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Objective: Uterine intravenous leiomyomatosis (IVL) is a rare and unique

leiomyoma that is difficult to surgery due to its ability to extend into intra- and

extra-uterine vasculature. And it is difficult to differentiate from uterine

leiomyoma (LM) by conventional CT scanning, which results in a large number

of missed diagnoses. This study aimed to evaluate the utility of a contrast-

enhanced CT-based radiomic nomogram for preoperative differentiation of IVL

and LM.

Methods: 124 patients (37 IVL and 87 LM) were retrospectively enrolled in the

study. Radiomic features were extracted from contrast-enhanced CT before

surgery. Clinical, radiomic, and combined models were developed using

LightGBM (Light Gradient Boosting Machine) algorithm to differentiate IVL and

LM. The clinical and radiomic signatures were integrated into a nomogram. The

diagnostic performance of the models was evaluated using the area under the

curve (AUC) and decision curve analysis (DCA).

Results: Clinical factors, such as symptoms, menopausal status, age, and

selected imaging features, were found to have significant correlations with the

differential diagnosis of IVL and LM. A total of 108 radiomic features were

extracted from contrast-enhanced CT images and selected for analysis. 29

radiomics features were selected to establish the Rad-score. A clinical model

was developed to discriminate IVL and LM (AUC=0.826). Radiomic models were

used to effectively differentiate IVL and LM (AUC=0.980). This radiological
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nomogram combined the Rad-score with independent clinical factors showed

better differentiation efficiency than the clinical model (AUC=0.985, p=0.046).

Conclusion: This study provides evidence for the utility of a radiomic nomogram

integrating clinical and radiomic signatures for differentiating IVL and LM with

improved diagnostic accuracy. The nomogrammay be useful in clinical decision-

making and provide recommendations for clinical treatment.
KEYWORDS

intravenous leiomyomatosis, contrast-enhanced CT, radiomics, preoperative
differential, nomogram
1 Introduction

Intravenous leiomyomatosis (IVL) is a rare benign type of

uterine leiomyoma. Although histologically benign, it can spread

to the extrauterine venous system or even the heart and pulmonary

arterial system (1, 2). The current information on IVL mainly

comes from case reports and case series, and its clinical presentation

is nonspecific and may lead to right heart obstruction, pulmonary

embolism and even sudden death (3). The development of IVL is

insidious, and the clinical symptoms and pathological imaging

features lack specificity and can cause serious consequences,

especially in patients presenting with cardiac symptoms.

In addition, the pathological presentation of IVL is the same as

that of common uterine leiomyoma (LM), and it may be difficult for

pathologists to distinguish it from LM in patients with primary LM

combined with IVL, especially if the lesions are confined to the

uterus without invasion of the extrauterine veins. Some patients

were only diagnosed with IVL after a previous hysterectomy to

remove a primary uterine tumor. Pathological tissue findings of

invasion of the parauterine veins may be a marker for IVL

diagnosis. As a result, IVL is often underestimated due to the ease

of misdiagnosis and the lack of specific identifying biomarkers.

The imaging presentation of IVL depends on the location and

extent of its involvement. Typical imaging methods for the diagnosis

of IVL include ultrasonography, computed tomography (CT) and

magnetic resonance imaging (MRI). When a mass is confined to the

pelvis, it is difficult to completely distinguish between IVL and LM on

the basis of traditional radiology alone unless it has invaded the

extrauterine vessels and is growing invasively (4). Radiomics refers to

quantitative methods of extracting image features from conventional
ody mass index; CT,
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cava; IVL, Intravenous
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ging, NPV, Negative
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radiographic images and analyzing the data to create models with

features to aid in diagnosis, prediction and prognosis (5). Previous

studies have demonstrated the value of radiomic features as imaging

predictors that can be used to treat and diagnose various types of

tumors (6). A study applied a radiomic model generated from

features extracted from the region of interest covering the uterus

with good diagnostic performance for uterine sarcomas and

leiomyomas (7). However, no research has been performed to

determine whether contrast-enhanced CT-based radiomics can be

used to differentiate IVL and LM.

