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Post-COVID symptoms are
associated with endotypes
reflecting poor inflammatory
and hemostatic modulation
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Introduction: Persistent symptoms after COVID-19 infection (“long COVID”)

negatively affects almost half of COVID-19 survivors. Despite its prevalence, its

pathophysiology is poorly understood, with multiple host systems likely affected.

Here, we followed patients from hospital to discharge and used a systems-

biology approach to identify mechanisms of long COVID.

Methods: RNA-seq was performed on whole blood collected early in hospital

and 4-12 weeks after discharge from 24 adult COVID-19 patients (10 reported

post-COVID symptoms after discharge). Differential gene expression analysis,

pathway enrichment, and machine learning methods were used to identify

underlying mechanisms for post-COVID symptom development.

Results: Compared to patients with post-COVID symptoms, patients without

post-COVID symptoms had larger temporal gene expression changes associated

with downregulation of inflammatory and coagulation genes over time. Patients

could also be separated into three patient endotypes with differing mechanistic

trajectories, which was validated in another published patient cohort. The

“Resolved” endotype (lowest rate of post-COVID symptoms) had robust

inflammatory and hemostatic responses in hospital that resolved after

discharge. Conversely, the inflammatory/hemostatic responses of

“Suppressive” and “Unresolved” endotypes (higher rates of patients with post-

COVID symptoms) were persistently dampened and activated, respectively.

These endotypes were accurately defined by specific blood gene expression

signatures (6-7 genes) for potential clinical stratification.

Discussion: This study allowed analysis of long COVID whole blood

transcriptomics trajectories while accounting for the issue of patient

heterogeneity. Two of the three identified and externally validated endotypes
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(“Unresolved” and “Suppressive”) were associated with higher rates of post-

COVID symptoms and either persistently activated or suppressed inflammation

and coagulation processes. Gene biomarkers in blood could potentially be used

clinically to stratify patients into different endotypes, paving the way for

personalized long COVID treatment.
KEYWORDS
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1 Introduction

The COVID-19 pandemic has infected >650 million people as of

June 2023 (1). While the death toll is alarmingly >6.5 million, what is

just as alarming is the fact that a substantial proportion (12.7-43%) of

survivors could develop persistent symptoms (2, 3) that decrease their

quality of life, affect physical and cognitive function, and decrease their

participation in society (4, 5). These symptoms include fatigue,

shortness of breath, difficulty concentrating, loss of smell and taste,

muscle pain, joint pain, and diarrhea, among almost 200 different

symptoms (5). Various names have been given to this phenomenon,

including “long COVID”, “chronic COVID”, “post-acute sequelae of

SARS-CoV-2 infection”, and “post-COVID condition” (6). Both

hospitalized and non-hospitalized patients are at risk of developing

persistent symptoms (7), with hospitalized patients having slightly

higher risk (2). This phenomenon does not seem to be unique to the

SARS-CoV-2 virus, since influenza (8), Ebola (9), SARS-CoV-1 (10),

and sepsis in general (“post-sepsis syndrome”) (11) also appear to be

associated with persistent symptoms after discharge. However, a recent

study suggested that seven sequelae (palpitations, hair loss, fatigue,

chest pain, dyspnea, joint pain, and obesity) were more associated to

COVID-19 than other common viral respiratory infections (12).

With such a large proportion of people infected worldwide, a

significant number of people will be unable to return to work and

will need to seek increased medical care, with severe long-term

economic and healthcare implications (13). Long COVID is

estimated to cost $16 trillion in just the United States, as a result

of loss of productivity and increased healthcare access associated

with premature death, long-term health impairment, and mental

health impairment (14). Thus, it is imperative to understand how

and why patients develop these symptoms.

Despite its prevalence, the pathophysiology of long COVID is still

not well understood, and the non-specific nature of its clinical

manifestations makes targeted investigations of potential mechanisms

challenging, although multiple mechanisms have been proposed.

Permanent inflammatory damage to multiple organ systems during

the acute disease period has been proposed to be one potential cause,

particularly for neurologic and respiratory symptoms (7). Chronic

inflammation could also be detrimental, with inflammatory cytokines

documented to be elevated for months after infection in patients with

post-COVID symptoms (15, 16). Anti-phospholipid autoantibodies

can potentially lead to later cardiovascular complications (17), while

anti-interferon antibodies (18) and anti-nuclear antibodies (19) have
02
been associated with post-COVID symptoms. Failure to fully clear the

SARS-CoV-2 virus (20, 21) or reactivation of latent viruses (22) may

result in chronic infections. Lastly, abnormal coagulation mechanisms,

resulting in “microclots”, have been attributed to the development of

long-term symptoms (23).

Few analyses of whole blood gene expression have been performed

to compare gene expression trajectories of patients with or without

persistent post-COVID symptoms. A cohort of 69 patients (24)

demonstrated evidence of transcriptomic dysregulation up to 24

weeks post discharge in patients with persistent symptoms; however,

this study only profiled patients after discharge and did not have data

on these patients while hospitalized. A cohort of 165 patients assessed

in-hospital differences between patients with or without symptoms 1

year after discharge, which found a relationship between specific

symptoms, immunoglobulin-related genes, and plasma cells in

hospital, but did not provide gene expression data at follow-up for

comparison (25).

