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Mitochondrial dysfunction is a central event in the pathogenesis of several
degenerative brain disorders. It entails fission and fusion dynamics disruption,
progressive decline in mitochondrial clearance, and uncontrolled oxidative stress.
Many therapeutic strategies have been formulated to reverse these alterations,
including replacing damaged mitochondria with healthy ones. Spontaneous
mitochondrial transfer is a naturally occurring process with different biological
functions. It comprises mitochondrial donation from one cell to another, carried
out through different pathways, such as the formation and stabilization of
tunneling nanotubules and Gap junctions and the release of extracellular
vesicles with mitochondrial cargoes. Even though many aspects of regulating
these mechanisms still need to be discovered, some key enzymatic regulators
have been identified. This review summarizes the current knowledge on
mitochondrial dysfunction in different neurodegenerative disorders. Besides,
we analyzed the usage of mitochondrial transfer as an endogenous
revitalization tool, emphasizing the enzyme regulators that govern this
mechanism. Going deeper into this matter would be helpful to take advantage
of the therapeutic potential of mitochondrial transfer.
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1 Introduction

Multiple mechanisms have been described in the onset and progression of
degenerative brain disorders, such as defective protein quality control, intra- and
extracellular propagation of peptide aggregates, disturbs in synaptic activity, and
mitochondrial dysfunction (de Vrij et al., 2004; Selfridge et al., 2013; Marsh and
Alifragis, 2018; Balupuri et al., 2020; Monteiro et al., 2020). Mitochondria are
essential organelles for oxidative metabolism, and their loss of functionality is
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frequently associated with overall energetic failure (Liesa and
Shirihai, 2013; Fang et al., 2019). Mitochondria’s integrity is
regulated through three fundamental mechanisms like fusion,
fission, and mitophagy. Their proper functioning acts as a
protective barrier against oxidative stress resulting from
mitochondrial damage (Ma et al., 2020). Here, we summarize
the current evidence regarding the deregulation of these
processes in different neurodegenerative disorders, including
1) Alzheimer’s disease (AD), 2) Parkinson’s disease (PD), 3)
Huntington’s disease (HD), 4) Frontotemporal dementia (FTD),
and 5) Amyotrophic lateral sclerosis (ALS).

Based on the above, the donation of mitochondria has recently
moved into the center of attention, given its potential to replace
damaged mitochondria with healthy ones (Hayakawa et al., 2016;
Peruzzotti-Jametti et al., 2020). The magnitude of the evidence has
led to the development of several therapeutic strategies, including
minocycline (Investigators, 2006; Quintero et al., 2006; Antonenko
et al., 2010; Howard et al., 2020), polyphenols, such as curcumin
and resveratrol (Quintero et al., 2006; Sandoval-Acuna et al., 2014;
Naoi et al., 2019; Pannu and Bhatnagar, 2019), vitamins (Etminan
et al., 2005; Hiller et al., 2018; Marie et al., 2021), coenzyme Q10
(Shults et al., 2002), monoamine oxidase B inhibitors (Guay, 2006;
Carradori et al., 2016), creatine (Matthews et al., 1999;
Investigators, 2006; Investigators, 2008) and mitoquinone
(MitoQ) (Doughan and Dikalov, 2007; Snow et al., 2010;
Aimaiti et al., 2021) (For a more description, the reader is
redirected to Table 1). Unfortunately, none of these approaches
comprehensively addresses mitochondrial dysfunction, but rather
its consequences. Therefore, we summarize the described
mitochondrial transfer (MT) regulators, part of a complex
enzymatic network that still represents a question mark.
Furthermore, we analyzed the relevance of identifying “help-
me” signals to modulate the activation of MT-associated
enzymes endogenously.

2 Abnormalities in mitochondrial
dynamics and mitophagy in brain
degeneration

Etiological aspects of here referred degenerative brain disorders,
and their association with mitochondrial defects, are detailed in
Table 2.