Therefore, this study aimed to use radiomics features extracted

from clinically acquired abdominal pelvic CT scans to predict

whether LM patients have IVL features prior to treatment.

2 Materials and methods

2.1 Patients

The Peking Union Medical College Hospital (PUMCH) ethics

committee approved the study and waived informed consent from

the patients (No. JS-2964). We reviewed the PUMCH surgical

database. Patients who underwent gynecologic surgery between

January 2011 and December 2020 were pathologically confirmed

to have IVL. The inclusion criteria were as follows: 1) surgically and

pathologically confirmed IVL or LM; 2) abdominal pelvic contrast-

enhanced CT within the 20 days prior to gynecologic surgery; and

3) no relevant treatment prior to CT examination. The exclusion

criteria were as follows: 1) no pathological findings, 2) poor image

quality or significant image artifacts affecting the visualization, 3)

incomplete clinical data, 4) intravascular leiomyosarcoma. 5) and a

lack of CT images. Patients with uterine LM were matched to those

who underwent surgery for uterine neoplasms by BMI, risk factors,

and CT tube voltage. Ultimately, CT results from 124 patients (37

IVL and 87 LM) were included in the study. Figure 1 shows the flow

chart of patient enrollment.

2.2 CT scan protocol

Patients who underwent contrast-enhanced CT examinations of

the abdomen and pelvis were examined using GE Discovery CT (GE
frontiersin.org
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Medical, Piscataway, NJ, USA) or Somatom Definition Flash CT

(Siemens Medical Solutions, Germany). All patients underwent

thin-slice image scanning using a soft tissue algorithm, and CT

images were obtained for the arterial (30 seconds postinjection),

venous (60 seconds postinjection), and delayed (120 seconds

postinjection) phases. The scanning parameters were as follows:

tube voltage, 120 kV with automatic tube current modulation

initiated; collimation, Somatom Definition Flash CT 128 ×

0.6 mm, GE Discovery CT 64 × 0.6 mm; slice thickness, 0.625-

1 mm; slice interval, 0.625-1 mm.
2.3 Image segmentation

The target of image segmentation is the intrauterine mass.

When there were multiple masses in the uterus, the largest mass

was chosen as the region of interest (ROI). Image segmentation was

performed independently by two radiologists with extensive

experience in gynecologic tumor imaging diagnosis. They were

blinded to the patients’ histopathology. One of the radiologists

(radiologist A, with 7 years of experience in diagnostic imaging of

gynecologic tumors) manually drew the ROI slice by slice using the

open-source software 3D Slicer 4.11.0 (https://www.slicer.org/) (8).

Another radiologist (radiologist B, with 10 years of experience in

diagnostic imaging of gynecologic tumors) reviewed all ROIs

manually segmented by radiologist A.
2.4 Data preprocessing

The dataset was randomly assigned in a 3:1 ratio to either the

training dataset or test dataset. All cases in the training dataset were

used to train the predictive model, while cases in the test dataset

were used to independently evaluate the model’s performance.

Medical volumes are common with heterogeneous voxel spacing

because of different scanners or different acquisition protocols. Such

spacing refers to the physical distance between two pixels in an
Frontiers in Oncology 03
image. Spatial normalization is often employed to reduce the effect

of voxel spacing variation. The fixed resolution resampling method

was used in our experiment to handle the aforementioned

problems. All images were resampled to a voxel size of 3*3*3 mm

to standardize the voxel spacing. Finally, the data were standardized

using z score standardization (zero-mean normalization).
2.5 Radiomics feature extraction

The handcrafted features can be divided into three groups: (I)

geometry, (II) intensity and (III) texture. The geometric features

describe the three-dimensional shape characteristics of the tumor.