In this study, we performed whole blood RNA-Seq on samples

collected from COVID-19 survivors both in hospital and after

discharge to identify gene expression changes over time between

patients with and without post-COVID symptoms. Patients without

post-COVID symptoms demonstrated resolution of immune and

hemostatic pathways from hospitalization to follow-up. We were

also able to classify patients into three endotypes, which we named

“Resolved”, “Suppressive”, and “Unresolved”, reflecting the

trajectories of immune and hemostatic processes from hospital to

follow-up. The “Suppressive” and “Unresolved” endotypes were

associated with a higher proportion of post-COVID symptoms,

highlighting that the mounting and subsequent resolution of

immune and hemostatic responses were key to preventing

symptoms after discharge. Whole blood gene biomarkers for long

COVID endotypes were also identified, which could potentially be

used to guide personalized treatment and prognosis.
2 Methods

2.1 Sample collection

Through the Banque Québécoise de la COVID-19 (BQC19)

biobank (26), 24 adult (36-84 years old, median age 59 years, 17/24

male) patients who were hospitalized in Quebec, Canada, primarily

due to pulmonary disease from SARS-CoV-2 infection (e.g.,
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COVID-19 pneumonia) were enrolled in this study. Sample size

estimation and power analysis was performed using the package

ssizeRNA (v1.3.2) (27) to show that this sample size was sufficiently

powered (power = 0.8, false discovery rate = 0.05) to detect

differentially expressed (DE) genes (Figure S1C). Approximately

2.5mL of whole blood from each patient was collected into

PAXgene Blood RNA tubes (BD Biosciences) at two time points:

<10 days post-hospital admission, and at a follow-up visit (4-12

weeks post-hospital discharge) (Figure S1A). Patients self-reported

any persistent symptoms related to COVID-19 at follow-up. Ten

patients reported at least one persistent symptom that developed

after COVID-19 (Figure S1B). All samples were collected between

July 2020 and May 2021, suggesting these patients likely were

infected with the ancestral strain, or either the Alpha or Beta

variants. No patients were vaccinated prior to hospital admission.

RNA was extracted from whole blood and RNA-Seq was performed

as described previously (28): total RNA was extracted with the

PAXgene Blood RNA Kit (Qiagen), poly-adenylated RNA was

enriched using NEBNext Poly(A) mRNA Magnetic Isolation

Module (NEB), and cDNA libraries were prepared using the

NEBNext RNA First Strand Synthesis Module, NEBNext Ultra

Directional RNA Second Strand Synthesis Module, and NEBNext

Ultra II DNA Library Prep Kit for Illumina (NEB). RNA-Seq was

then performed at a depth of 50M reads/sample on an Illumina

NovaSeq 6000 S4 instrument of 100 base-pair long paired-end

sequence reads (excluding adapter/index sequences). Raw gene

expression data can be found in GSE221234 and GSE222253.
2.2 Bioinformatics analysis and statistics

The sequencing data processing protocol included quality

control using FastQC (v0.11.9) (29) and MultiQC (v1.6) (30),

alignment to the human genome (Ensembl GRCh38.104) using

STAR (v2.7.9a) (31), and read count assessments using HTSeq

(v0.11.3) (32). All downstream bioinformatics analyses were done

in R (v4.2.2). Hemoglobin associated genes and low read count

genes (mean count <10) were filtered out, resulting in a gene

universe of 18,826 Ensemble IDs for analysis. The package

DESeq2 (v1.34.0) was used to identify differentially expressed

(DE) genes between patients with and without persistent post-

COVID symptoms in hospital and at follow-up (Wald statistics

model) (33). DE genes were defined as genes with an absolute fold

change ≥1.5 and an adjusted-p-value <0.05 (Benjamini-Hochberg

multiple test correction). The package variancePartition (v1.28.3)

(34) was used to determine potential confounders to include in the

DESeq2 model (Figure S1G): age, sex, sequencing batch, days in

hospital, and days from discharge to follow-up sampling time

(follow-up samples) or from hospital admission to in-hospital

sampling time (in-hospital samples). A pair-wise analysis between

hospital and follow-up samples of each patient was performed to

identify gene expression trajectories; this was performed by

investigating the effect of time in the patients with and without
Frontiers in Immunology 03
post-COVID symptoms, with individuals nested (as outlined in the

DESeq2 vignette) (33). Essentially, patients were indexed to their

previous sample, which controlled for individual underlying

baseline differences (e.g., genetics, comorbidities, etc.).

Pathway enrichment on up- and down-regulated DE genes was

subsequently performed. The Reactome database is an open-source,

peer-reviewed pathway database (35). To enable enrichment of more

specific and biologically relevant Reactome pathways, DE genes were

analyzed using the SIGORA package (v3.1.1) (36), which decreases

the chance of observing multiple similar and overlapping pathways

by analyzing gene pairs rather than individual genes (which may be

present in overlapping pathways). Reactome pathways were

considered significantly enriched with an adjusted p-value <0.001

(Bonferroni multiple test correction) as was recommended in

SIGORA. These analyses were further supplemented by enrichment

of Hallmark gene sets (gene sets that represent “specific, well-defined

biological states or processes with coherent expression” from the

Molecular Signatures database) (37) using clusterProfiler (v4.2.2) (38),

with significant gene sets having an adjusted-p-value <0.05

(Benjamini-Hochberg multiple test correction).

To identify endotypes in follow-up patients, K-medoids

unsupervised clustering using the package cluster (v2.1.4) (39)

was performed using variance-stabilized-transformed counts,

scaled across all samples for each gene. The process of K-medoids

clustering, using the “Partitioning Around Medoids” algorithm, is

as follows. First, k representative central samples (medoids) are

selected, then the total Manhattan distance of the resulting

clustering around the medoids is assessed and compared to

distances of clustering using other medoids. This is repeated until

the medoids that minimize the total clustering distances are

ultimately selected (40). K-medoids was chosen over a similar

clustering approach, K-means, due to its non-sensitivity to

outliers and reduction of noise (40), and sepsis endotypes from

our previous work were also identified through K-medoids

clustering (41). Clustering metrics using K-medoids clustering

showed that the optimal cluster number was k = 3 based off total

within sum of square and the gap statistic. DE analysis was

performed comparing these clusters/endotypes to each other at

follow-up, in hospital, and over time, and DE genes were used for

pathway enrichment as described above.

