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Background: Observational epidemiological studies suggested an association 
between the gut microbiota and breast cancer, but it remains unclear whether the 
gut microbiota causally influences the risk of breast cancer. We employed two-
sample Mendelian randomization (MR) analysis to investigate this association.

Methods: We used summary statistics of the gut microbiome from a genome-
wide association study (GWAS) of 18,340 individuals in the MiBioGen study. GWAS 
summary statistics for overall breast cancer risk and hormone receptor subtype-
specific analyses were obtained from the UK Biobank and FinnGen databases, 
totaling 400,000 individuals. The inverse variance-weighted (IVW) MR method was 
used to examine the causal relationship between the gut microbiome and breast 
cancer and its subtypes. Sensitivity analyses were conducted using maximum 
likelihood, MR-Egger, and MR pleiotropic residual sums and outliers methods.

Results: The IVW estimates indicated that an increased abundance of Genus_
Sellimonas is causally associated with an increased risk of ER+ breast cancer 
[odds ratio (OR)  =  1.09, p  =  1.72E−04, false discovery rate (FDR)  =  0.02], whereas 
an increased abundance of Genus_Adlercreutzia was protective against ER+ 
breast cancer (OR  =  0.88, p  =  6.62E−04, FDR  =  0.04). For Her2+ breast cancer, an 
increased abundance of Genus_Ruminococcus2 was associated with a decreased 
risk (OR  =  0.77, p  =  4.91E−04, FDR  =  0.04), whereas an increased abundance of 
Genus_Erysipelatoclostridium was associated with an increased risk (OR  =  1.25, 
p  =  6.58E−04, FDR  =  0.04). No evidence of heterogeneity or horizontal pleiotropy 
was found.

Conclusion: Our study revealed a gut microbiota–mammary axis, providing 
important data supporting the potential use of the gut microbiome as a candidate 
target for breast cancer prevention, diagnosis, and treatment.
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1. Introduction

Breast cancer is a common malignancy affecting women worldwide, being responsible for 
an estimated 2 million new cases annually (Sung et al., 2021). Incidence rates are higher in 
developed countries, which might be attributable to lifestyle and genetic factors (Mubarik et al., 
2022). Approximately 5%–10% of breast cancers are related to genetic factors, such as mutations 
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in genes including BRCA1 and BRCA2. Other factors, including diet, 
exercise, and body weight, have also been linked to the incidence of 
breast cancer (Brédart et al., 2021).

Although the exact mechanisms of breast cancer development are 
not fully understood, studies have suggested that the gut microbiota 
plays a role (Zhu et al., 2018; Teng et al., 2021; Zhang et al., 2021). In 
particular, fecal transfer experiments and studies of antibiotic use suggest 
that gut microbiota may be a factor in carcinogenesis (Kovács et al., 
2021). Gut bacteria, comprising a community of microbes that reside in 
the human gut, are closely related to human health (Adak and Khan, 
2019; Schoeler and Caesar, 2019). They degrade indigestible food 
components, releasing nutrients such as vitamins, amino acids, and 
short-chain fatty acids, and help maintain the balance of the intestinal 
microbial flora (Mei et al., 2022). However, an imbalance in the gut 
microbiota, characterized by an overabundance of harmful bacteria and 
a lack of beneficial bacteria, might contribute to breast cancer 
development. Certain harmful bacteria can promote inflammation, 
which is believed to be an important mechanism of tumor formation 
(Chen et al., 2019; Esposito et al., 2022). Additionally, the gut–mammary 
pathway, characterized by the transfer of gut bacteria by immune cells to 
lymph nodes and then to the breasts via blood or lymphatic circulation, 
has been suggested as a possible mechanism by which gut bacteria 
influence the development of breast cancer (Rodríguez et al., 2021).