2.1 Fission and fusion

Mitochondrial dynamics are multistep transitions that modify
mitochondria’s spatial organization and functionality (Palikaras
et al., 2015; Tilokani et al., 2018). Fission involves the exact and
highly controlled fragmentation of impaired mitochondria, while
fusion refers to the mechanism for constructing mitochondrial
biomass from smaller mitochondrial units (Tilokani et al., 2018).
The GTPase dynamic-related protein 1 (Drp-1) and mitochondrial
fission protein 1 (Fis1) are essential enzymatic regulators in fission
dynamics, controlling the constriction of mitochondrial membrane
portions and inhibiting the fusion machinery (Tilokani et al., 2018).

Experiments performed in HD models such as R6/1 and
HdhQ111/Q111 mouse neurons exhibit the same findings. Mice-
derived R6/1 striatal neurons exhibit excessive Drp-1-dependent
mitochondrial fragmentation and accumulation of oxygen free
radicals (Cherubini et al., 2020). At the same time, HdhQ111/
Q111 neurons express severe downregulation of fusion regulators
like OPA1 and Mfn1/2 but also significant upregulation of fission
markers, including Drp1 and Fis1 (Manczak and Reddy, 2015). Guo
et al. studies complement these observations, whose findings reveal
that striatal and spiny neurons carrying mutant huntingtin protein
have significant mitochondrial fragmentation, increased motor
deficit, and striatal disturbances in different HD mice models
(Guo et al., 2016). Based on evidence suggesting that the pool of

TABLE 1 Current therapeutic strategies against mitochondrial dysfunction in neurodegenerative diseases.

Compound name Advantages Disadvantages References

Minocycline Antioxidant properties Clinical trials do not confirm
neuroprotective effects

Investigators (2006), Quintero et al. (2006), Antonenko
et al. (2010), Howard et al. (2020)

Reduces mitochondrial calcium
overloading

Easily penetrate the blood-brain barrier

Polyphenols (Curcumin and
Resveratrol)

Antioxidants properties Poor absorption and low bioavailability Quintero et al. (2006), Sandoval-Acuna et al. (2014),
Naoi et al. (2019), Pannu and Bhatnagar (2019)

Induce mitochondrial biogenesis

Vitamins (A, B3, D, E) Antioxidant properties Daily dosage and controversial results Etminan et al. (2005), Hiller et al. (2018), Marie et al.
(2021)

Coenzyme Q10 (CoQ10) An enhancer of the electron transport
chain activity

Therapeutic benefits are associated with
high doses (2.4 g/day)

Shults et al. (2002)

Monoamine oxidase B
inhibitors

Inhibitors of dopamine metabolism Adverse effects, including confusion and
hallucinations

Guay (2006), Carradori et al. (2016)

Prevents free oxidative radical formation

Creatine Promotes mitochondrial ATP
production

Clinical trials do not confirm
neuroprotective effects

Matthews et al. (1999), Investigators (2006),
Investigators (2008)

Mitoquinone (MitoQ) Protection against oxidative damage by
inhibiting lipid peroxidation

Clinical trials do not confirm
neuroprotective effects

Doughan and Dikalov (2007), Snow et al. (2010),
Aimaiti et al. (2021)
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deficient huntingtin proteins is receptive to post-translational
modifications (Haun et al., 2013), authors have proposed that
molecular mechanisms such as S-nitrosylation aggravate
mitochondrial fragmentation and provoke severe disorganization
of dendritic spines by increasing its affinity with fission regulators
(Haun et al., 2013). These observations have been convincingly
demonstrated in BACHD rats-expressing human full-length
huntingtin (Q97) and post-mortem brain samples (Haun et al.,
2013).

In PD, nigral neurons have been broadly studied due to their
dense mitochondrial biomass and oxidative activity, which make
them especially susceptible to the consequences of mitochondrial
dysfunction (Macdonald et al., 2018). Neurons exposed to toxic
environmental substances like pesticides display considerable
mitochondrial fragmentation and ATP depletion, correlating with
the appearance of PD-like phenotypes in vitro (Chen et al., 2017). At
the same time, mitochondria derived from LrrKG 2019S knock-in
mice expressing a familial PD-related mutation are characterized by
staying arrested in fission (Yue et al., 2015).