The intensity features describe the first-order statistical distribution

of the voxel intensities within the tumor. The texture features

describe the patterns or the second- and high-order spatial

distributions of the intensities. Here, the texture features were

extracted using several different methods, including the gray-level

cooccurrence matrix (GLCM), gray-level run length matrix

(GLRLM), gray level size zone matrix (GLSZM) and

neighborhood gray-tone difference matrix (NGTDM) methods. A

total of 107 categories of handcrafted features were extracted,

including 18 geometry features, 14 intensity features, and 75

texture features. All handcrafted features were extracted with an

in-house feature analysis program implemented using Pyradiomics

(http://pyradiomics.readthedocs.io).
2.6 Radiomics feature selection

2.6.1 Intraclass correlation coefficient
First, the robustness of the image features was evaluated. As the

feature calculation depends on the ROI subregion contours, image

features that are robust against ROI segmentation uncertainties

were selected. Here, both test-retest analysis and interrater analysis

were used to determine the feature robustness. Based on 35 patients

randomly chosen from the discovery dataset, the test-retest analysis
FIGURE 1

Flow chart demonstrating the inclusion and exclusion criteria for the study participants with IVL and UM. IVL, intravenous leiomyomatosis; UM,
uterine leiomyoma; BMI, body mass index; CTA, computed tomography.
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was performed, where for each patient, the tumor subregions were

segmented twice by one rater. The dataset used for interrater

analysis included another 35 randomly chosen patients, where for

each patient, the ROI subregions were segmented by two raters

independently. The features extracted from these multiple-

segmented subregions were assessed using the intraclass

correlation coefficient (ICC). Features with an ICC of ≥ 0.85 were

considered robust against intra- and interrater uncertainties.

Pipeline of radiomics in Figure 2.

2.6.2 Spearman correlation
For features with high repeatability, Spearman’s rank

correlation coefficient was also used to calculate the correlation

between features (Supplementary Figure 1 Spearman correlation of

each feature), and one of the features with a correlation coefficient

greater than 0.9 between any two features was retained. To retain

the ability to depict features to the greatest extent, we use a stringent

recursive deletion strategy for feature filtering; that is, the feature

with the greatest redundancy in the current set is deleted each time.

2.6.3 LASSO and radiomics signature
The least absolute shrinkage and selection operator (LASSO)

Cox regression model was used on the discovery dataset for

signature construction. Depending on the regulation weight l,
LASSO shrinks all regression coefficients toward zero and sets the

coefficients of many irrelevant features exactly to zero. To find an
Frontiers in Oncology 04
optimal l, 10-fold cross validation with minimum criteria was

employed, where the final value of l yielded the minimum cross

validation error (Figure 3). The retained features with nonzero

coefficients were used for regression model fitting and combined

into a radiomics signature. Subsequently, we obtained a radiomics

score (Rad-score) for each patient by a linear combination of

retained features weighed by their model coefficients. The Python

scikit-learn package was used for LASSO regression modeling. The

histogram of the Rad-score is shown in Figure 3.
2.7 Clinical factor model construction

Age, body mass index (BMI), weight, height, symptoms,

reproductive history, menopausal history, estrogen receptor (ER)

status, progesterone receptor (PR) status, and diabetes were selected

as clinical factors for the IVL and LM groups and analyzed for

differences between groups. The selected clinical factors were fed

into the LightGBM model for clinical signature building.
2.8 Radiomics model construction