Although the causal relationship between the gut microbiota and 
breast cancer is not fully understood, observational epidemiological 
studies have revealed an association (Okubo et al., 2020; Yoon et al., 
2021). However, randomized controlled trials investigating the effects 
of changes in the abundance of intestinal microbes on breast cancer risk 
have not been conducted. To address this gap, we employed Mendelian 
randomization (MR), a research method that uses genetic variation as 
an instrumental variable to assess causality between exposure and 
outcome (Davey Smith and Ebrahim, 2005), to investigate the causal 
influence of the gut microbiota on breast cancer development.

2. Materials and methods

2.1. Study design

In this study, we conducted a rigorous MR analysis that strictly 
adhered to the three major assumptions of MR analysis (Davies et al., 
2018). First, we  ensured that the selected genetic variants were 
associated with the exposure, serving as a predictor of the exposure. 
Second, we ensured that the genetic variation was independent of any 
confounding factors, was assigned randomly, and was unaffected by 
any other factors that could influence the exposure or outcome. Lastly, 
we  ensured that genetic variation did not influence the outcome 
except through the exposure. A concise summary of the overall study 
design is presented in Figure 1.

2.2. Sources of exposure data and selection 
of instrumental variables for human gut 
bacteria

We obtained summary statistics of gut bacteria from the genome-
wide association meta-analysis of the MiBioGen study, which is 
currently the largest study of transgenic genetics in the human 

microbiome (Kurilshikov et  al., 2021). The study included 18,340 
samples of 16S rRNA gene sequencing data from 24 cohorts of 
European, African, Asian, Middle Eastern, and Hispanic ancestry. In 
this study, we used seven fecal DNA extraction methods to obtain 
transgenic taxa data, and we analyzed the microbial composition of 
samples by targeting three different variable regions of the 16S RNA 
gene (V1–V2, V3–V4, and V4). All datasets were condensed to 10,000 
reads per sample, and we classified the 211 intestinal bacterial taxa into 
five levels (phylum, class, order, family, and genus) by the direct 
taxonomic box method. After excluding 15 unnamed bacterial taxa and 
one duplicate bacterial taxon (Zhang et al., 2022), we selected 195 gut 
bacterial taxa as exposures for subsequent MR analysis. We selected 
instrumental variables (IVs) with all-site significance p < 1 × 10−5 and 
performed clump on all IVs of each gut flora (threshold R2 < 0.01, 
distance = 500 kb) to reduce the gap between SNPs (Sanna et al., 2019). 
Linkage disequilibrium (LD) among the IVs was performed to obtain 
more IVs. LD analysis was performed according to the European 1,000 
Genomes Project (Clarke et al., 2012). Subsequently, we harmonized 
the exposure and outcome data. First, we  removed SNPs with 
inconsistent directions of exposure and outcome alleles. Second, 
we excluded palindromic A/T or C/G alleles to avoid ambiguous or 
erroneous results when performing MR analysis. We used F statistic > 
10 to ensure that causality was not affected by weak instrumental bias 
(Burgess and Thompson, 2011). The calculation formula of F statistic 
is as follows: F = R2 (n − k − 1)/ k (1 − R2), where R2 represents the 
variance explained by each IV of the gut microbiota, R2 = 2 MAF (1 − 
MAF) β2, n represents the sample size of the exposure data, k represents 
the number of IVs, and MAF represents the minor allele frequency.

2.3. Breast cancer data sources

We obtained breast cancer genome-wide association study (GWAS) 
data as outcomes from two databases. The genetic influence of cancer 
risk for overall breast cancer and the estrogen receptor status in the UK 
Biobank database was obtained from a large GWAS of the Breast Cancer 
Association Consortium involving 228,951 participants of European 
ancestry, including 122,977 patients with breast cancer (69,501 ER+ 
breast cancers, 21,468 ER− breast cancers) and 105,974 controls 
(Michailidou et  al., 2017). The FinnGen database included 14,000 
patients with breast cancer and 149,394 controls. The number of 
patients with HER2− breast cancer was 12,783, and the control group 
comprised 149,394 subjects. The number of patients with HER2+ breast 
cancer was 7,729, and the control group comprised 149,279 subjects. A 
detailed description of the data is available on this website (data 
available at: https://finngen.gitbook.io/documentation/v/r8/).