Gene signatures for these endotypes were identified by feature

selection using LASSO regression from the package glmnet

(v4.1.6) (42). These gene signatures and Hallmark gene sets

were assessed using gene set variation analysis (GSVA) using

the package GSVA (v1.46.0) (43). GSVA is a non-parametric,

unsupervised method that calculates enrichment scores of gene

sets (e.g., pathways or signatures), allowing direct comparison of

gene set enrichment in different groups (43). CIBERSORTx, a cell

deconvolution method, was used to estimate cell proportions of 22

different cell types based on gene expression data with the LM22

marker set (44). Wilcox tests were performed when comparing

GSVA scores and estimated cellular proportions as the data was

non-parametric.
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3 Results

3.1 Persistent Post-COVID symptoms were
associated with worse quality of life

Ten of the 24 patients had persistent post-COVID symptoms >4

weeks post-discharge (termed “symptomatic”), and the most

common symptoms in these symptomatic patients were fatigue and

dyspnea (Figure S1B). The presence of these symptoms at follow-up

was associated with lower quality of life, with patients reporting more

difficulty with mobility (especially climbing stairs), having more pain

and discomfort, feeling more breathless, and overall being frailer

(Table 1). Notably, these patients did not statistically differ in various

metrics of clinical severity in hospital [e.g., highest recorded SOFA

score and World Health Organization COVID-19 Clinical

Progression Score (45)], cell proportions, lab values, treatments

received, rates of ICU admission, and hospitalization duration

compared to patients without post-COVID symptoms (termed

“asymptomatic”) (Table 1), which was consistent with the literature

indicating that the presence of these post-COVID symptoms is not

associated with disease severity (46), since many mild and even non-

hospitalized patients can also develop persistent symptoms (7, 8). In

addition, common confounders including age and sex, as well as the

time between discharge date and follow-up date, were not statistically

different between these two groups. Interestingly, while diabetes and

hypertension have been shown to be associated with poor outcomes

during COVID-19 hospitalization (47), in this cohort, a greater

proportion of asymptomatic patients had pre-existing diabetes and/

or hypertension compared to symptomatic patients (Table 1). There

is conflicting data on whether diabetes is a risk factor for developing

post-COVID symptoms (48, 49). Thus, in this cohort, there did not

appear to be clear clinical risk factors predisposing patients to develop

post-COVID-19 symptoms, warranting further investigation into

potential gene expression biomarkers.
3.2 Follow-up and in-hospital samples
were transcriptionally indistinguishable
between patients with and without post-
COVID symptoms

To determine underlying pathophysiological differences

between patients with and without persistent post-COVID

symptoms, differential expression analysis was performed on the

follow-up samples collected after discharge using the package

DESeq2 (33). Only two differentially expressed (DE) genes were

identified when comparing patients who reported post-COVID

symptoms and those who did not, which were GYPE

(glycophorin E, part of the MNS blood group) and ALDH1A1

(aldehyde dehydrogenase 1 family member A1) (Figure S1D), even

after correcting for potential confounders (Figure S1G) and despite

the comparison being adequately powered for DE gene detection

(Figure S1C).

In addition, no DE genes were identified between in-hospital

samples of patients who developed or did not develop symptoms
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after discharge (Figure S1E). Thus, whether a patient will develop

post-COVID symptoms did not appear to be discernible based on

responses while a patient was still in hospital. In contrast,

comparisons based on disease severity (e.g., whether a patient was

admitted to the ICU or not) yielded many more DE genes (444

genes) (Figure S1F), consistent with studies linking disease severity

to gene expression in hospitalized patients (41).

Overall, the lack of DE genes in comparisons using either

follow-up or in-hospital samples indicated that either the

transcriptomic signature associated with the presence or absence

of post-COVID symptoms was not substantial, or that gene

expression differences might have been masked by heterogeneity

within individual patients, due to factors that might include

inherent genetic differences, comorbidities, microbiome, diets,

and treatments administered. The high residuals when looking at

sources of variance in gene expression (using variancePartition)

further supported this idea of uncaptured individual heterogeneity

(Figure S1G). Thus, post-COVID effects on gene expression could

not be fully captured by directly comparing symptomatic and

asymptomatic patients. This might also result in part from

different underlying pathophysiology that might reflect endotypes.

To examine the first possibility of heterogeneity, these individual

factors were taken into account by performing a trajectory analysis

in which each patient was indexed to a previous sample

from themselves.
3.3 Lack of post-COVID symptoms was
associated with potential resolution of
immune and hemostasis dysregulation
over time

All 24 patients had both an in-hospital and a follow-up sample,

allowing the analysis of gene expression trajectories (i.e., gene

expression changes over time from hospital to discharge). In

contrast to the single time point comparisons with few to no DE

genes (Figures S1D, E), patients who were asymptomatic at follow-

up had 5,533 DE genes over time, of which 4,112 genes were DE

over time only in this group (Figure 1A). On the other hand,

symptomatic patients had substantially less DE genes over time

(1,580), of which only 159 were unique to symptomatic

patients (Figure 1B).

Pathway enrichment of DE gene trajectories in asymptomatic

patients showed enrichment of pathways from the Reactome

database (35) involved in the immune system, hemostasis, and

signal transduction (Figure 1C). Notably, down-regulated genes

were enriched in hemostasis pathways such as “Platelet

degranulation”, “Platelet activation, signaling, and aggregation”,

“Common pathway of fibrin clot formation”, and “Formation of

fibrin clot”; interleukin pathways such as “Interleukin-1 signaling”

and “Interleukin-4/13 signaling”; the complement pathway

“Creation of C4 and C2 activators”; and antiviral pathways such

as “Interferon signaling”, “Interferon a/b signaling”, and “ISG15

antiviral mechanism” (Figure 1C). The down-regulation of these

immune pathways suggested a decrease in the activity of multiple

inflammatory processes, which was further supported by the
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TABLE 1 Demographics of patients with and without post-COVID-19 symptoms.