After Lasso feature screening, we input the final features into the

LightGBM model for risk model construction. Here, we adopt 3-

fold cross verification to obtain the final radiomics signature.
B C DA

FIGURE 2

Illustration of the study pipeline. (A), Intrauterine masses were segmented from contrast-enhanced CT as ROIs. (B), From the ROI, 107 radiomics
features were extracted, including geometry, intensity and texture. (C), LASSO was used to select features, and Spearman’s rank correlation
coefficient was used to calculate the correlation between features. (D), Using the selected features, models were constructed to differentiate IVL and
UM. ROI, regions of interest; LASSO, Least absolute shrinkage and selection operator; MSE, mean squared error; ROC, receiver operating
characteristic curve. DCA, Decision Curve Analysis.
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Receiver operating characteristic (ROC) curves were plotted to

assess the diagnostic performance of the predictive models, and

the corresponding area under the curve (AUC), diagnostic

accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) were analyzed.
2.9 Construction of the nomogram

Furthermore, to assess the incremental prognostic value of the

radiomics signature to the clinical risk factors intuitively and

efficiently, a radiomics nomogram was presented on the

validation dataset. The nomogram combined the radiomics

signature and the clinical risk factors based on logistic regression

analysis. To compare the agreement between the IVL prediction of

the nomogram and the actual observation, the calibration curve

(Hosmer−Lemeshow H test) was calculated. The AUC was

calculated simultaneously for the training and test groups to

quanti fy the discr iminabi l i ty of the nomogram. The

discriminability of the model was tested using the Delong test.

Finally, decision curve analysis (DCA) was used to assess the clinical

utility of this nomogram by quantifying the net benefit of the
Frontiers in Oncology 05
training and test sets of the combined model at different

threshold probabilities.
2.10 Statistical analysis

The Python statamodels (version 0.13.2) package was used to

perform statistical analysis, and a p value < 0.05 was considered

statistically significant. We analyzed the differences between the IVL

and uterine LM groups using Student’s t test or Mann−Whitney U

tests for continuous variables; the chi-square test or Fisher’s exact

test was applied for categorical variables.
3 Results

3.1 Patient characteristics

A total of 124 patients, including 37 IVL and 87 LM patients,

were included in our study. Patients were divided into a training set

(82 patients) and an independent test set (42 patients) based on

treatment duration. A pathologist reviewed the pathological data.
B

C

A

FIGURE 3

Figures of logistic LASSO regression. (A), Lasso path plot of the model in the training dataset. (B), Cross-validation plot for the penalty term. (C),
Spearman correlation coefficients between features were calculated, and 27 features with correlations were retained.
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All patients underwent surgical treatment; there were 18 (48.6%)

patients with IVL and 44 (50.6%) patients with LM in the training

group and 19 (51.4%) patients with IVL and 43 (49.4%) patients

with LM in the test group. The characteristics of the patients in the

cohort are shown in Table 1. Table 1 summarizes the patients’

baseline characteristics and postoperative pathological findings in

the training and validation sets. The comparison of BMI, weight,

height, ER, PR, diabetes, and fertility history showed no significant

difference between the two groups and within each group (p>0.05),

ensuring a reasonable classification. Significant differences between

the cohorts were found in symptoms, menopause history, age, mass

size, hypertension, and history of surgery (p<0.05).
3.2 Feature selection and radiomics
signature development

Features with an ICC of ≥ 0.85 were considered robust against

intra- and interrater uncertainties. After robustness evaluation, 62

categories out of the initial 108 image features remained. Spearman

correlation coefficients between features were calculated, and features

with correlations were retained (Supplementary Table 1). As shown in

Figure 3, 29 features of nonzero coefficients were selected to establish

the Rad-score with a LASSO logistic regression model (l = 0.005429).

The formula used to calculate the Rad-score is described in the

Supplementary Materials (Supplementary Table 1).
3.3 Clinical factor model

Analysis of differences between groups showed that symptoms,

menopausal history, and age were independent clinical risk factors

for IVL (Table 1). A clinical signature was composed of three factors

selected, namely, symptoms, menopausal history, and age. In the

training group, the AUC value of the radiomics model was 0.865
Frontiers in Oncology 06
(95% CI 0.786–0.944); in the test group, the AUC value of the model

was 0.826 (95% CI of 0.669–0.983) (Table 2, Figure 4A).
3.4 Diagnostic performance of
radiomics features

