
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Xianhuo Wang,
Tianjin Medical University Cancer Institute
and Hospital, China

REVIEWED BY

Sabino Ciavarella,
National Cancer Institute Foundation
(IRCCS), Italy
Pengpeng Xu,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Claudio Tripodo

Claudio.tripodo@unipa.it

†These authors have contributed equally to
this work

RECEIVED 18 April 2023
ACCEPTED 02 August 2023

PUBLISHED 23 August 2023

CITATION

Tripodo C, Bertolazzi G, Cancila V,
Morello G and Iannitto E (2023)
Pseudotemporal ordering of spatial
lymphoid tissue microenvironment
profiles trails Unclassified DLBCL at
the periphery of the follicle.
Front. Immunol. 14:1207959.
doi: 10.3389/fimmu.2023.1207959

COPYRIGHT

© 2023 Tripodo, Bertolazzi, Cancila, Morello
and Iannitto. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Brief Research Report

PUBLISHED 23 August 2023

DOI 10.3389/fimmu.2023.1207959
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spatial lymphoid tissue
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We have established a pseudotemporal ordering for the transcriptional

signatures of distinct microregions within reactive lymphoid tissues, namely

germinal center dark zones (DZ), germinal center light zones (LZ), and peri-

follicular areas (Peri). By utilizing this pseudotime trajectory derived from the

functional microenvironments of DZ, LZ, and Peri, we have ordered

the transcriptomes of Diffuse Large B-cell Lymphoma cases. The apex of the

resulting pseudotemporal trajectory, which is characterized by enrichment of

molecular programs fronted by TNFR signaling and inhibitory immune

checkpoint overexpression, intercepts a discrete peri-follicular biology. This

observation is associated with DLBCL cases that are enriched in the

Unclassified/type-3 COO category, raising questions about the potential extra-

GCmicroenvironment imprint of this peculiar group of cases. This report offers a

thought-provoking perspective on the relationship between transcriptional

profiling of functional lymphoid tissue microenvironments and the evolving

concept of the cell of origin in Diffuse Large B-cell Lymphomas.

KEYWORDS

digital spatial profiling, lymphoid tissue microenvironment, pseudotemporal ordering,
diffuse large B cell lymphoma, cell-of-origin
Introduction

Diffuse large B-cell lymphomas (DLBCL) are phenotypically and genetically heterogeneous.

Applying a cell-of-origin (COO) classification algorithm to the gene expression profile

of DLBCLs segregates the cases into two major subgroups (1). Germinal Center B Cell-like

(GCB) DLBCL show a high level of expression of genes characteristic of physiological GC
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reaction molecular programs while Activated B Cell-like (ABC)