FTD-causing mutations, including C9orf72, 10 + 16 MAPT,
and CHCHD10, have been connected with abnormalities in
mitochondrial dynamics (Fatouros et al., 2012; Bannwarth
et al., 2014; Onesto et al., 2016; Liu et al., 2020a; Liu et al.,
2020b). Motor and mechanosensory neurons from C. elegans
worms-expressing human Tau transgenes showed a significant
redistribution of their mitochondrial network from the distal to
the proximal region of axons (Fatouros et al., 2012), correlating
with disturbances in the presynaptic region and locomotor
deficiencies. Remarkably, Tau aggregation inhibitors reduce
detergent-insoluble Tau aggregates, delay the accumulation of
neuronal deficits, and promote a moderate improvement of
locomotor abilities (Fatouros et al., 2012). Likewise, human
fibroblasts carrying the C9orf72 mutation sustain
abnormalities in mitochondrial fragmentation with a severe
loss of ultrastructural features, the so-called cristae pattern
(Onesto et al., 2016). At the same time, CHCHD10S55L

dopaminergic neurons have the same pathological findings
accompanied by marked swelling (Anderson et al., 2019).

TABLE 2 Neurodegenerative-related mutations and their association with mitochondrial dysfunction.

Brain degenerative
disorder

Protein (Gene) Mitochondria-
associated
mutations

Mitochondrial
deficiencies

Lesion sites References

MD Mi OD

Huntington’s disease (AD) Huntingtin [HTT] HTT ✓ ✓ ✓ Corpus striatum (Basal
ganglia)

Haun et al. (2013),
Manczak and Reddy
(2015), Guo et al. (2016),
Yin et al. (2016)

Alzheimer’s disease (AD) Amyloid precursor protein
[APP]; Presenilin 1 [PSEN 1];

Presenilin 2 [PSEN 2]

APP ✓ ✓ ✓ Frontal lobes, Entorhinal
cortex (Medial Temporal
Lobe), Hippocampus

Fukui et al. (2007), Pinto
et al. (2013)

Parkinson’s disease (PD) Leucine Rich Repeat Kinase
2 [LRRK2]; Parkinsonism
Associated Deglycase

[PARK7]; PTEN-induced
Kinase 1 [PINK1]; Parkin
RBR E3 Ubiquitin protein
ligase [PRKN]; Synuclein

Alpha [SNCA]

LRRK2, PINK1 ✓ X ✓ Substantia nigra (Basal
ganglia)

Finn et al. (2013),
Mortiboys et al. (2015),
Yue et al. (2015)

Frontotemporal
dementia (FTD)

C9 protein [C9ORF72];
Coiled-coil-helix-coiled-helix

domain containing
10 [CHCHD10]; TDP-43
[TARDBP]; Microtubule-
associated Protein Tau

[MAPT]; Valosin-containing
protein [VCP]; Charged

multivesicular body protein
2B [CHMP2B];

Sequestosome 1 [SQSTM1];
Ubiquilin 1 [UBQLN1]

C9ORF72, 10 + 16 MAPT,
CHCHD10

✓ X ✓ Frontal and temporal brain
lobes

David et al. (2005),
Fatouros et al. (2012),
Bannwarth et al. (2014),
Onesto et al., 2016; Esteras
et al. (2017), Choi et al.
(2019), Liu et al. (2020a),
Liu et al. (2020b)

Amyotrophic lateral
sclerosis (ALS)

Cu Zn superoxide dismutase
1 [SOD1]; C9 protein
[C9ORF72]; TDP-43

[TARDBP]; Coiled-coil-
helix-coiled-helix domain
containing 10 [CHCHD10];
Fused in Sarcoma (FUS)

RNA-binding protein [FUS]

SOD1, C9ORF72,
TARDBP, FUS

✓ ✓ ✓ Motor cortex, spinal cord
and brainstem

Perera et al. (2014), Tan
et al. (2014), Moller et al.
(2017), Choi et al. (2019),
Smith et al. (2019), Dafinca
et al. (2020)

**Abbreviations: MD, mitochondrial dynamics; Mi, Mitophagy; OD, oxidative damage. (✓) Pathological events are described in at least one of the mutations specified in the “Protein

(Gene)” box.
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Consistently, CHCHD10 mutation was reported since it
provokes inhibition of mitochondrial fusion through
dissociating OPA1-mitofilin complexes (Liu et al., 2020a).