Clinical Variables No Post-COVID-19 Symptoms
(14)

Post-COVID-19 Symptoms
(10)

P-value

Age 60.1 ± 12.2 (14) 54.5 ± 12.5 (10) 0.306

Sex (Male) 85.7% (12/14) 50.0% (5/10) 0.085

Body Mass Index 30.6 ± 6.5 (12) 28.7 ± 6.9 (7) 0.526

Admitted to ICU (Yes) 28.6% (4/14) 30.0% (3/10) 1.000

Smoker (Yes) 25.0% (3/12) 0.0% (0/7) 0.263

Comorbidities

Asthma (Yes) 14.3% (2/14) 10.0% (1/10) 1.000

COPD (Yes) 0.0% (0/14) 10.0% (1/10) 0.417

Chronic Lung Disease (Yes) 21.4% (3/14) 10.0% (1/10) 0.615

Hypertension (Yes) 64.3% (9/14) 10.0% (1/10) 0.013

Diabetes (Yes) 50.0% (7/14) 0.0% (0/10) 0.019

Immunosuppressed (Yes) 21.4% (3/14) 10.0% (1/10) 0.615

Worst Laboratory Values

Highest %Neutrophil 80.3 ± 7.9 (14) 77.0 ± 8.0 (10) 0.279

Lowest %Lymphocyte 6.8 ± 3.7 (14) 6.8 ± 2.9 (10) 0.838

Highest %Monocyte 8.6 ± 2.6 (14) 9.2 ± 1.7 (10) 0.364

Lowest Platelets (103/µL) 244.4 ± 120.9 (14) 228.4 ± 100.3 (10) 0.884

Highest Estimated SOFA Score 3.3 ± 2.6 (14) 4.1 ± 3.1 (10) 0.456

Highest WHO COVID-19 Score 5.6 ± 1.4 (14) 6 ± 1.4 (10) 0.360

Hospitalized Duration (Days) 16.4 ± 14.8 (14) 14.9 ± 14.5 (10) 0.907

Follow-up Metrics

Discharge to Follow-up (Days) 53.6 ± 13.7 (14) 45.3 ± 15 (10) 0.135

Mobility Score 0.1 ± 0.3 (14) 0.9 ± 0.9 (10) 0.005

Self-Care Score 0 ± 0 (14) 0.2 ± 0.6 (10) 0.272

Usual Activity Score 0.1 ± 0.3 (14) 0.4 ± 0.8 (10) 0.333

Pain and Discomfort Score 0.2 ± 0.4 (14) 1.1 ± 1 (10) 0.012

Anxiety and Depression Score 0.1 ± 0.4 (14) 0.4 ± 0.7 (10) 0.341

Breathlessness Score 0.4 ± 0.5 (14) 1.6 ± 0.8 (10) 0.001

Difficulty Carrying 10 Pounds 0.1 ± 0.4 (14) 0.7 ± 0.9 (10) 0.113

Difficulty Walking Across Room 0 ± 0 (14) 0.2 ± 0.4 (10) 0.099

Difficulty Climbing 10 Stairs 0 ± 0 (14) 0.7 ± 0.8 (10) 0.004

Difficulty Transferring from Chair to
Bed

0.1 ± 0.3 (14) 0.3 ± 0.7 (10) 0.359

Number of Falls in Past Year 0.1 ± 0.4 (14) 0.1 ± 0.3 (10) 0.798

Total Frailty Score 1.2 ± 1.4 (14) 6.6 ± 5.8 (10) 0.002

Poor Health Self-Rating 15.7 ± 10.2 (14) 26.6 ± 13.3 (10) 0.051
F
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For categorical variables, significance was tested using the Chi-squared test with Yates’s correction, or the Fisher’s exact test if any expected value was <5, and the percentage and fraction of
patients fitting the category is displayed. For continuous variables, the Wilcoxon Rank-Sum test was used, and the mean ± standard deviation of the variable is displayed, with the number of
patients assessed in brackets. Follow-up metric scores are discussed in Table S1. The full set of assessed clinical variables, including non-significant differences in arrival values, other
comorbidities, and treatments administered in hospital, are found in Table S2. Significant p-values (p <0.05) are bolded.
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upregulation over time of the anti-inflammatory pathway

“Interleukin-10 signaling” (Figure 1C). In particular, these

hemostasis and inflammatory pathways have been shown in the

literature to be largely upregulated in hospitalised COVID-19

patients (50–52). Thus, the observed down-regulation over time

may suggest a return to homeostasis after discharge in only patients

who did not have post-COVID symptoms at follow-up. Conversely,

adaptive immune pathways, such as the T cell signaling pathways

“Generation of second messenger molecules” and “Co-stimulation

by the CD28 family”, increased over time in asymptomatic patients

(Figure 1C). Considering that adaptive responses have been shown

in the literature to be suppressed in hospitalized COVID-19 patients

(53), upregulation over time again suggested a return to immune

homeostasis. Both groups, however, demonstrated down-regulation

over time of the “Neutrophil degranulation” pathway (which can be

related to inflammation) and upregulation of the adaptive pathway

“Immunoregulatory interactions between a lymphoid and a non-

lymphoid cell”, suggesting that even symptomatic patients

potentially had some level of immune resolution as they

recovered, at least for these two pathways (Figure 1C).

In symptomatic patients, a large proportion of enriched

pathways that were altered from hospitalization to follow-up

related to “Cell Cycle” pathways, which were enriched in down-

regulated genes (Figure 1C). These changes in cell cycle pathways

prompted further investigation into estimated cell proportions

using CIBERSORTx, a computational cell deconvolution

technique using gene expression data (44). Interestingly, only
Frontiers in Immunology 06
asymptomatic patients had a significant decrease in neutrophil

proportions over time (Figure S2C), consistent with the overall

down-regulation of inflammatory pathways (Figure 1C).

To validate the Reactome pathway results, enrichment was also

performed using Hallmark gene sets (37). In asymptomatic patients,

genes that were downregulated over time were enriched for the

“Inflammatory response”, “Interferon-a response”, “Interferon-g
response”, “IL6-JAK-STAT3 signaling”, “Complement”, “TNFa-
signaling via NF-kB”, and “Coagulation” gene sets, while

upregulated genes were enriched for adaptive gene sets such as

“IL2-STAT5 signaling” and “Allograft rejection” (Figure S2B),

consistent with the above-described immune- and hemostasis-

related Reactome pathway enrichment results.