Our results show that the radiomics features have good

predictive performance for both the training and test sets. The

AUCs of the radiomics model were significantly larger than those of

the clinical model in both the training dataset (AUC=0.998 95% CI:

0.995-1.000) and the validation dataset (AUC=0.98; 95% CI: 0.936-

1.000) (Table 2, Figure 4A).
3.5 Combined models and
radiomics nomogram

A combined model was developed by integrating the Rad-score

and clinical predictors. A good performance was shown for the

combined nomogram model in both the training dataset (AUC =

0.999 95% CI: 0.998-1.000) and the validation dataset (AUC =

0.985; 95% CI: 0.951-1.000) (Table 2, Figure 4A). The diagnostic

accuracy, sensitivity, specificity, PPV, NPV, precision and recall of

the three models are also demonstrated in Table 2.

The calibration curve showed that the IVL predicted by the

combined model was very close to the actual results in both datasets

(Figure 4B). The DCA also revealed the improvement in the

combined model in both datasets (Figure 4C). This showed that

when the threshold probability was between 1% and 99%, the

combined model was more beneficial than the Rad-score and

clinical models.

We also developed a nomogram to visualize the model for the

combination (Figure 5). In the nomogram, points for each variable

can be added to the corresponding axis to determine the risk of IVL.

A higher total score is associated with a greater risk of IVL.
TABLE 1 Demographic and clinical characteristics of study populations.

Characteristic Total (n=124) IVL (n=37) UM (n=87) p-value

Age 46.51 ± 8.17 43.32 ± 8.09 47.87 ± 7.86 0.004

BMI 24.01 ± 3.95 25.01 ± 3.03 23.59 ± 4.22 0.069

Weight (kg) 61.45 ± 10.93 63.82 ± 8.87 60.43 ± 11.59 0.114

height (cm) 159.89 ± 5.27 159.68 ± 4.94 159.98 ± 5.43 0.768

Symptoms 68 (0.5484) 35 (0.9459) 33 (0.3793) <0.001

Reproductive history 114 (0.9194) 34 (0.9189) 80 (0.9195) 0.991

menopause 40 (0.3226) 5 (0.1351) 35 (0.4023) 0.003

ER- Positive 100 (0.8065) 33 (0.8919) 67 (0.7701) 0.118

PR- Positive 123 (0.9919) 36 (0.9730) 87 (1.0000) 0.126

Hypertension 28 (0.2258) 4 (0.1081) 24 (0.2759) 0.041

Diabetes 17 (0.1371) 5 (0.1351) 12 (0.1379) 0.967
fron
BMI, body mass index; ER, estrogen receptor; PR, progesterone receptor.
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According to the DeLong test, the AUCs of the nomogram-based

models in the training and test sets were significantly different from

those of the clinical model (P=0.046) (Supplementary Table 2).

Therefore, we found that the nomogram method performed well on

both sets of data. Furthermore, the Hosmer−Lemeshow test showed no

statistically significant difference between the training and testing

subsets (p>0.05) (Table 3).
4 Discussion

In this retrospective study, we constructed for the first time a

comprehensive model incorporating the Rad-score, symptoms,

menopausal history and age and established a preoperative

distinction between IVL and LM based on contrast-enhanced

CT images.

The combined model consisting of radiomic features and

clinical factors exhibited the best discriminatory ability and fit,

indicating a good diagnostic performance. The AUC values of the

model were 0.999 and 0.985 in the training and test

groups, respectively.

LM is the most common uterine neoplasm in gynecology, with a

prevalence of up to 20-30% in women of childbearing age. It has

typical imaging features and clinical manifestations, and the

radiological diagnosis of classic LM is definitive (9, 10).