An elevated number of FTD-related cases underlie the
C9orf72 gene mutation, representing many genetic ALS cases
(Ferrari et al., 2011). Additionally, ALS-related mutations might
include those over Cu, Zn superoxide dismutase 1 (SOD1),
CHCHD10, and TDP-43, which also cause various mitochondrial
disturbances (Tan et al., 2014; Davis et al., 2018; Choi et al., 2019;
Dafinca et al., 2020). In SOD1 mutant mice, the deregulation in
IP3R/VDAC complexes has been associated with abnormalities in
the interaction between the endoplasmic reticulum and
mitochondria, leading to abnormal calcium dynamics, extensive
mitochondrial fragmentation, and damage of ultrastructural
features (Tan et al., 2014; Smith et al., 2019). Mice expressing
SOD1A4V, SOD1G73R, and SOD1G93A mutations develop
disorganization of mitochondrial networks in different types of
neurons (Moller et al., 2017). By comparison, experiments
conducted by Choi et al. support that C9orf72 mutants replicate
most of these pathogenic features, such as glutamate-induced
synaptic excitotoxicity and subsequent activation of apoptotic
pathways (Choi et al., 2019; Dafinca et al., 2020).

2.2 Mitophagy

Mitophagy implies an autophagic pathway to recycle and reuse
mitochondrial constituents (Palikaras et al., 2015). Althoughmitophagy
undergoes a natural decline as aging progresses, numerous studies link
the formation of protein aggregates and the dysregulation of
intracellular pathways associated with mitophagy.

Experiments conducted by Tammineni et al. show that Aβ
aggregates disturb the expression of specific molecular adaptors
that regulate the identification, transport, and positioning of
mitochondria through neuronal axonal projections (Tammineni
et al., 2017), which is recognized as an event that precedes
synaptic dysfunction. In AD, Aβ peptides and
hyperphosphorylated forms of Tau aggregates provoke the
downregulation of mitophagy-related proteins and deficiencies in
lysosomal functionality, thus causing the accumulation of damaged
mitochondria (Reddy and Oliver, 2019). Moreover, the long-term
dysregulation of mitophagy exacerbates the appearance of
mitochondrial DNA damage and provokes irreversible activation
of apoptotic pathways (Fang et al., 2016).

In HD models, brain and skeletal muscle cells express elevated co-
localization between autophagic/ubiquitination markers and
mitochondrial constituents (Pinho et al., 2020). YAC128 and R6/
2 mice carrying HD-like mutations acquire behavioral and motor
abnormalities, which correlate with severe mitochondrial
fragmentation and mitophagy in striatal and spiny neurons.
Remarkably, blocking the interaction between mutant huntingtin
and valosin-containing protein (VCP), a member of the AAA (+)
ATPase family of chaperone-line proteins, reduces the mitochondrial
translocation of the later, improves the mitochondrial organization in
neurons and partially rescues disturbances in the behavior and motor
abilities (Guo et al., 2016).

Lastly, ALS-associated TDP-43 mutations were recently
documented by provoking evident deregulation of autophagy up-

stream regulators like the AMP-activated protein kinase (AMPK)
pathway (Perera et al., 2014; Smith et al., 2019); while mutations
related to optineurin disrupt the recruitment of the autophagic
machinery to the outer mitochondrial membrane and suspend its
incorporation into autophagosome structures (Wong and Holzbaur,
2014).

