS

was calculated by multiplying the previously calculated unweighted

RFS scores with the estimated weight matrix and the coefficient values

in the first column of the estimated coefficient matrix.
2.9 Statistical analyses

Unless specified, statistical analyses were conducted using R

software (version 4.2.1) to identify the association between T2D and

diet. Categorical and continuous variables for participants’ general

characteristics according to the case–control study for T2D were

compared using the chi-squared test (c2test) and two-sample t-test,

respectively. The generalized linear regression model (GLM) was

used to find the association ORs (95% CI) between diet (RFS,

HisCoM-RFS, and PLSDA-RFS) and T2D. Secondly, the food

scores were grouped into low, intermediate, and high diet quality

groups and their ORs (95% CI) were estimated. After ranking the

food scores, all food scores with ranks below 33.33% were grouped

as low, intermediate for those below 66.6%, and above 66.6% as

high. Thirdly, since genetic and lifestyle factors influence the

development of T2D, gene–diet interaction analysis focused on

the “interaction effect,” unlike the “main effect” between SNPs and

food scores, was performed to identify SNPs, genes, and pathways

associated with T2D. A significant interaction shows the role of

dietary habits affecting pathways during the development of T2D.

Logistic regression in PLINK (v1.90, Windows) was used for this

analysis (19, 32). The analyses were adjusted for age, sex, area, BMI,
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smoking, alcohol consumption, coffee consumption, education

level, income level, and METs following other studies involving

KoGES Ansan–Ansung data (2, 16, 33–37). A statistical significance

level of P< 0.05 was used unless specified. To find genes and

pathways, significant SNPs from the interaction effect were

mapped to genes and then pathways using the Multi-marker

Analysis of GenoMic Annotation (MAGMA, windows version)

tool, a generalized gene-set analysis tool of GWAS data (38, 39).

MAGMA analyzes genes and pathways by multiple linear

regression after principal component analysis for each gene.

Pathway information was obtained from the Kyoto Encyclopedia

of Genes and Genomes (KEGG) (40) database, whereas the gene

location file (GRCh37) was downloaded from the National Center

for Biotechnology Information (NCBI) website. Lastly, a global

polygenic risk score (PRS) for T2D was generated using

independent summary statistics (N = 191,764; 36,614 cases and

155,150 controls) from Biobank Japan (Supplementary Figure 1)

(41). LDpred (42) was used to reweight each variant according to

(1) the effect size, (2) the strength of statistical significance observed

for T2D, and (3) linkage disequilibrium (LD) between a variant and

others nearby. A tuning parameter that denotes the proportion of

causal variants (P) estimated with the validation samples (P = 0.1)

was selected. Nine categories capturing the interactions between

genetic risk (low (reference), intermediate, and high) based on PRS

and diet quality (low, intermediate, and high (reference)) based on

the food scores were created. Adjusted ORs of the nine categories

were calculated.
3 Results

3.1 Baseline characteristics of the subjects

A total of 350,000 SNPs and 8,840 subjects were left after

genotype data QC. Diagnosis of the subjects for T2D left us with
Frontiers in Endocrinology 05
4,975 subjects (1,288 cases and 3,687 control). The control subjects