Occasionally, however, LM with rare growth patterns occurs,

mostly in women of reproductive age, and IVL is one type of LM

with an unusual growth pattern that presents as serpentine growth

within the inferior vena cava (IVC) and genital veins and may

spread to the right atrium (RA), making its identification clinically

and radiologically more challenging (4). Worldwide, fewer than 300

cases of IVL and fewer than 100 cases of cardiac involvement have

been reported. The imaging features of IVL are unclear and are

often misdiagnosed preoperatively. It is mostly evaluated clinically

using multimodal imaging techniques such as echocardiography,

contrast-enhanced CT and MRI, which can provide important

information revealing the extent and location of the mass and are

used to determine surgical options (11). Echocardiography can

assess the extension of the tumor into the RA, and CT and MRI

can show the continuity of intraluminal tumor growth from the

pelvic veins. It has been suggested that MRI is a particularly valuable

imaging technique for the preoperative evaluation of IVL, which in

the inferior vena cava looks similar to a sieve on axial images and to

a sponge on T2-weighted images with several fissures parallel to the

IVL, which may lead to turbulent blood flow (12–15). However,

MRI has poor spatial resolution and is time-consuming and

unsuitable for patients with metal in their bodies. Enhanced CT

can produce multilevel enhanced CT data in a short period, directly

displaying the full extent of the tumor, with a sponge and sieve

appearance similar to MRI (16). In addition, the combined scan of

the chest, abdomen and pelvis can clearly show the changes in the

uterus and the extent of tumor invasion (17, 18). According to

previous reports in the literature, radiologists are prone to

misdiagnose IVL located in the venous system or RA as an

occupying lesion, mainly leiomyosarcoma, RA myxoma,

endometrial stromal sarcoma, and intravenous thrombosis (19,
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FIGURE 4

Results of the LightGBM models: (A), Receiver operator characteristic curves of the 3 LightGBM models for identifying patients with IVL and uterine
LM in the training and test datasets. (B), The calibration curve of the 3 models. (C), The decision curve analysis (DCA) of the three models of the
training and test datasets.
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20). However, these patients usually do not have a history of LM. It

is almost impossible for radiologists to distinguish IVL confined to

parauterine veins without distant venous system invasion, and in

the early stages, LM is difficult to distinguish completely from IVL

clinically and radiologically.

Previous studies did not find significant differences between IVL

and LM in terms of histomorphology and immunophenotype, such

as both expressing ER and PR and smooth muscle cell markers, and

no elevated proliferation index or nuclear division number was

found, suggesting that both have more of the same intrinsic

molecular basis. Our data and recent reports suggest that IVL
Frontiers in Oncology 08
accounts for approximately 1% of LM surgical specimens and its

incidence is increasing. Some providers have an inadequate

understanding of IVL, therefore, there are more missed diagnoses

and its incidence is seriously underestimated (21–23). Some

scholars compared the transcriptomic data of IVL and LM and

found that antiapoptosis and angiogenesis-related genes may be

novel biomarkers of IVL, indicating that IVL is very different from

LM on a molecular and genetic basis. Further analysis of their gene

expression profiles revealed that IVL and LM share some molecular

genetic features and that IVL has a similar expression profile to

leiomyosarcoma, further supporting that IVL has a quasi-malignant
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behavior and is not a distinct variant of LM (24, 25). However, these

molecular genetic features are not independent predictors, and

although they are associated with the occurrence of IVL, they do

not distinguish IVL from LM.

By extracting high-dimensional imaging features from different

modality images and mining the data, radiomics can be used for

molecular typing of tumors, differential diagnosis, treatment option

selection, efficacy detection and prognosis assessment (6).