Based on these trajectory analyses, it appeared that large

temporal gene expression changes were associated with a lack of

post-COVID symptom development. These changes reflected a

decrease in activity of inflammatory and hemostasis pathways and

an increase in the activity of adaptive immune pathways, which

have been documented to be respectively elevated (50) and

suppressed (53) during severe COVID-19. Thus, these results are

consistent with asymptomatic patients returning to homeostasis

with respect to immune and hemostatic function. Conversely, fewer

DE genes over time were found in patients with persistent

symptoms, consistent with a reduced return to homeostasis. This

could indicate either a failure of these processes to resolve, or

further heterogeneity within this group of patients that confounded

this comparison.
A

B

C

FIGURE 1

Patients without symptoms at follow-up had transcriptomic evidence of temporal immune and hemostatic resolution. Volcano plots of differentially
expressed (DE) genes over time in patients without (A) and with (B) post-COVID symptoms. Coloured dots indicate DE genes, with green and red
dots indicating DE genes that were uniquely DE in asymptomatic vs. symptomatic patients, respectively (blue dots indicate shared DE genes). The
top 5 up- and down- regulated genes (lowest adjusted p-value and highest fold change) are labelled. (C): Subset of notable enriched Reactome
pathways from DE genes over time in patients who had post-COVID symptoms (“Symptoms”) or who did not have symptoms (“None”) at discharge,
with all enriched pathways shown in Figure S2A. Pathways were considered “upregulated” (D) if the genes in this pathway were overrepresented in
upregulated DE genes when compared to their prevalence in the genome, and vice versa for “downregulated” (∇). P-values were adjusted for
multiple comparisons using Bonferroni, with an adjusted p-value cutoff <0.001. The total number of DE genes in each comparison are shown under
each label.
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3.4 Three mechanistically distinct
endotypes were identified in
follow-up patients

A second possible source of variation explaining the lack of DE

genes in direct comparisons of patients with or without post-

COVID symptoms, as well as fewer DE genes over time in

symptomatic patients, could be the presence of endotypes.

Endotypes are groups of patients with distinct pathophysiological

mechanisms. Previous work from our lab employed the use of K-

medoids clustering, an unsupervised machine-learning clustering

algorithm, to identify endotypes in early sepsis (41). Here, we used

this approach to cluster patients at follow-up into endotypes. Based

on optimal clustering metrics (gap statistic and total within sum of

square), the optimal number of clusters was determined to be three

(Figures S3A, B). These clusters/endotypes were named “Resolved”,

“Suppressive”, and “Unresolved” based on the trajectories of

inflammatory and hemostatic processes that are described below.

Furthermore, these endotypes were then validated in an

independent cohort of 65 patients (GSE169687) (24) as

described below.

Interestingly, the proportion of patients with post-COVID

symptoms differed significantly (p=0.015) between the three

endotypes. Almost all the patients in the Suppressive endotype

had post-COVID symptoms (85.7%) and a substantial proportion
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was also seen in the Unresolved endotype (40%), while the lowest

proportion was seen in the Resolved endotype (16.7%) (Figure 2A;

Table 2). Other than the presence of post-COVID symptoms,

metadata variables that were significantly different across the

three endotypes were body mass index (lowest in Unresolved,

p=0.01), highest recorded creatinine (reflecting kidney function)

during hospitalization (highest in Unresolved, p=0.034), and

corticosteroid use during hospitalization (lowest rate in Resolved,

p=0.038) (Table 2). Notably, age, sex, severity of active disease

(based on hospitalization duration, ICU admission, highest

recorded SOFA/WHO score), and time between discharge

and follow-up sampling were not significantly different

between endotypes.

Gene expression trajectories differed dramatically between these

three endotypes, particularly in inflammation and hemostasis

activity. This was visualized by using gene set variation analysis

(GSVA; a non-parametric unsupervised method of estimating gene

set enrichment) to calculate enrichment scores of two Hallmark

gene sets, “Inflammatory Response” and “Coagulation” (Figure 2B),

which were of interest based on the trajectory responses of

symptomatic and asymptomatic patients described above

(Figures 1C, S2B). The Resolved endotype, with the lowest

proportion of patients with post-COVID symptoms, had elevated

enrichment of these mechanisms while hospitalized that

significantly decreased after discharge, thus they “resolved” their
A B

C

FIGURE 2

Three post-discharge endotypes (Resolved, Suppressive, and Unresolved) showed distinct immune and hemostasis trajectories and differing rates of
post-COVID symptoms. (A): Principal component analysis indicating separation of follow-up samples into three clusters/endotypes based on K-
medoids clustering, highlighted by the coloured polygons, with most patients with post-COVID symptoms falling in the Suppressive endotype (red),
while the Resolved endotype (green) was mostly composed of patients without symptoms after discharge. (B): Differing trajectories of the Resolved,
Suppressive, and Unresolved endotypes based on gene set variation analysis (GSVA) enrichment scores of the Hallmark “Inflammatory Response” and
“Coagulation” gene sets. Trend lines connect the median enrichment scores of each endotype from hospital to follow-up, points indicate individual
sample enrichment scores. (C): Estimated proportions of neutrophils and regulatory T cells using CIBERSORTx, with all cell types in Figure S4C. Pair-
wise Wilcoxon rank-sum test between in-hospital and follow-up samples for GSVA enrichment scores and cell proportions were performed to
determine significance and adjusted for multiple corrections (Benjamini-Hochberg): **p<0.01, and *p<0.05, ns = not significant. H, Hospital samples;
F, Follow-up samples; RS, Resolved; SP, Suppressive; UR, Unresolved.
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inflammatory and hemostasis responses (Figure 2B). Conversely,

the Suppressive endotype, with the highest proportion of patients

with post-COVID symptoms, had low enrichment of the

inflammatory and coagulation gene sets in hospital. Inflammation
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further decreased after discharge while coagulation increased

slightly, although both still had relatively low enrichment.

Consequently, these processes were considered “suppressed”

(Figure 2B). Lastly, the Unresolved endotype, which also had a
TABLE 2 Patient demographics of patients in the three endotypes.