DLBCL express genes typical of mitogenically-activated B-cells, are

enriched in plasma cell-related programs, and regarded as

embodying post-GC dynamics. A third subgroup of DLBCL is left

out from the GCB/ABC dichotomy, which does not express either

set of genes at a high level and is accordingly named Unclassified or

Type-3 (2). Based on the transcriptional profile similarity, GCB and

ABC DLBCL are considered frozen in a different stage of the

functional modulation pathway engaging B-cells in their GC

journey towards plasma cells or memory B (3). At difference, the

Unclassified/Type-3 DLBCL group has been considered as possibly

consisting of more than one type of DLBCL and populated mainly

by borderline cases not assigned by the clustering algorithm, yet

actually belonging to the ABC or GCB group (2). Several

subsequent studies, applying different profiling platforms and

classification algorithms, reproduced this molecular DLBCL

tripartition, with the GCB representing the largest group (46-

58%), followed by ABC (27-40%) and Unclassified/Type-3 (10-

22%) (4–7). Retrospective studies reported that GCB DLBCL show

a significantly better overall survival (OS) than ABC; conversely, the

Unclassified/Type-3 group outcome varies widely among different

retrospective series, showing an OS curve comparable to that of

ABC or GCB DLBCL or lying in between (4–7). Of note, in two

large prospective series, each including over a thousand patients, the

Unclassified/Type-3 DLBCL showed an outcome comparable to

that of the ABC group (8, 9). Recently, comprehensive genomic

analysis with different platforms led to a genetic subtype

classification of DLBCLs (6, 10, 11). With the caveat that nearly

half of the cases remained unclassified (6, 12), the genetic

classification highlighted that each of the three DLBCL COO

subgroups included multiple genetic profiles. In particular, the

Unclassified/Type-3 COO came out to be enriched for the BN2

genetic subtype that accounted for over one-third of cases, and

comprised also cases belonging to ST2, EZB, MCD, A53 genetic

clusters (12). BN2 DLBCL are characterized by mutations that

activate NOTCH2 or inactivate the NOTCH antagonist SPEN,

frequently co-occurring with BCL6 translocations. Genetic

aberrations targeting regulators of the NF-kB pathway are

another prominent feature of BN2 DLBCL. Mutations targeting

components of the BCR-dependent NF-kB pathway (PRKCB,

BCL10, TNFAIP3, TNIP1) occur in over 50% of cases predicting

that these tumours rely on B-cell receptor-dependent NF-kB
activation and could be vulnerable to antagonists of B-cell

receptor signalling (6). The genomic profile of the BN2 cluster

closely reminds that of Marginal Zone Lymphoma (MZL) and

transformed MZL. All BN2 cases were confirmed to display a

canonical DLBCL histological picture, suggesting that the

Unclassified/Type-3 COO, besides misclassified ABC and GCB

cases, may host a distinct subset of DLBCL (6). However, whether

the Unclassified/Type-3 group is merely the wastebasket of gene

expression profile (GEP) classification algorithms or the profile of

DLBCL originating from discrete functional differentiation stages

and microenvironmental settings has not been elucidated.
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We have exploited the spatial transcriptional profiling (1824 genes,

cancer transcriptome atlas panel, https://www.nanostring.com/

products/geomx-digital-spatial-profiler/geomx-rna-assays/geomx-

cancer-transcriptome-atlas/) of 15 microregions (Regions of Interest,

ROIs) relative to GC dark zone (DZ, n=5) and light zone (LZ, n=5)

microenvironment and peri-follicular (Peri n=5) areas. We used a

pseudotime algorithm called PhenoPath (13) to learn about the

biological progression that characterizes the regions of interest. In the

context of single-cell analysis, pseudo time is a computational construct

that is used to order cells along a temporal trajectory, based on the

similarity of their gene expression profiles. Pseudo time analysis aims to

capture the temporal ordering of cells based on the expression changes

of key genes, without directly measuring the time point at which the

cells were collected. Pseudo time analysis can help to reveal the cellular

processes that are active during different stages of development or

differentiation, and can provide insights into the regulatory networks

that govern these processes. The recent development of a pseudotime

algorithm calibrated for bulk RNA-seq data (13) allowed us to extract

the latent temporal information from the spatial profiling of the ROIs.
Results and discussion

Using PhenoPath we estimated the pseudotemporal values from

the bulk gene-expression matrix (Supplementary Table 1). Based on

the pseudotime estimation (see methods), we obtained a

pseudotemporal ordering of the individual ROIs. The pseudotime

trajectory extended from DZ towards Peri regions, showing a clear

association between pseudotemporal order and the spatial and

functional ROI features (Figure 1A). Pseudotemporal ordering of

digital spatial profiling ROIs enabled the identification of a

pseudotime-associated gene signature composed of 184 genes

significantly correlated with pseudotime (68 positively and 116

negatively) (Figure 1B; Supplementary Table 1). These 184 genes

are representative of discrete variations in the ROI transcriptome

along the calculated pseudotime ordering, reflecting variations in

the underlying biology of the profiled microregions. The genes

positively associated with pseudotime were mostly enriched in TNF

signaling pathway genes (i.e. NFRSF14, TNFRSF25, TNFRSF1A,

TNFRSF1B) and in genes involved in the negative regulation of T-

cell activation (i.e. CD274, VSIR, LAG3, IDO1 – Supplementary

Table 2) while those inversely associated with pseudotime were

enriched in cell proliferation, DNA damage repair, and B-cell

receptor signaling programs (Supplementary Tables 2, 3). In the

attempt to investigate the effects of the pseudotime trajectory

derived from the transcriptional profiling of functional

microenvironments of a reactive lymphoid tissue on the ordering

of DLBCL transcriptomes, we applied the 184-genes pseudotime

signature to four independent gene expression-profiled DLBCL

cohorts (4–7) (Figures 2A–D). The four cohorts characterized by

different case selection criteria and gene expression profiling

technologies (Illumina, Affymetrix), displayed a generally
frontiersin.org
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conserved significance of the GCB vs ABC comparison in terms of