here are normal subjects without T2D. After adjusting for the

covariates (for age, sex, area, BMI, smoking, alcohol consumption,

coffee consumption, education levels, income levels, and METs),

4,292 (1,090 cases and 3,202 control) subjects were left. The

characteristics of the 4,292 subjects are summarized in Table 1,

presented as means ± standard deviation for continuous variables

and percentage proportions for categorical variables. Smoking and

alcohol consumption were left with two groups after data

preprocessing. Income was summarized into five levels (<0.5~1,

1.0~2.0, 2.0~3.0, 3.0~4.0, >4.0), education into four classes

(combined college, university, and graduate school into one level of

higher education) and coffee consumption into four groups (never/

seldom, monthly, weekly, and daily) in all analyses, to reduce on the

number of levels of these variables. T2D was significantly associated

with the area, sex, age, BMI, smoking, education level, income level,

coffee consumption, PLSDA-RFS, and PRS.
3.2 HisCoM-RFS and PLSDA-RFS

The HisCoM and PLS-DA methods estimated the weights and

coefficients (b)used to calculate the weighted food scores HisCoM-

RFS and PLSDA-RFS, as shown in Figure 1A. HisCoM estimated

the weights of the 45 food items, the daily frequency of meals, and

the coefficients of the 10 food categories and is shown in

Supplementary Tables 2, 3. PLS-DA also estimated the coefficients

and weights of the 45 food items and the daily frequency of meals

and was used to calculate PLSDA-RFS. The density plots of RFS,

HisCoM-RFS, and PLSDA-RFS for control subjects (yellow; n =

3,347; bandwidth = 1.351, 0.04067 and 0.002164, respectively) and

T2D subjects (green, n = 1,159; bandwidth = 1.653, 0.04929 and

0.002787, respectively) are shown in Figure 1B. There are no

noticeable differences between the density plots between T2D and

control subjects but between the food scores. We compared the
TABLE 1 Baseline characteristics and food scores of participants according to T2D case–control subjects.

T2D case–control study

Case (n = 1,090) Control (n = 3,202) P-value

Area 3.6E-07

Ansung 511 (46.88) 1,219 (38.07)

Ansan 579 (53.12) 1,983 (61.93)

Sex 3.8E-06

Male 589 (54.04) 1,469 (45.88)

Female 501 (45.96) 1,733 (54.12)

Age 55.77 ( ± 8.76) 49.65 (8.26) < 2.2E-16

BMI (kg/m2) 25.59 (± 3.27) 24.13 (± 2.89) < 2.2E-16

METs 42.92 (± 24.84) 42.00 (± 23.97) 0.284

Alcohol consumption 0.077

(Continued)
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TABLE 1 Continued

T2D case–control study

Case (n = 1,090) Control (n = 3,202) P-value

Non-drinkers 590 (54.13) 1,632 (50.97)

Former drinkers 500 (45.87) 1,570 (49.03)

Current drinkers 0 (0) 0 (0)

Smoking 0.033

Never (non-smoker) 0 (0) 0 (0)

Former smoker 829 (76.06) 253 (79.20)

Occasional smoker 261 (23.94) 666 (20. 80)

Habitual smoker 0 (0) 0 (0)

Education level < 2.2E-16

  ≤Elementary school 444 (40.73) 817 (25.52)

Middle school 221 (20.28) 726 (22.67)

High school 286 (26.24) 1,159 (36. 20)

College 28 (2.57) 139 (4.34)

University 99 (9.08) 301 (9.40)

Graduate school (higher) 12 (1.10) 60 (1.87)

Income level (million Won) < 2.2E−16

<0.5 271 (24.86) 426 (13.30)

0.5~1 172 (15.78) 428 (13.37)

1.0~1.5 158 (14.50) 511 (15.96)

1.5~2.0 142 (13.03) 465 (14. 52)

2.0~3.0 160 (14.68) 690 (21.55)

3.0~4.0 96 (8.81) 407 (12.71)

4.0~6.0 61 (5.60) 199 (6.21)

>6.0 30 (2.75) 76 (2.37)

Coffee consumption frequency 0.0006

Never or seldom 299 (27.43) 686 (21.42)

Once a month 35 (3.21) 99 (3.09)

1–2 weeks 36 (3.30) 83 (2.59)

2–3 weeks 79 (7.25) 232 (7.25)

3–4 weeks 65 (5.96) 228 (7.12)

5–6 weeks 25 (2.29) 104 (3.25)

One daily 321 (29.45) 926 (28.92)

Twice daily 108 (9.91) 406 (12.68)

>3 daily 122 (11.19) 438 (13.68)