2.4. Statistical analysis

In this study, we utilized the inverse variance-weighted (IVW) 
method as the primary analysis tool to assess the impact of the gut 
microbiota on breast cancer risk (Burgess et  al., 2016). We  also 
conducted sensitivity analyses using the weighted median (WM; 
Hartwig et al., 2017), MR-Egger regression (Bowden et al., 2015), and 
MR pleiotropic residual sums and outliers (MR-PRESSO; Verbanck 
et al., 2018) methods. The WM models yield reliable estimates provided 
that at least 50% of the weights were derived from valid IVs (Hartwig 
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et  al., 2017). Although the MR-Egger method can account for 
pleiotropic effects, the obtained associations are often imprecise 
(Bowden et al., 2015). The MR-PRESSO approach can detect pleiotropic 
outliers for SNPs, and in such instances, MR analysis is repeated after 
eliminating these SNPs (Verbanck et al., 2018). Cochran’s Q-value was 
used to evaluate the heterogeneity of causal inference. The intercept test 
of MR-Egger regression was employed to identify horizontal pleiotropic 
effects (Bowden et al., 2015). A value of p less than 0.05 suggested the 
presence of horizontal pleiotropic effects, and thus, we discarded the 
causal inference. To address multiple hypothesis testing, we used the 
Benjamini–Hochberg method and controlled for the false discovery 
rate (FDR; Benjamini and Yekutieli, 2001). A Benjamini–Hochberg-
adjusted value of p of <0.05 was considered statistically significant. All 
MR analyses were conducted using the TwoSampleMR package 
(Hemani et al., 2018) in R software (version 4.2.1), and the circlize 
package was used to create circos circle diagrams (Gu et al., 2014).

3. Results

3.1. Causal inference of the relationship of 
the gut microbiota with breast cancer risk 
using the UK biobank database

In total, 195 intestinal flora were identified from the MiBioGen 
study and categorized into 9 phyla, 15 classes, 20 orders, 32 families, 

and 119 genera. In this study, we performed MR analysis of three breast 
cancer datasets from the UK biobank (UKB) database (total breast 
cancer, ER+ breast cancer, and ER− breast cancer; 
Supplementary Tables 1–3). Figure 2A presents the impact of changes 
in the abundance of 195 bacterial taxa on the risk of ER+ breast cancer 
based on the UKB database. Our findings suggested that an increase in 
the abundance of Genus_Sellimonas is associated with an elevated risk 
of ER+ breast cancer (ORIVW = 1.09, PIVW = 1.72E−04, FDRIVW = 0.02; 
ORWM = 1.08, PWM = 1.01E−02, FDRWM = 0.82; ORMR-Egger = 0.97, PMR-

Egger = 0.84, FDRMR-Egger = 1.00). Conversely, an increase in the abundance 
of Genus_Adlercreutzia was associated with a reduced risk of ER+ 
breast cancer (ORIVW = 0.88, PIVW = 6.62E−04, FDRIVW = 0.04; 
ORWM = 0.90, PWM = 4.18E−02, FDRWM = 0.82; ORMR-Egger = 0.98, PMR-

Egger = 0.92, FDRMR-Egger = 1.00; Table 1; Figure 3). Although the WM 
values of the causal inferences for the two gut genera and the risk of 
ER+ breast cancer were not statistically significant based on our strict 
FDR threshold control, the findings are consistent with the inferred 
direction of IVW, indicating our results are highly reliable.