Clinical Variables Resolved (12) Suppressive (7) Unresolved (5) P-value

Age 60.5 ± 13.7 (12) 53.7 ± 13.6 (7) 56.8 ± 6.1 (5) 0.535

Sex (Male) 75.0% (9/12) 71.4% (5/7) 60.0% (3/5) 0.850

Body Mass Index 33.2 ± 6.9 (10) 29.3 ± 3.2 (4) 23.9 ± 2 (5) 0.010

Admitted to ICU (Yes) 33.3% (4/12) 28.6% (2/7) 20.0% (1/5) 1.000

Hospitalized Duration (Days) 18.2 ± 14.8 (12) 15 ± 17.9 (7) 10.8 ± 7.6 (5) 0.381

Post-COVID Symptoms (Yes) 16.7% (2/12) 85.7% (6/7) 40.0% (2/5) 0.015

Discharge to Follow-up (Days) 54.1 ± 14.2 (12) 45.7 ± 10 (7) 46.8 ± 20.4 (5) 0.395

Smoker (Yes) 20.0% (2/10) 0.0% (0/5) 25.0% (1/4) 0.561

Worst Laboratory Values

Highest %Neutrophil 0.8 ± 0.1 (12) 0.7 ± 0.1 (7) 0.8 ± 0.1 (5) 0.091

Lowest %Lymphocyte 0.1 ± 0 (12) 0.1 ± 0 (7) 0.1 ± 0 (5) 0.217

Highest %Monocyte 0.1 ± 0 (12) 0.1 ± 0 (7) 0.1 ± 0 (5) 0.276

Lowest Platelets (103/µL) 253 ± 122 (12) 183 ± 61 (7) 278 ± 128 (5) 0.245

Highest Creatinine 85.1 ± 42.3 (12) 63.9 ± 9.8 (7) 171± 192 (5) 0.034

Highest Estimated SOFA Score 3.7 ± 2.8 (12) 2.9 ± 2.9 (7) 4.6 ± 3.1 (5) 0.273

Highest WHO COVID-19 Score 5.8 ± 1.4 (12) 5.6 ± 1.6 (7) 6.0 ± 1.2 (5) 0.617

Treatments During Hospitalization

Antifungal (Yes) 8.3% (1/12) 14.3% (1/7) 0.0% (0/5) 1.000

Antibiotics (Yes) 83.3% (10/12) 71.4% (5/7) 80.0% (4/5) 0.819

Antiviral

Lopinavir/Ritonavir (Yes) 33.3% (4/12) 0.0% (0/7) 0.0% (0/5) 0.144

Remdesivir (Yes) 0.0% (0/12) 28.6% (2/7) 0.0% (0/5) 0.112

Other Antiviral (Yes) 8.3% (1/12) 0.0% (0/7) 20.0% (1/5) 0.457

Immunomodulator

Systemic Corticosteroids (Yes) 41.7% (5/12) 85.7% (6/7) 100.0% (5/5) 0.038

Tocilizumab (Yes) 0.0% (0/12) 14.3% (1/7) 40.0% (2/5) 0.057

Sarilumab (Yes) 8.3% (1/12) 0.0% (0/7) 0.0% (0/5) 1.000

Other Immunomodulator (Yes) 16.7% (2/12) 0.0% (0/7) 20.0% (1/5) 0.564

Other Treatments

Vasopressor support (Yes) 8.3% (1/12) 14.3% (1/7) 0.0% (0/5) 1.000

Prone Positioning (Yes) 25.0% (3/12) 28.6% (2/7) 0.0% (0/5) 0.656

Inhaled Nitric Oxide (Yes) 0.0% (0/12) 28.6% (2/7) 0.0% (0/5) 0.112

Blood Transfusion (Yes) 8.3% (1/12) 0.0% (0/7) 0.0% (0/5) 1.000
fron
For categorical variables, significance was tested using the Chi-squared test with Yates’s correction, or the exact Fisher test if any expected value was <5, and the percentage and fraction of patients
fitting the category is displayed. For continuous variables, the Kruskal-Wallis test was used, and the mean ± standard deviation of the variable is displayed, with the number of patients assessed in
brackets. Significant p-values (p <0.05) are bolded, indicating the metadata variable significantly differs across the three endotypes. Non-significant differences in comorbidities, symptoms, and
follow-up metrics are in Table S3.
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substantial proportion of patients with post-COVID symptoms,

had persistently high enrichment of dysregulated inflammatory and

coagulation gene sets in hospital that continued after discharge.

Thus, these processes remained “unresolved” after discharge

(Figure 2B). These inflammatory trajectories were also reflected in

estimated neutrophil proportions, where the Resolved and

Suppressive endotypes both significantly decreased over time,

while the Unresolved endotype had persistently high neutrophil

proportions (Figure 2C). Interestingly, the Suppressive endotype

was the only endotype with a significant increase in regulatory T cell

proportions over time, which might have contributed to persistent

immune suppression (Figure 2C). These temporal patterns were

recapitulated in the temporal patterns of inflammatory (e.g.,

“Neutrophil degranulation”, “IL-1 signaling”) and hemostasis

pathways (e.g., “Platelet degranulation”, “Platelet activation,

signaling, and aggregation”) when performing pathway

enrichment of the DE genes over time for these three endotypes

(Figure S4A).

To further probe these mechanisms in more detail, pathway

enrichment was performed on the DE genes between these three

endotypes at follow-up and in-hospital. Follow-up samples in the

Unresolved endotype had the most DE genes when compared to the

samples in the other two endotypes (5,152 genes), followed by the

Resolved endotype (3,922 genes), while the Suppressive endotype

had only 80 DE genes (Figure S3C). Pathway enrichment using

these DE genes showed that the Resolved and Unresolved

endotypes were to some extent opposites of one other. The

Resolved endotype had down-regulated hemostasis (“Platelet

degranulat ion”) and immune pathways (“Neutrophi l

degranulation”, “IL-1 signaling”, “IL-4/13 signaling”, and

“Interferon a/b signaling”), but upregulated cellular processes

pathways (RNA processing, organelle biogenesis, and protein

metabolism pathways) when compared to the rest of the samples,

while the Unresolved endotype had the reverse (high immune/

hemostasis, low cellular processes) (Figure 3, left). The 80 DE genes

in the Suppressive endotype were enriched for only a single pathway

(“Stimuli-sensing channels”) (Figure S3E). This low number of DE

genes likely reflected the Suppressive endotype separately sharing

certain mechanisms with each of the mechanistically distinct

Resolved and Unresolved endotypes, thus diminishing differences

when samples in the Suppressive endotype were compared to the

samples in the other two endotypes. The endotype vs. endotype

comparisons (e.g., Suppressive vs. Resolved) were consistent with

this suggestion. The Suppressive and Unresolved endotypes both

had down-regulated cellular processes pathways when compared to

the Resolved endotype (Figure 3, right). Conversely, the Suppressive

and Resolved endotypes both had down-regulated hemostasis and

immune pathways when compared to the Unresolved endotype

(Figure 3, right), which was consistent with the GSVA enrichment

scores at follow-up (Figure 2B).