Recommended Food Scores

RFS 17.02 (7.53) 17.18 (7.56) 0.545

HisCoM-RFS −0.16 (0.23) −0.16 (0.23) 0.828

PLSDA-RFS 0.02 (0.01) 0.02 (0.01) 0.023

PRS −1.54 (0.20) −1.65 (0.20) <2.2E−16
F
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N = 4,292; values are n (%) for categorical variables and mean ± SD for continuous variables. Differences in characteristics were analyzed using c2 tests for categorical variables and two-sample t-
tests for continuous variables. METs, metabolic equivalents; RFS, Recommended Food Scores; PRS, polygenic risk scores.
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distribution of the food scores between case and control subjects

using the Wilcoxon rank-sum test and the Kolmogorov–Smirnov

test. The P-values of the tests are shown in Figure 1B. TheWilcoxon

rank-sum test showed that the two groups are not different, whereas

the Kolmogorov–Smirnov test showed that the two groups come

from the same distribution.
3.3 Association between diet quality
measured using food scores and T2D

Of the three food scores, only PLS-DA was positively associated

with T2D unadjusted for the other covariates (OR: 1.0839; 95% CI:
Frontiers in Endocrinology 07
0.9293–1.0622; P = 0.0203). The food scores were standardized for

comparable results. After adjusting for potential covariates (age, sex,

BMI, and area) and lifestyle factors (smoking, alcohol and coffee

consumption, education level, income level, and METs), both RFS

(OR: 1.11; 95% CI: 1.03–1.20; P = 0.014) and PLSDA-RFS (OR: 1.10;

95% CI: 1.02–1.19, P = 0.011) were positively associated with T2D,

as shown in Figure 2. This indicates that a person’s dietary patterns

can affect the development of T2D. Grouping the food scores into

low, intermediate, and high diet quality groups, with high being the

reference group, showed the low diet quality group of RFS (OR:

0.83; 95% CI: 0.68–1.01, P = 0.059) and the intermediate diet quality

group of PLSDA-RFS (OR: 0.80, 95% CI: 0.73–1.06; P = 0.017) to be

associated with T2D, as shown in Figure 3. From the two analyses,
A

B

FIGURE 1

(A) A schematic diagram of the HisCoM model showing HisCoM-RFS calculation using three food categories. The rectangles and ellipses represent
food items and food categories, respectively. So that the phenotype is a linear combination of the food items and not the food categories. HisCoM,
Hierarchical Structural Component model. (B) Density plot distribution of RFS, HisCoM-RFS, and PLSDA-RFS between T2D (green) and control
subjects (yellow). The p-values are from the Wilcoxon rank sum test and the Kolmogorov-Smirnov test, respectively between green and yellow. RFS,
Recommended Food Scores; HisCoM, Hierarchical Structural Component model; PLS-DA, Partial Least Squares-D-iscriminant Analysis method;
HisCoM-RFS, weighted RFS calculated by HisCoM model; PLSDA-RFS, weighted RFS calculated by PLS-DA method.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1165744
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Apio et al. 10.3389/fendo.2023.1165744
being female, age, BMI, being an occasional smoker, and at least

weekly and daily consumption of coffee were constantly associated

with T2D (P< 0.05).
3.4 Gene–diet interaction analysis

The 8,205, 9,331, and 103,408 SNPs for RFS, HisCoM-RFS, and

PLSDA-RFS, respectively (3,301, 59, and 4,260 SNPs were

significant at P< 0.001), were significant with “interaction effect”

P< 0.05. Their Manhattan plots are shown in Supplementary

Figure 1. These SNPs were mapped to genes and pathways using

the bioinformatics tool MAGMA. Table 2 shows the 19 and 29

genes (12 common genes) found in the gene analysis step of

MAGMA using RFS and PLSDA-RFS, respectively, at P< 1.0E-08.

HisCoM-RFS did not yield any significant genes at P< 1.0E-08. The

12 genes common to both RFS and PLSDA-RFS include FHIT,

CACNA2D3, ITPR1, RELN, CNTNAP2, CTNNA2, DOCK2,
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ROBO2, SLIT3, MAG12, ASIC2, and CREB5. Supplementary

Table 4 shows the pathways from the pathway analysis (or gene-

set analysis) step of MAGMA for RFS, HisCoM-RFS, and PLSDA-

RFS at P< 0.05. Pathway analysis found some of the pathways to be

associated with T2D in literature, for example, pathways such as the

insulin signaling pathway, adipocytokine signaling pathway, type II

diabetes, prostate cancer, and other metabolic pathways (43–49).