3.2. Causal inference of the relationship of 
the gut microbiota with breast cancer risk 
using the FinnGen database

To deepen our understanding of the potential associations 
between the gut microbiota and breast cancer, we  expanded our 

FIGURE 1

The study design of the present Mendelian randomization study of the associations of the gut microbiota and breast cancer risk.
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analysis to include additional subtypes of breast cancer. Specifically, 
we examined three distinct subtypes of breast cancer, namely total 
breast cancer, Her2+ breast cancer, and Her2− breast cancer, using the 
comprehensive FinnGen database (Supplementary Tables 4–6). 
Figure 2B presents the effects of changes in the abundance of 195 
bacterial taxa on the risk of Her2+ breast cancer using the FinnGen 
database. Our analysis of this dataset from a diverse population 
revealed that two specific gut bacteria, Genus_Ruminococcus2 and 
Genus_Erysipelatoclostridium, were significantly associated with 
breast cancer risk. We found that an increased abundance of Genus_
Ruminococcus2 was linked to a reduced risk of Her2+ breast cancer 
(ORIVW = 0.77, PIVW = 4.91E−04, FDRIVW = 0.04; ORWM = 0.73, 
PWM = 1.82E−03, FDRWM = 0.22; ORMR-Egger = 0.70, PMR-Egger = 0.06, 
FDRMR-Egger = 0.99). Conversely, an increased abundance of Genus_
Erysipelatoclostridium was associated with an increased risk of Her2+ 
breast cancer (ORIVW = 1.25, PIVW = 6.58E−04, FDRIVW = 0.04; 
ORWM = 1.28, PWM = 6.20E−03, FDRWM = 0.37; ORMR-Egger = 1.12, PMR-

Egger = 0.67, FDRMR-Egger = 0.91; Table 2; Figure 4). These observations 
highlight the potential role of specific gut microbes in the development 
and progression of certain subtypes of breast cancer.

3.3. Sensitivity analysis

All included variants had an F-statistic greater than 10, 
indicating the absence of weak instruments (min = 13.38, 
max = 166.56; Supplementary Table 7). To assess the robustness of 
the four identified causal estimates that met the FDR control, 
we  performed a series of sensitivity analyses to test the 
heterogeneity of exposure to outcome. Neither Cochran’s Q test 
nor MR-Egger revealed heterogeneity, indicating the robustness 
of our findings. Furthermore, the significance (p < 0.05) of the 
MR-PRESSO global test indicated the absence of horizontal 
pleiotropy, with no IVs identified as potential outliers. The 
intercepts of the MR-Egger regression did not deviate significantly 
from 0, and all P-values were greater than 0.05, indicating the 
absence of pleiotropy (Table 3). Leave-one-out sensitivity analysis 
and funnel plots confirmed the reliability and bias of the causal 
effects of the four identified associations (Supplementary Figures 1, 
2). These results suggest a strong causal link between the identified 
flora and the corresponding risk of breast cancer, providing 
further evidence that our findings are reliable.

FIGURE 2

Based on the ER+ breast cancer cohort of the (A) UKB database and the Her2+ breast cancer cohort of the (B) FinnGen database, the causal 
relationship between intestinal bacteria and these two subtypes of breast cancer was summarized via MR analysis. The three heatmaps from the 
outermost circle to the inner circle represent the MR methods IVW, WM, and MR–Egger, respectively. The innermost circle represents the OR 
calculated by the IVW method. MR, Mendelian randomization; IVW, inverse variance-weighted; UKB, UK Biobank; OR, odds ratio; WM, weighted 
median; BC, breast cancer.

TABLE 1 Significant gut microbiota associated with breast cancer based on UKB.