These high-dimensional features are indistinguishable by the

human eye and contain biological information determined by

genes, proteins and tissue microcomponents, which radiomics can

measure (26, 27). A radiomic model with features extracted from a

ROI containing the whole uterus was shown to have good

diagnostic performance for uterine fibroids and uterine sarcomas

with an AUC of 0.83 (7). Some studies have used radiomic features

to distinguish uterine sarcomas from atypical fibroids, showing

better diagnostic efficacy than MRI features alone. Radiologists

achieved an AUC of 0.752 for MRI-based diagnostic efficacy, and

the radiomic model achieved an AUC of 0.830 (28). One study

established an MRI-based radiomic nomogram for detecting deep

myometrial invasion in early-stage endometrioid adenocarcinoma,

showing superior diagnostic accuracy to radiologists, with an AUC

of 0.883 (29). This suggests that radiomic methods can better

predict and differentiate the type of uterine tumors compared to

traditional clinical features. However, there are no relevant

radiomic studies to better differentiate and distinguish uterine

smooth muscle tumors with unusual growth patterns, which are

often rare and require multiple imaging techniques to aid in the

differential diagnosis.

In our study, the nomogram was constructed using the

Radscore and contrast-enhanced CT with radiological methods.

The Radscore is described as the probability of principal component

analysis calculated from the radiomic signature, which is

constructed based on sixteen selective radiomic features. The

AUCs for predicting the radiomic features of IVL were 0.998

(training group) and 0.980 (test group). Nomograms constructed

from radiological and clinical features show good discrimination
Frontiers in Oncology 09
between IVL and LM. The AUC values of the training and test

groups were 0.999 (95% CI: 0.998–1.000) and 0.985 (95% CI: 0.951-

1.000), respectively. The results showed that the nomogram

effectively predicted IVL in both the training and validation

groups, exceeding the predictive accuracy of the radiomics and

clinical models. The decision curve suggests that patients could

benefit more from using the radiological nomogram in this study if

they have a threshold probability of 1% to 99%. The combined

model has better predictive performance than clinical factors or

radiological features alone. The model is clear, simple, and easy to

understand, which makes it more suitable for clinical application.

In the analysis of clinical factors between the IVL and LM

groups, there were significant differences in age, symptoms, and

menopausal history, so we introduced these factors into the clinical

model and they demonstrated some predictive capacity. IVL often

has no specific symptoms before causing cardiac insufficiency, and

its clinical manifestations are usually related to the scope and size of

the tumor (25). In clinical practice, we have found that IVL

extending to the extrauterine venous system often accompanies

large pelvic LM and causes related symptoms. However, only a tiny

percentage of LMs develop at unusual locations beyond the uterus.

All IVL cases occur in women, and the literature reports that the

mean age of onset is 47 years; 90% are premenopausal, and 64%

have uterine fibroids or a history of hysterectomy (30). The mean

age of the cases in this group was 43.3 years; patients with a history

of menopause in IVL were significantly younger than those in the

LM group, which is similar to the literature.

This study still has some limitations. First, the sample size was

relatively small, and it was a single-center study because the study

population was a rare disease. Second, this study was retrospective,

which may lead to patient selection bias. Third, manual ROI

segmentation has inherent inter- and intra-observer differences.

Fourth, we only built a radiomic model based on enhanced CT

without using other imaging, so it is impossible to gage the quality

of each image. In the future, we will include more patients and make

further technical improvements, such as fully automated image

segmentation, deep learning and multiparametric modeling, to

explore more accurate radiological diagnoses.
5 Conclusion

In conclusion, our study confirmed that a radiomics nomogram

model and radiomics signature based on contrast-enhanced CT can

help differentiate between IVL and LM patients and predict whether
FIGURE 5

Nomograph based on the combined model.
TABLE 3 Hosmer-Lemeshow test.

Clinic Signature Rad Signature Nomogram

UM 0.099372 0.598583 0.046526

IVL 0.459798 0.913913 0.560273
Hosmer-Lemeshow test showed no statistically significant difference between the training and
testing subsets (p>0.05)
frontiersin.org

https://doi.org/10.3389/fonc.2023.1239124
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shao et al. 10.3389/fonc.2023.1239124
IVL will invade the extrauterine vessels when it is still confined to

the uterus to guide clinical treatment.
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