3 Deregulation of mitochondrial
complexes and oxidative stress in brain
degeneration

Oxidative stress results from the uncontrolled generation of reactive
oxygen species (ROS) like superoxide radicals (O2•-), hydrogen
peroxide (H2O2), and hydroxyl radicals (•OH), thus exceeding the
antioxidant defenses of cells and tissues (Pizzino et al., 2017). ROS are
predominantly generated through mitochondrial respiration, obtaining
O2•- molecules which are subsequently metabolized using intrinsic
ROS scavenging enzymes, including superoxide dismutase (SOD),
catalase, and glutathione peroxidase (Ray et al., 2012). Then, the
coordinated metabolization of O2•- via SOD gives rise to the
generation of H2O2, while radical hydroxyl molecules are generated
through Fenton’s reaction, which entails the reaction between iron
(Fe2+) and hydrogen peroxide (Fe2+ + H2O2 > Fe3+ + •OH+OH-) (Ray
et al., 2012).

Numerous environmental and chemical stressors can exacerbate
ROS production, including radiation, anti-blastic drugs, and
exposure to heavy metals, among many others (Pizzino et al.,
2017). Likewise, brain tissue differs from the rest, given its higher
metabolic activity (Watts et al., 2018), providing a more significant
potential to generate damage due to oxidative stress. Moreover, there
is a natural age-related decline in mitochondrial functionality, which
favors the accumulation of damaged mitochondria that generate
high ROS amounts but lower ATP content (Hamilton et al., 2001).
The following section focuses on how neurodegenerative conditions
accelerate the functional decline of mitochondria, predisposing cells,
and tissue to oxidative damage.

Experiments conducted in different research models, such as
yeast (Bulteau et al., 2012), Drosophila (Greene et al., 2003), worms
(Ren et al., 2019), zebrafish (Flinn et al., 2009), mice (Fukui et al.,
2007; Pinto et al., 2013; Choi et al., 2019), and rats (Hoglinger et al.,
2005; Escobar-Khondiker et al., 2007; Orozco-Ibarra et al., 2018), or
even samples obtained from patients (Mahad et al., 2009; Mao and
Reddy, 2010; Domercq et al., 2011; Mao et al., 2013; Sanders et al.,
2014; Esteras et al., 2017; Igoillo-Esteve et al., 2020; Pistono et al.,
2020), support that the expression and functioning of electron
transport chain complexes are deregulated during brain
degeneration (Hoglinger et al., 2005).

In AD, the metabolic profile seems to be a crucial determinant in
generating amyloidogenic derivates since oxidative stress is tightly
associated with the intensification in the Aβ peptide (AβPP)
processing into Aβ (Gabuzda et al., 1994; Leuner et al., 2012).
Experiments performed in cytoplasmic hybrids cells (or Cybrids)
reveal that cytosolic constituents isolated from AD samples can
replicate AD-like pathologic features once transplanted into healthy
non-nucleated cells (Khan et al., 2000). These cells showed robust
activation of proteolytic enzymes involved in regulating apoptotic
pathways, increased DNA oxidative damage, poor ATP production,
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and strong activation of the amyloidogenic pathway, restored by
antioxidant agents (Khan et al., 2000). The impact of the electron
transport chain is evidenced through in vivo experiments crossing
COXI mice carrying cytochrome c oxidase deficiencies and ADmice
expressing human amyloid precursor protein (APP). Compared
with AD mice, COXI/AD mice maintain reduced levels of the
oxidative stress marker 8-hydroxy-2-deoxyguanosine (8-OHdG)
and several Aβ deposits. At the same time, their mitochondrial
DNA stability in the cortex and the hippocampus is significantly
higher (Fukui et al., 2007; Pinto et al., 2013).