Gut bacteria Outcome NSNP Method OR 95%CI Value of p FDR

Genus_Sellimonas ER+ Breast cancer 10 Inverse variance weighted 1.09 1.04–1.14 1.72E-04 0.02

Genus_Sellimonas ER+ Breast cancer 10 Weighted median 1.08 1.02–1.15 1.01E-02 0.82

Genus_Sellimonas ER+ Breast cancer 10 MR Egger 0.97 0.75–1.25 0.84 1.00

Genus_Adlercreutzia ER+ Breast cancer 8 Inverse variance weighted 0.88 0.81–0.95 6.62E-04 0.04

Genus_Adlercreutzia ER+ Breast cancer 8 Weighted median 0.90 0.81–1.00 4.18E-02 0.82

Genus_Adlercreutzia ER+ Breast cancer 8 MR Egger 0.98 0.71–1.36 0.92 1.00

MR, Mendelian randomization; NSNP, number of single nucleotide polymorphisms; UKB, UK Biobank; OR, odds ratio; CI, confidence interval; FDR, false discovery rate.
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4. Discussion

A recent study found no significant difference in the gut 
microbiota between Ghanaian women with and without breast 
cancer (Byrd et al., 2021), and another study revealed that the gut 
microbial composition of postmenopausal women with breast 
cancer and benign controls was similar (Aarnoutse et al., 2021). 
However, Goedert et al. reported inconsistencies in the diversity 
and specificity of the microbiota in patients with untreated breast 
cancer and healthy controls, with the former being characterized 
by elevated counts of Clostridiaceae, Faecalibacterium, and 
Ruminococcaceae (Goedert et  al., 2015). Additionally, Terrisse 
et al. found that seven bacteria, including Bacteroides uniformis, 
Clostridium bolteae, and Bilophila wadsworthia, were associated 
with a worse breast cancer prognosis after comparing healthy 
human samples (Terrisse et al., 2021). Although the existing data 
primarily focus on the relationship between the gut microbiome 
and breast cancer, the causality remains unclear.

To explore the causal relationship between the gut microbiome 
and breast cancer, we conducted a study using the largest sample size 
to date, namely the MiBioGen study, which included 195 intestinal 

flora samples. We performed MR analysis by setting the gut flora as 
the exposure and the GWAS data of three breast cancers from the 
UKB and three breast cancers from the FinnGen database as the 
outcomes. We  found that the abundance of two intestinal flora, 
specifically Genus_Sellimonas and Genus_Erysipelatoclostridium, 
increased the risk of ER+ breast cancer by 9% and that of Her2+ breast 
cancer by 25%. Conversely, the abundance of two other flora, Genus_
Adlercreutzia and Genus_Ruminococcus2, reduced the risk of ER+ 
breast cancer by 12% and that of Her2+ breast cancer by 23%. 
Although the specific effects of the Sellimonas, Erysipelatoclostridium, 
and Ruminococcus2 flora on breast cancer development are unknown, 
Adlercreutzia appears to play a role in degrading isoflavones into 
genistein, which has been revealed to exert tumor-suppressive effects 
in vivo (Constantinou et al., 1998). Our findings are consistent with 
those of an animal study in which dietary modification affected the 
abundance of Adlercreutzia in feces, potentially serving as a biomarker 
for the efficacy of anticancer dietary supplements (Sharma et al., 2020).

Furthermore, the gut flora can affect hormone levels in the 
body, particularly estrogen levels, which are closely related to 
breast cancer development. Certain gut bacteria can boost 
estrogen synthesis, thereby increasing the risk of breast cancer 

FIGURE 3

Scatterplot of three Mendelian randomization analysis methods. Causal effects of (A) Genus_Adlercreutzia and (B) Genus_Sellimonas on the risk of 
ER+ breast cancer.

TABLE 2 Significant gut microbes associated with breast cancer based on the FinnGen database.

Gut bacteria Outcome NSNP Method OR 95%CI Value of p FDR

Genus_Ruminococcus2 Her2+ Breast cancer 13 Inverse variance weighted 0.77 0.67–0.89 4.91E-04 0.04

Genus_Ruminococcus2 Her2+ Breast cancer 13 Weighted median 0.73 0.60–0.89 1.82E-03 0.22

Genus_Ruminococcus2 Her2+ Breast cancer 13 MR Egger 0.70 0.48–1.01 0.06 0.99

Genus_Erysipelatoclostridium Her2+ Breast cancer 14 Inverse variance weighted 1.25 1.10–1.41 6.58E-04 0.04