Multiple comparison corrections of the discovered pathways using

the false discovery rate (FDR) correction method found vascular

smooth muscle contraction (q-value = 0.06), small cell lung cancer

(q-value = 0.007), long-term potentiation (q-value = 0.065), and

adipocytokine signaling (q-value = 0.026) pathways (FDR q-value<

0.1). The strongest association was observed with the adipocytokine

signaling pathway yielding a significant gene set of 32 genes listed in

Table 3. Some genes include STAT3, AKT1-AKT3, MAPK10,

MAPK8, PRKAA1, ACSL1, CAMKK1 RXRG, and NFKB. Finally,

genetic risk assessed using global PRS showed a strong positive

association with T2D adjusted for the covariates (OR: 17.78; 95%
FIGURE 2

The odd ratios of RFS, HisCoM-RFS and PLSDA-RFS adjusted for age, sex, area, BMI, income level, education level, smoking, alcohol and coffee
consumption, and METs, showing the association between dietary habits and T2D. The P-values were calculated using multiple logistic regression.
METs, metabolic equivalents; BMI, body mass index; RFS, recommended food scores.
FIGURE 3

The odd ratios of RFS, HisCoM-RFS and PLSDA-RFS diet quality groups adjusted for age, sex, area, BMI, income level, education level, smoking, alcohol
and coffee consumption, and METs, showing the association between dietary quality and T2D. High diet quality group is the reference group. The
P-values were calculated using multiple logistic regression. METs, metabolic equivalents; BMI, body mass index; RFS, recommended food scores.
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CI: 12.01–26.50; P< 0.01). Grouping of the PRS into low,

intermediate, and high genetic risk groups with the low genetic

risk as the reference as shown in Supplementary Figure 3 showed

both intermediate (OR: 1.46; 95% CI: 1.19–1.79; P< 0.01) and high

(OR: 3.36; 95% CI: 2.77–4.08; P< 0.01) genetic risk groups having an

association with T2D, as shown in Supplementary Figure 3. The

nine groups showing interactions between diet quality groups and

genetic risk groups found significant interactions between different

genetic risk groups and diet quality groups, as shown in Figure 4,

especially the high GRC and the diet quality groups.
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4 Discussion

Investigating the role of dietary patterns in association with

T2D is still a hot research topic worldwide. A previous study

showed that a higher RFS score is associated with lower oxidative

stress but failed to show an association with T2D in Korean adults

(16). To maximize the interaction power of RFS on T2D, we

developed weighted RFS scores HisCoM-RFS and PLSDA-RFS

using the HisCoM and PLS-DA models, which determine the

weights of the food items. The development of weighted food
TABLE 2 List of significant genes from the gene analysis step of MAGMA for RFS and PLSDA-RFS.