Most PD sporadic presentations are closely linked to defects in
the expression and functionality of the mitochondrial complex I in
the substantia nigra and the prefrontal cortex (Schapira et al., 1990;
Parker et al., 2008). As expected, this deficiency type is primarily
connected with energetic failure and progressive ROS accumulation
(Greenamyre et al., 2001). Post-mortem analyses in the brain of PD-
diagnosed patients support that nigral neurons carry extensive
mitochondrial DNA damage (Sanders et al., 2014), and their
cerebrospinal fluid contained elevated amounts of antioxidant co-
enzyme Q10 and oxidized nucleosides (Isobe et al., 2010), revealing
the presence of DNA lesions. Although most evidence attributes
these alterations to the downregulation of mitochondrial complex I,
experiments conducted by Schapira et al. in the early 1990s reported
that PD patients do not display differences in the total protein and
mitochondrial biomass neurons residing in the substantia nigra;
however, their functionality at the level of complex I, is reduced
(Schagger, 1995). Numerous investigations currently support these
findings. For example,Drosophila (Greene et al., 2003) and zebrafish
embryos (Flinn et al., 2009) carrying Parkin mutations show
reduced functionality in complex I, while PINK1 mutants
develop dysfunction in mitochondrial complexes I and III (Flinn
et al., 2013). Although evidence consistently points to complex I
dysfunction, the pathological contribution of complexes III subunit
UQCR2, complex IV, and V subunit ATP5A have also been reported
in a LrrkG2019S knock-in mouse (Mortiboys et al., 2015; Yue et al.,
2015).

Striatal cells exposed to 3-nitro propionic acid, a chemical
method for inducing HD-like striatal degeneration, proved to
generate suppression of mitochondrial complex II and reduced
ATP levels (Orozco-Ibarra et al., 2018). Notably, the isolation of
mitochondria from neuronal synaptic terminals revealed variations
in the protein expression of mitochondrial complexes,
encompassing the upregulation of the complex II 70 kDa subunit
(Hamilton et al., 2017), while neurons carrying huntingtin
mutations (HdhQ111/Q111) exhibit dysregulation of different
mitochondrial-encoded electron transport chain subunits
(Manczak and Reddy, 2015; Yin et al., 2016).

Comparably, neuron-like cells obtained via differentiation of
FTD patient-derived iPSCs underline the consequences of the 10 +
16 MAPT mutation, which disrupts the mitochondrial membrane
potential, reduces the activity of complex I, increase ROS generation
and provoke cell death (Esteras et al., 2017). In agreement, six-
month-old CamKII; (GR)80 mice express a GGGGCC repeat
expansion within a non-coding region in the gene encoding for
C9orf72. These mice evidence poor mitochondrial complexes I and
V activity, severe DNA damage, and neuronal degeneration in the
prefrontal, parietal, and occipital cortex. Also, these lesions correlate
with synaptic abnormalities and FTD-like behavior (Choi et al.,

2019). In contrast, mutations on TDP-43 provoke an aggressive
phenotype characterized by abnormalities in the assembly and
activity of complex I. This leads to severe neurotoxicity involving
degeneration of cortical neurons and motor tracts, which is
efficiently rescued by blocking the entrance of mutated TDP-43
protein into mitochondria (Wang et al., 2016). Similar observations
were performed in P301L Tau transgenic mice. Proteomic and
functional analyses showed that the generation of Tau aggregates
destabilizes the activity of cytosolic upstream regulators for
mitochondrial functions and antioxidant defenses (David et al.,
2005). In agreement with both C9orf72 and TDP-43 mutants,
these mice sustain the poor activity of mitochondrial complex I
and low ATP content (David et al., 2005). In turn, the authors
reported the dysregulation of different detoxifying enzymes,
including glutathione reductase, glutathione peroxidase, and
superoxide dismutase (David et al., 2005), pointing out that the
enzymatic network that maintains mitochondrial homeostasis is
altered at different levels.

Lastly, several ALS-associated mutations, including those shared
with FTD, develop extensive oxidative damage. SOD1mutated proteins
are progressively stored at the mitochondrial intermembrane space,
forming protein aggregates that lead to the deregulation of
mitochondrial respiratory complexes and increased ROS generation
(Smith et al., 2019). A comparable phenotype is observed in cells
carrying mutations on the nuclear ribonucleoprotein P2, or FUS. These
mutations are linked to uncontrolled ROS production and poor ATP
biosynthesis. However, the mechanism breaks the interaction between
the endoplasmic reticulum and mitochondria (Smith et al., 2019). On
the other hand, neurons derived from C9orf72 transgenic mice sustain
low activity in mitochondrial complexes I and V and severe DNA
damage. As expected, these alterations converge in the rapid activation
of apoptosis (Choi et al., 2019).