Genus_Erysipelatoclostridium Her2+ Breast cancer 14 Weighted median 1.28 1.07–1.54 6.20E-03 0.37

Genus_Erysipelatoclostridium Her2+ Breast cancer 14 MR Egger 1.12 0.68–1.83 0.67 0.91

MR, Mendelian randomization; NSNP, number of single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; FDR, false discovery rate.
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(Papakonstantinou et al., 2022). The gut flora can also affect the 
immune system, and an imbalance in the microbiota can weaken 
the immune system, resulting in an increased risk of breast cancer 
(Erdman and Poutahidis, 2015). The polymorphic microbiome is 
recognized as an emerging cancer hallmark, and investigating the 
interplay between breast tumor tissue and the gut microbiome is 
particularly interesting and important (Hanahan, 2022). Gut 
microbiome pathways can further refine breast cancer 
pathogenesis or complement existing risk stratification algorithms 
to improve their accuracy. Identifying the characteristics of gut 
microbes can provide valuable insights for predicting the efficacy 
and safety of chemotherapy in patients with breast cancer (Guan 
et al., 2020).

Despite our significant findings, this study had multiple 
limitations. Our IV selection threshold control was not sufficiently 
strict to achieve genome-wide statistical significance, which could 
lead to false-positive results. To address this, we  used multiple 
testing correction via FDR estimation. Additionally, the number of 

Her2+ breast cancer cases was small, which could limit the 
statistical power of causal inferences for specific intestinal flora. 
We also did not differentiate between breast cancers according to 
molecular types, such as luminal A, luminal B, HER2+/−, and 
triple-negative breast cancer. Further research is needed to confirm 
these findings.

In summary, our study adds to the growing body of evidence 
supporting the existence of a gut microbiome–mammary axis by 
revealing a causal relationship between four gut microbes and the 
risk of breast cancer. Our study provides important scientific 
evidence for the potential use of the gut microbiome as a 
preventive, diagnostic, and therapeutic tool for breast cancer. 
However, further research is needed to confirm these findings 
and investigate the complex interplay between the gut 
microbiome and breast cancer. The identification of specific gut 
microbes and pathways involved in breast cancer pathogenesis 
could lead to the development of novel therapeutic interventions 
and refinement of existing risk stratification algorithms to 

FIGURE 4

Scatterplot of three Mendelian randomization analysis methods. Causal effects of (A) Genus_Ruminococcus2 and (B) Genus_Erysipelatoclostridium on 
the risk of Her2+ breast cancer.

TABLE 3 Sensitivity analysis of the causal effect of gut microbes on the risk of breast cancer.

Bacterial taxa Outcome Heterogeneity Pleiotropy

IVW Q 
(p-value)

MR Egger Q 
(p-value)

MR-PRESSO 
RSSobs 

(p-value)

MR Egger_
intercept

Value of p

Based on UKB

Genus_Sellimonas ER+ Breast cancer 10.21 (0.33) 9.29 (0.32) 12.66 (0.41) 0.02 0.40

Genus_Adlercreutzia ER+ Breast cancer 6.68 (0.46) 6.16 (0.41) 8.46 (0.54) −0.01 0.50

Based on FinnGen database

Genus_Erysipelatoclostridium Her2+ Breast cancer 11.51 (0.65) 11.31 (0.59) 13.24 (0.68) 0.02 0.66

Genus_Ruminococcus2 Her2+ Breast cancer 7.96 (0.85) 7.50 (0.82) 9.16 (0.87) 0.01 0.51

MR, Mendelian randomization; IVW, inverse variance-weighted; UKB, UK Biobank; MR-PRESSO, MR pleiotropy residual sum and outlier; RSSobs, observed residual sum of squares.
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improve their accuracy. Additionally, our study highlights the 
importance of considering the gut microbiome as a modifiable 
risk factor for breast cancer and underscores the need for further 
research in this area.
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