RFS PLSDA-RFS

GENE CHROMOSOME No. of SNPs P GENE CHROMOSOME No. of SNPs P

ASIC2 17 78 6.48E−14 ASIC2 17 111 1.13E−13

CACNA2D3 3 59 6.58E−09 CACNA1C 12 34 3.17E−11

CREB5 7 97 1.07E−10 CACNA2D3 3 75 1.40E−11

CTNNA2 7 48 3.01E−11 CACNB3 10 49 2.44E−09

DOCK2 2 56 2.38E−10 CDH4 20 43 1.73E−09

ERBB4 5 45 1.07E−10 CNTNAP2 7 124 1.89E−11

FGF12 2 34 3.29E−10 CREB5 7 39 6.5E−10

FHIT 3 32 3.56E−09 CTNNA2 2 50 1.56E−11

GABRG3 3 94 1.51E−11 CTNNA3 10 92 2.95E−12

GRM7 15 17 4.13E−09 DOCK2 5 30 1.36E−09

ITPR1 3 67 3.75E−10 FGF14 13 45 7.60E−11

KCNMA1 3 27 1.29E−09 FHIT 3 92 6.51E−11

MAGI2 10 45 2.88E−10 FMN2 1 34 3.05E−09

MAGI2 7 83 1.28E−10 GALNT18 11 26 2.86E−09

PDE4D 5 50 8.41E−09 ITRP1 3 26 8.30E−09

RELN 7 39 1.06E−09 MAGI2 7 67 6.97E−12

ROBO2 3 95 8.53E−12 NRXN1 2 66 5.39E−09

RYR3 15 28 2.05E−09 NRXN3 14 64 1.47E−09

SLIT3 3 58 3.62E−09 PRKCA 17 33 2.04E−09

PRKCE 2 31 3.28E−11

PRKG1 10 65 5.20E−10

PSD3 8 42 2.35E−09

PTPRN2 7 35 7.74E−09

RELN 7 38 7.72E−09

ROBO2 3 71 2.13E−11

RPS6KA2 6 46 5.93E−11

RYR2 1 41 9.98E−11

SLIT3 5 55 5.43E−11

UST 6 19 1.51E−09
fron
tiersin.org

https://doi.org/10.3389/fendo.2023.1165744
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Apio et al. 10.3389/fendo.2023.1165744
scores is based on the assumption that some food items contribute

more than others to the overall food score given the phenotype.

After calculating the weighted food scores, we performed analyses

contrasting these food scores about the association of dietary

patterns with the development of T2D while adjusting for

covariates and other lifestyle factors like METs, smoking, alcohol

and coffee consumption, and education and income levels. Firstly, a

significant association was found between dietary habits, mainly

with the weighted food score PLSDA-RFS, unlike the former

unweighted RFS score in the previous study (16). After adjusting
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the 10 covariates, unweighted RFS and PLSDA-RFS food scores

were significantly associated with T2D. Grouping the food scores

into low, intermediate, and high diet quality groups showed

intermediate and low diet quality groups to be associated with

T2D. This shows the importance of high diet quality (foods rich in

antioxidant properties) playing a preventive role in the occurrence

of T2D.

In the literature, a higher Dietary Approaches to Stop

Hypertension (DASH) Score was associated with lower T2D risk

in men (50). An extended follow-up of urban Chinese adults

showed that a higher healthy diet score (HDS) was associated with

lower diabetes risk (51). Other studies also associated diet quality

with the risk of T2D (9, 52). Secondly, interaction analysis

between food scores and SNPs focusing on the “interaction

effect” instead of the “main effect” aimed to find genes and

pathways associated with T2D. Significant interaction implies

that diet is involved with pathway mechanisms related to the

development of T2D. The interaction analysis with the respective

food scores RFS, HisCoM-RFS, and PLSDA-RFS yielded some

significant SNPs (P< 0.05), filtered and used in MAGMA’s gene

and pathway analysis steps. We did not get any SNPs below the

GWAS significance level of P< 5.0E-08. Gene analysis yielded 19

genes and 29 genes at P< 1.0E-08 with RFS and PLSDA-RFS,

respectively, with 12 common genes, namely, FHIT, CACNA2D3,

ITPR1, RELN, CNTNAP2, CTNNA2, DOCK2, ROBO2, SLIT3,

MAGI2, ASIC2, and CREB5. FHIT is involved in purine

metabolism, and CACNA2D3 is engaged with the voltage-

dependent calcium channel. Calcium signaling is crucial for

insulin secretion in pancreatic cells (53, 54). RELN gene encodes

a large secreted extracellular matrix protein thought to control

cell–cell interactions critical for cell positioning and neuronal

migration during brain development and is involved in multiple

disorders. CTNNA2 enables actin filament binding activity,

whereas DOCK2 remodels the actin cytoskeleton required for

lymphocyte migration in response to chemokine signaling. SLIT3

is associated with cell receptors during cellular migration (55).