We then determined how patients in these endotypes differed

while in hospital. Only the Suppressive endotype had a substantial

number of DE genes (2,963 genes) when compared to the other

endotypes, while few or no DE genes were seen in the Resolved (0

genes) and Unresolved (18 genes) endotypes (Figure S5A). It

appeared that hospital samples from the Resolved and Unresolved
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endotypes were quite similar to each other, since the direct

comparison of hospital samples between these two endotypes

yielded only 16 DE genes (Figure S5B), and on principal

component analysis (an unsupervised clustering approach based

on gene expression variation), these two endotypes overlapped

while the Suppressive endotype clustered on its own (Figure S5C).

Based on pathway enrichment results (Figure S5D), the Suppressive

endotype was mainly differentiated from the other two endotypes in

hospital by lower expression of genes involved in immune pathways

such as “Neutrophil degranulation” and “Immunoregulatory

interactions” and hemostasis pathways such as “Platelet

degranulation” and “Platelet activation, signaling, and

aggregation”, which was again consistent with the GSVA

enrichment scores in-hospital (Figure 2B).

Overall, resolution of immune and hemostatic function

(Resolved endotype) was associated with a lower rate of post-

COVID symptoms, while persistently low (Suppressive) or high

(Unresolved) immune and hemostatic function were associated

with a higher rate of post-COVID symptoms.
3.5 Gene signatures could accurately
distinguish the three endotypes

Specific gene signatures differentiating the three endotypes were

identified for potential use in diagnosis or guiding treatment of

patients at follow-up. The most significantly upregulated genes

from each endotype (top 38 for Suppressive, top 50 for Resolved

and Unresolved) relative to all other endotypes at follow-up were

used as a preliminary gene expression signature (Table S4). Using

GSVA, patients were assigned an endotype based on the relative

enrichment of these signatures, and only one patient was

misclassified (Figure S6A). We then determined if this gene

signature could be condensed into a smaller number of genes to

make simpler and more generalizable gene signatures. Using Least

absolute shrinkage and selection operator (LASSO) regression (42),

which can eliminate less influential predictor variables (genes) using

10-fold cross-validation, the gene signatures for each endotype were

reduced to 6-7 genes for the Resolved (LRRCC1, KLRC1, RPS3AP6,

NDUFA5, GRPEL2-AS1, HECTD2, LINC02446), Suppressive

(IGKV1-27 , CEACAM19 , CACNA1I , ADAMTSL5 , AMN ,

DBNDD1), and Unresolved (PCSK9, C4BPA, CD300LD, SOCS3-

DT, CYP19A1, ENSG00000251139) endotypes. Classification of

samples using GSVA with the condensed gene signature resulted

in perfect classification with 100% accuracy (Figure 4).

To confirm the presence of endotypes in follow-up patients, we

reanalyzed a publicly-available dataset on a cohort of 65 discharged

COVID-19 patients with blood collected at 12, 16, or 24 weeks post

infection onset (GSE169687) (24). The signatures were again able to

classify patients in this validation cohort into three distinct

endotypes (Figure S6B) with differing immune and hemostasis

function (Figure S6C). The patients classified in the Unresolved

endotype again had significantly higher enrichment of the

Inflammatory and Coagulation gene sets compared to the

Resolved and Suppressive endotypes (Figure S6C), while

the Suppressive endotype was again an “intermediate” endotype
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clustering between the Resolved and Unresolved endotypes (Figure

S6D), consistent with analyses of our cohort (Figures 2A, B).
4 Discussion

To better understand the pathophysiology underlying persistent

post-COVID symptoms, gene expression differences were analyzed

by comparing COVID-19 survivors who reported having persistent

symptoms or not 4-12 weeks after discharge. Interestingly, cross-

sectional comparison of patients with and without symptoms at

follow-up and in hospital yielded almost no DE genes (Figures S1D,

E), which was likely primarily related to the presence of three gene

expression clusters, or endotypes, as well as other confounders

contributing to heterogeneity that confounded direct comparisons.

In contrast, trajectory analysis, which accounts for individual

factors including genetics, demographics, diet, microbiome, and

age, highlighted how patients with and without post-COVID

symptoms differed over time. Asymptomatic patients at follow-up

showed massive gene expression changes related in part to a

decrease, relative to their time in hospital, in clotting pathways

and inflammation (Figures 1A, C). These are two key processes that

have been highlighted to play a role in acute COVID-19

pathogenesis (50) and potentially in long COVID. In addition,

there was an increase in the activity of adaptive immunity pathways,

which may be reflective of a recovering adaptive immune response,

since decreased adaptive immunity is also associated with poor

outcomes in acute COVID-19 (54). The lack of these changes in
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symptomatic patients (Figure 1C) indirectly suggested that these

processes may stay dysregulated in these patients and might

potentially contribute to the development of persistent symptoms.

Individual studies have indeed indicated persistent T cell functional

deficits (55–57), inflammation (15, 16), and clotting abnormalities

(23) in patients with post-COVID symptoms but have not looked at

this issue in a temporal manner based on whole blood gene

expression described in this study.

As an alternative strategy to investigating the impact of

heterogeneity, based on underlying disease processes,

unsupervised machine learning was performed to separate

patients based on gene expression differences (i.e., mechanistic

endotypes), rather than the presence or absence of symptoms.