OS (Supplementary Figures 1A–D). At odds, the fractions and

prognostic behavior of Unclassified/Type-3 COO clusters in the

four series were quite different (Supplementary Figures 1A–D),

suggesting that this group of DLBCL might encompass a

remarkable biological heterogeneity. By applying the pseudotime-

associated microenvironment signature according to the tertile

distribution of the cumulative expression of genes negatively and

positively associated with pseudotime, DLBCL cases of the four

cohorts displayed a common trend towards the enrichment of GCB

cases in the low-pseudotime tertile (Figure 2E) a rather

heterogeneous distribution of ABC cases, and a clear enrichment

of Unclassified/Type-3 COO cases in the high-pseudotime tertile

(Figure 2E). Consistently, the distribution of DLBCL genetic
Frontiers in Immunology 03
subgroups according to Schmitz across the low-, intermediate-,

and high-pseudotime tertiles showed significant enrichment of EZB

and other GCB genetics in the low-pseudotime group (Figure 2F;

Supplementary Table 4). At the same time, BN2 was slightly

enriched in the intermediate-pseudotime group, and other

Unclassified genetics were detected across the three pseudotime

categories, further indicating their mirroring of divergent biologies.

We further explored if the pseudotime tertile hierarchy could rank

DLBCL in groups with different prognosis. This hypothesis was

tested in the series by Sha et al. (GSE117556) (7), which offers

distinctive features that are relevant to this extent: 1) a large

prospective clinical data-set of 928 18-years or older DLBCL

patients, with a centralized gene expression profiling and

pathological review, eligible for anthracycline-based treatment; 2)

30 months Progression-Free Survival (PFS) in line with the best

results of the recent phase 3 trials on DLBCL; 3) COO classification

refined retrospectively with the same method, taking advantage of

higher quality samples and improved data normalization over the

complete data-set (7). Most importantly, in this large series, the

COO classification failed to identify groups with significantly

different prognosis (Supplementary Figures 1E, F). The

application of trichotomization of the series according to

pseudotemporal scoring revealed significant prognostic differences

between pseudotime-low and -high tertiles, with cases displaying

high pseudotime ordering faring significantly better in terms of OS

and PFS (Figure 2G; Supplementary Table 5). The different

prognostic performance of COO and pseudotemporal ordering in

this setting suggests that the transcriptional modulations

represented in the spatial profiling of diverse GC and extra-

follicular microregions may adequately cope with the wide

continuum of DLBCL, at least in series including cases with DZ-

related transcriptional profiles (i.e. molecular high grade).

In this study, a potential bias inherent with the small sample size

of spatially profiled microregions should be considered as a note of

caution. Nonetheless, the results indicate that the apex of the

pseudotemporal trajectory resulting from spatial profiling

intercepts a discrete peri-follicular biology characterized by the

enrichment of molecular programs fronted by TNFR signaling and

inhibitory immune checkpoint overexpression and corresponding

to DLBCL cases enriched in the Unclassified/type-3 COO category,

opening an issue regarding the potential extra-GC imprint of this

heterogeneous group. An accurate biomolecular characterization of

this hitherto neglected subset of DLBCL might pave the way for

deciphering their biological and prognostic determinants.
Materials and methods

Digital spatial profiling

As described in our previous work (14), the transcriptional

landscape of 15 different spatially-resolved regions of interest

(ROIs) of the tonsil (5 peri/inter-follicular ROIs, 5 DZ, and 5 LZ
A

B

FIGURE 1

(A), Two-dimensional principal component projection produces a
trajectory among DZ, LZ, and Peri ROIs. The color gradient of points
reflects the pseudotime estimated values. (B), Expression heatmap
of the 184 genes significantly correlated with the pseudotime over
15 ROIs. The 15 ROIs (columns) are ordered according to the
pseudotime estimation.
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ROIs from morphologically normal follicles) was determined by

Digital Spatial Profiling on slides stained with CD271/NGFR (as an

follicular dendritic cells marker to highlight the LZ) and CD20 (as a

B-cell marker). The 15 selected and segmented ROIs were profiled

using a GeoMx Digital Spatial Profiler (DSP) (NanoString, Seattle,

WA) applying the Cancer Transcriptome Atlas panel (https://

www.nanostring.com/products/geomx-digital-spatial-profiler/

geomx-rna-assays/geomx-cancer-transcriptome-atlas/).
Frontiers in Immunology 04
Statistical analysis