The pathway analysis revealed many pathways, some of which

have been associated with T2D in literature. The pathways are

mainly related to cancer, metabolism, and signaling. However, FDR

correction left vascular smooth muscle contraction (q-value = 0.06),

small cell lung cancer (q-value = 0.007), long-term potentiation (q-

value = 0.065), and adipocytokine signaling (q-value = 0.026)

pathways to be strongly associated with T2D at q-value< 0.1. The

strongest association was observed with the adipocytokine signaling

pathway, which produced a gene set of 32 genes in this pathway

strongly associated with T2D. These genes include STAT3, AKT1-

AKT3, MAPK10, MAPK8, IRS1, ADIPOR2, ACSL1, CAMKK1,

RXRG, and NFKB1. STAT3 is involved in cytokine- and nutrient-

induced insulin resistance, and its phosphorylation contributes to

skeletal muscle insulin resistance in T2D (56). MAPK10 was

identified as a critical gene in diabetes mellitus-induced atrial

fibrillation in mice (57). The AKT genes and IRS1 may influence

adipocyte insulin resistance (58–61). Variants in the ADIPOR2

gene are associated with increased diabetic risk (62, 63). In a meta-

analysis study, RXRG, NFKB1, ACSL1, and CAMKK1 genes were

also associated with T2D (64). Briefly, insulin resistance is one of
TABLE 3 List of genes from the gene set of the adipocytokine
signaling pathway.

Gene Chromosome No. of SNPs P

ACACB 12 9 0.0003

ACSL1 4 4 0.0058

ACSL3 2 5 0.0089

ACSL5 10 5 0.0096

ACSL6 5 5 0.007

ADIPOR2 12 2 0.0042

AKT1 14 2 0.0144

AKT2 19 2 0.015

AKT3 1 4 0.0135

CAMKK1 17 1 0.0002

CAMKK2 12 2 0.0106

CD36 7 3 0.0004

IKBKB 8 1 0.0014

IRS1 2 6 0.0031

LEPR 1 2 0.0167

MAPK10 4 9 0.0033

MAPK8 10 9 0.0014

NFKB1 4 14 0.0022

NPY 7 1 0.0007

POMC 2 1 0.04

PPARA 22 1 0.012

PPARGC1A 4 35 1.32E-07

PRKAA1 5 2 0.0332

PRKAA2 1 2 0.0047

PRKAG2 7 4 0.0006

PRKCQ 10 18 3.7E−05

RXRA 9 1 0.003

RXRG 1 2 0.0071

SLC2A1 1 1 0.0059

STAT3 17 4 0.0413

TNFRSF1A 12 1 0.0033
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the major hallmarks of the pathogenesis and etiology of T2D (48). It

is reflected by impairments in insulin signaling in the diabetic state

displaying a reduced insulin sensitivity (43). A generally accepted

view is that insulin resistance associated with T2D is caused by

defects at one or several levels of the insulin-signaling cascade, for

example, in skeletal muscles, adipose tissue, and liver, that

quantitatively constitute the bulk of the insulin-responsive tissues

(45). Adipocytes and resident macrophages that have migrated to

the adipose tissue produce and secrete adipocytokines, including

tumor necrosis factor-a, interleukin-6, resistin, and adiponectin,

which are thought to contribute to the development of insulin

resistance and T2D (46, 47, 64). Dysregulation of vascular smooth

muscle excitability using calcium ions occurs during T2D disorder

(65–67). Abnormal long-term potentiation behavior is observed in

patients with T2D (68, 69).

One limitation of the study is that the genotype data were not

imputed with the 1000G population data when the analysis was

carried out. Also, larger cohort data are needed to replicate these

findings. In the future, we will perform the same analysis using

genotype data imputed using 1000G and replicate the findings of

our analysis using an independent dataset.

In conclusion, this study revealed the association between

dietary patterns and the development of T2D. The risk of T2D

increases in individuals with poor dietary habits (foods lacking

antioxidant properties). Lifestyle habits like smoking, BMI, age,

and alcohol and coffee consumption increase the risk of T2D. The

impact of genetics was also observed, especially in people with

high genetic risks. The interaction between diet and genetics

showed that dietary patterns affect pathway mechanisms in the

development of T2D. The study results elucidate the protective

role of a healthy diet in lowering the risk of T2D. However, further

prospective investigations, more rigorous studies of larger cohorts,

intervention research, or different methods of constructing food

(indices) quality scores will be needed to investigate if diet can
Frontiers in Endocrinology 11
predict the prevalence of T2D (causal–effect relationship). Also,

further validation studies of the above pathways are required to

find T2D biochemical pathogenesis conclusively.
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