Endotypes have been used to study heterogeneity in both sepsis

and COVID-19 (41) and were proposed to be present based on

clinical/disease features in a long-COVID cohort (49). Here,

patients were separated into three endotypes, based on

mechanistically-linked gene expression differences. Each endotype

had substantially varying proportions of post-COVID symptoms:

Resolved (almost all patients were asymptomatic), Suppressive

(almost all patients were symptomatic), and Unresolved (some

symptomatic patients) (Figure 2A; Table 2), with specific gene

expression biomarkers for each (Figure 4) that could distinguish

endotypes with high and low rates of post-COVID symptoms; in

contrast, clinical risk factors such as sex and smoking failed to

distinguish endotypes in this cohort (Table 1).

Two key pathway groups stood out as differentiating the three

endotypes: inflammatory (e.g., interleukin, interferon) and
FIGURE 3

At follow-up, the Resolved (RS) and Unresolved (UR) endotypes had multiple oppositely regulated underlying mechanisms. Shown are a subset of
the enriched Reactome pathways, with all enriched pathways in Figure S3E. On the left, each endotype is compared to the rest of the follow-up
samples not in that endotype (e.g., RS compared to Suppressive/SP and UR). On the right, each endotype is compared to another endotype,
indicating that the SP endotype patients had cellular function changes like UR and immune changes like RS. The direction of arrows indicates
whether the pathway was up- or down-regulated. The total number of DE genes are displayed under each comparison.
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hemostasis (e.g., platelet degranulation) pathways (Figure 2B). The

Resolved endotype had elevated expression of genes involved in

inflammation and hemostasis pathways that decreased by

discharge, suggesting resolution of these processes. The

Suppressive endotype had low expression of inflammation and

hemostasis genes in hospital and at follow-up, while the

Unresolved endotype had high expression of these genes both in

hospital and at follow-up. Overall, these comparisons suggested that

proper initiation and then resolution of such responses (Resolved

endotype) was associated with a significantly lower incidence of

developing post-COVID sequelae, while failure to modulate these

responses (Suppressive and Unresolved endotypes) was associated

with development of these symptoms. Intriguingly, the Resolved

endotype had the lowest rates of systemic corticosteroid use when

hospitalized, with approximately half (41.7%) receiving

corticosteroids compared to almost all patients in the other

endotypes (85.7% and 100%) (Table 2), which could be an avenue

of further investigation. Exogenous steroids can suppress

endogenous steroid production, which might be occurring in the

Suppressive and Unresolved endotypes, disrupting immune

function, and low endogenous steroid levels have been

documented in patients with post-COVID symptoms in another

cohort (49). Use of such corticosteroids in-hospital could

potentially interfere with mounting and resolving an appropriate

immune response during COVID-19 and might increase the risk of

persistent symptoms after discharge.
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The mechanistic differences between the three endotypes (that

were recapitulated in a validation dataset, Figure S6B), suggested

different pathophysiological reasons underlying the presence or

absence of symptoms. Persistently low immune responses in the

Suppressive endotype may impede clearance of the virus or enhance

susceptibility to other infections or reactivation of latent infections such

as Epstein-Barr virus, all of which may contribute to symptoms (22,

49). The increase in regulatory T cells may be contributing to the

continually suppressed immune response observed in this endotype

(Figure 2C). Low hemostatic function has also been associated with

patients referred to a long-COVID clinic (24). Conversely, maintaining

a high inflammatory and hemostatic response even after discharge is

also likely to be detrimental, as seen in the Unresolved endotype (in

which 40% or patients were symptomatic after discharge), potentially

due to sustained autoimmune or inflammatory damage (18, 49), as well

as microclot formation (23). The enrichment of interferon signaling

pathways in the Unresolved endotype at follow-up (Figure 3) may also

suggest ongoing viral infection as well. Overall, these hypotheses should

be investigated further by analyzing the presence of viral RNA, auto-

antibodies, and immune markers in follow-up patients in conjunction

with gene expression in a future, larger study.

There are some limitations to this study. These findings are from

a small cohort, in part due to logistic difficulties in obtaining high

numbers of follow-up patients early in the pandemic, although we

also observed the new endotypes in another public dataset. These

patients were also unvaccinated and infected with earlier COVID-19
FIGURE 4

The condensed gene signatures accurately classified all follow-up samples into one of the three endotypes. The top heatmap displays scaled
variance stabilized transformed (VST) counts of the condensed signature genes. The bottom heatmap displays the GSVA enrichment scores of each
endotype for each follow-up sample. Samples were assigned to an endotype based on which endotype had the highest gene set variation analysis
(GSVA) enrichment score (“Assigned”). The assigned endotypes were identical to the original annotated endotype from K-medoids clustering
(“Original”), indicating perfect classification of these samples using these condensed gene signatures.
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variants, thus future studies could evaluate these endotypes in

vaccinated populations infected by current variants. Symptoms

were self-reported, which could potentially add a degree of

subjectivity to the analysis; this was difficult to mitigate for

subjective symptoms such as fatigue. In addition, further

subgrouping of patients based on specific symptoms in this cohort

was not feasible due to the sample size, which is why patients were

only separated into those with and without post-COVID symptoms.

A larger future cohort might further elucidate whether there are

specific trajectories associated with distinct inflammatory and

coagulation pathways. Lastly, this analysis was performed on whole

blood, and therefore symptoms that were localized to the brain, lung,

or muscle, might not be easily detected in the blood. Nevertheless, a

simple blood test is more convenient and clinically safer than an

invasive tissue biopsy. Thus, the findings in this study can facilitate

the development of a clinical gene biomarker panel (e.g., further

clinical validation with quantitative real-time PCR) with the gene

expression signatures for each endotype identified in the study

(Figure 4) to better understand and potentially treat the underlying

personalized pathophysiology of each patient. Future studies could

investigate these endotypes at even later time points.

In conclusion, failure to modulate inflammatory and hemostatic

pathways was associated with a higher rate of development of persistent

symptoms after hospitalization for a COVID-19 lung infection, and

vice versa, suggesting that a dynamic immune and coagulation system

was protective against “long COVID”. Modulating these processes in

patients suffering from persistent post-COVID symptoms, guided by

gene expression signatures to determine whether to dampen a

persistently activated response or boost a lacklustre response to

restore homeostasis, may be essential to ensure that these patients

can return to a better quality of life after COVID-19.
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