Altogether this data supports that the onset and progression of
degenerative brain disorders entail enzymatic deregulation at
different levels. The resolution of these defects has been focused
through various methodologies, including i) nutritional
supplements (Bobadilla et al., 2021; Dubey et al., 2021); ii)
enzymatic replacement therapy based on soluble enzymes or even
enzyme-loaded nanoparticles (Dickson et al., 2007; Del Grosso et al.,
2019; Sato and Okuyama, 2020); and iii) mono-drug schemes
(Andreux et al., 2013; Singh et al., 2021). Nevertheless, none of
these methods can integrally correct mitochondrial dysfunction
since they are directed against specific defects.

The following section discusses the potential of naturally
occurring mitochondrial transfer as a therapeutic strategy
expected to re-establish the functionality of mitochondria in
neural cells undergoing energetic distress. By contrast with other
therapeutic approaches, mitochondrial transfer offers the complete
replacement of impaired mitochondria.

4 Spontaneous mitochondrial transfer:
How does it happen, what is its
relevance, and what role do enzymes
play?

A growing body of evidence highlights the benefits of naturally
occurring mitochondrial transfer, given its potential to restore
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mitochondrial dysfunction and energetic balance in neighboring
cells.

4.1 Types of mitochondrial transfer (MT)

Defined as the naturally occurring transfer of mitochondrial
units from a healthy donor to a specific cell acceptor with
damaged mitochondria. Donor cells deliver mitochondria
through different cellular mechanisms, including i) the
formation of transient tunneling nanotubes (TNTs), which
originate as filopodia-like cell membrane projections that
extend, contact, and fuse with targeted cells (Gerdes et al.,
2007; Caicedo et al., 2017); ii) the opening of intercellular
channels located laterally in the membrane known as Gap
junctions, by means cells exchange a variety of molecules as
small-sized mitochondrial constituents or even energetic
nucleotides (Li et al., 2019); and iii) the release of extracellular
vesicles (EVs) that carry mitochondrial constituents of different
sizes (Hayakawa et al., 2016; Peruzzotti-Jametti and Pluchino,
2018). For example, microvesicles ranging between 500 and
900 nm can transport entire mitochondrial units (Hayakawa
et al., 2016). In comparison, those oscillating between 50 and
100 nm can carry small mitochondrial microdomains containing
respiratory complexes and other integral membrane elements
(Peruzzotti-Jametti et al., 2020). Figure 1.

4.2 MT-associated enzymatic regulators

Most mechanisms behind regulating mitochondrial transfer and
their crosstalk are still poorly understood (Figure 2). In addition,
current enzymatic functions are detailed in Table 3.

During TNT’s formation, mitochondrial Rho GTPase 1, also
known as MIRO1, mediates the polymerization of actin filaments
and the subsequent establishment of intercellular structures
connecting the donor and acceptor cells (Lopez-Domenech et al.,
2018). This GTPase functions as a molecular adaptor that binds the
mitochondrial outer membrane and microtubule motor proteins,
thus facilitating the displacement of mitochondria along
microtubules (Lopez-Domenech et al., 2018). MIRO1 gain-and-
loss of function experiments resulted in changes in MT’s
efficiency and repair capacity (Boukelmoune et al., 2018; Tseng
et al., 2021).