Raw counts were normalized against the 75th percentile of

signal from their own ROI. The R package Phenopath (15) has been

used to estimate pseudotime values from bulk gene expression data

as described by Campbell and Yau (13). We choose of the

Phenopath algorithm for the pseudotime estimation because the

standard pseudotime algorithms require single-cell data as input,
A B

D

E F

G

C

FIGURE 2

(A-D) Expression heatmap of the 184 pseudotime-related genes. The DLBCL cases (columns) are ordered according to their pseudotime-related
score (see methods). Three pseudotime groups have been identified by applying the tertile separation on pseudotime-related scores (i.e., low,
intermediate, and high pseudotime groups). (E) Jaccard similarity index between COO and pseudotime groups over DLBCL datasets. Unclassified
cases strongly enrich all the high-pseudotime groups. While GCB cases enrich all the low-pseudotime groups (Fisher p-values are shown in the
table). (F) Proportions of pseudotime categories over genetic subtype groups. The Fisher exact test has been applied to evaluate the association
between genetic subtypes and pseudotime categories (Supplementary Table 4). “Other.ABC,” “Other.GCB,” and “Other.Unclassified” are cases that
lack genetic subtype classification and only have COO classification. (G) Survival analysis on DLBCL cases from Sha et al. dataset. Patients were
divided into three groups according to the tertiles of their pseudotime-related scores (i.e., low, intermediate, and high pseudotime groups). if p-
value < 0.1 *; if p-value < 0.05; ** if p-value < 0.01; *** if p-value < 0.001; **** if p-value < 0.0001.
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while Phenopath can be used also on bulk RNA-seq data. Therefore,

we consider a pseudotemporal ranking of ROIs based on

pseudotime estimations. The temporal trajectory has been

highlighted on a PCA projection performed on normalized data

using the FactoMine R package. The Spearman correlation

coefficients have been calculated between gene expression and

pseudotime estimated values. The Bonferroni correction for

multiple comparisons has been applied to evaluate the p-value

significance of correlation coefficients (FWER controlled at 5%

level). The pseudotime significantly correlated genes compose the

pseudotemporal signature (Supplementary Table 1).

The pseudotemporal signature was assessed in the following

DLBCL datasets: Barrans et al. (GSE32918) (4), Lenz et al.

(GSE10846) (5), Schmitz et al. (6), and Sha et al. (GSE117556)

(7). The Barrans and the Sha datasets have been downloaded from

GEO using the GEOquery R package. Regarding the datasets of

Barrans, Sha, and Schmitz, we maintained the normalization

proposed by the authors. The Lenz et al. (GSE10846) expression

matrix has been obtained from the CEL file available on GEO and it

has been normalized using the gcrma package.

To order DLBCL patients according to the pseudotemporal

gene signature, we have calculated a pseudotime-related score that

combines the expression of the pseudotime-signature genes with

the correlation coefficients previously calculated on the DSP dataset.

Considering the patient-j, his pseudotime-related score is calculated

as:

scorej =o
n

i=1
r̂ i · xi

Where ri is the Spearman correlation coefficient between the

expression of gene-i and pseudotime values (it has been previously

calculated on the DSP dataset), xi is the expression of gene-i in the

DLBCL dataset, and n is the number of genes of the pseudotemporal

signature. The coefficients ri allow us to weight the gene expression

considering how strong is the correlation between each gene and the

pseudotime values. Using the score, each DLBCL cohort was

divided into low-pseudotime, intermediate-pseudotime, and

high-pseudotime.

The Jaccard similarity index has been calculated to measure the

association between the cell of origin (COO) and the pseudotime

groups in DLBCL datasets. The Fisher exact test has been used to

evaluate the association between pseudotime groups and COO over

DLBCLs, and the association between pseudotime groups and

genetic subtypes in the Schmitz dataset.

The prognostic power of the pseudotemporal signature has

been tested on the Sha et al. dataset. The overall Survival (OS) and

the progression-free survival (PFS) have been compared among the

three pseudotime groups. Kaplan-Meier method has been used to

estimate the survival functions among groups, and the log-rank test

has been used to test the differences in the overall survival between

the identified groups. Before calculating the log-rank test, the cox-

pzh test was used to test the proportional hazard assumption

(Supplementary Table 5). We have adapted a multivariate Cox

model including the pseudotime groups, the COO classes, and the

IPI-risk classes (i.e., low, medium, and high risk) to verify that the
Frontiers in Immunology 05
pseudotime group variable maintains its significance. The whole

survival analysis has been carried out through the survival R

package. All statistical analyses were performed using R software

(v 4.0.2) (http://www.R-project.org).
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