CD38 (Cluster of Differentiation 38) is a multifunctional
ectoenzyme that controls extracellular nucleotide homeostasis
and intracellular calcium oscillations (Hogan et al., 2019).
CD38 degrades NAD + molecules as a cyclase to produce cyclic
ADP-ribose (cADPR) molecules, a potent second messenger for
calcium mobilization (Hogan et al., 2019). The release of EVs
containing mitochondrial units and constituents depends on the
CD38/cADPR axis (Hayakawa et al., 2016). Furthermore, cellular
states like oxygen-glucose deprivation and reoxygenation induce
changes in the post-translational modification of mitochondrial

FIGURE 1
Cellular and molecular mechanisms behind mitochondrial homeostasis. (A) Damaged membrane microdomains of mitochondria are packaged in
autophagosomes to follow the lysosomal pathway. (B) Autophagosomes containing mitochondria fuse with lysosomes to form autophagolysosomes to
degrade mitochondria. (C) Once degraded, mitochondrial constituents are recycled to potentiate mitochondrial biogenesis together with proteins
synthetized from n-DNA and/or mt-DNA. (D) Mitochondrial fission is tightly regulated through Fis1-dependent recruitment of DRP1, which
generates a constriction ring to give rise to two daughter mitochondria. (E) Resulting mitochondria can undergo mitochondrial fusion to increase the
mitochondrial biomass and thusmitigate energetic stress throughOPA1 andMitofusin proteins. (F) The balance betweenmitochondrial fusion and fission
is highly dynamic, depending of various factors, including the bioenergetic status and cell-specific functions, amongmany others. The complexity of the
regulation of mitochondrial homeostasis is not fully depicted. The figure was created in BioRender.com.
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proteins via O-GlcNAcylation (O-GlcNAc), increasing the release of
EVs containing mitochondria in a CD38-dependent manner (Park
et al., 2021). Consistently, the genetic inhibition of CD38 reduces

mitochondrial transfer in vitro and in vivo (Hayakawa et al., 2016);
defects in the endoplasmic reticulum–Golgi traffic resulted in the
release of mitochondria with reduced membrane potential and mt-

FIGURE 2
The current model of cellular and molecular mechanisms behind mitochondrial transfer. (A) EVs-mediated MT is regulated through the CD38/
cADPR signaling, inducing calcium release from the endoplasmic reticulum. The CD38 activity can be post-translationally modulated through
O-GlcNAcylation and phosphorylation, and its expression is induced in a Sig1R-dependent manner. (B) Connexins’ protein expression, assembly, and
stabilization are precisely controlled through different kinases, such as PKA, PKC, MAPK, CK1, and CAMKII. Gap junctions-mediated MT is predicted
to facilitate the donation of low-weight molecules comprising energetic nucleotides and mitochondrial respiratory complexes. (C) The formation of
TNTs relies on the molecular interaction between MIRO1 and accessory motor enzymes like dynein, kinesins, and myosins. TNT-mediated MT entails
donating complete mitochondrial units, whose subcellular fate is still the subject of discussion. The complexity of the exocytic pathway is not fully
depicted. Question marks denote mechanisms not currently described. MT, mitochondrial transfer; PKA, protein kinase A; PKC, protein kinase C; MAPK,
mitogen-activated protein kinase (MAPK); CK1, casein kinase 1; and CAMKII, Ca2+/calmodulin-dependent kinase II. The figure was created in
BioRender.com.

TABLE 3 Current roles of mitochondrial transfer-related enzymes.

Enzyme MT-associated functions Enzymatic
network

References

Rho GTPase 1 (Miro1) It regulates TNTs formation, functioning as a molecular adaptor
that connects the mitochondrial membrane andmicrotubule motor
proteins to facilitate the displacement of mitochondria

Myosins, kinesins,
dynein

Utton et al. (2005), Boukelmoune et al. (2018),
Oeding et al. (2018), Tseng et al. (2021)

Cluster of Differentiation
38 (CD38)

It degrades NAD + molecules for activating calcium-dependent
pathways that act as initiation steps for the biogenesis of EVs
containing mitochondria

Sig-1R, ERK1/2, PKA Lee, 2011; Wei et al. (2014), Hayakawa et al.
(2016), Wang et al. (2020), Park et al. (2021)

Src and Syk kinases Participate in the incorporation of EVs containing mitochondria n.d. Hayakawa et al. (2016)

Connexin-related
enzymes

They regulate the expression, subcellular distribution, and
assembly of connexins into connexons. Once assembled, connexins
work as railways for trafficking mitochondrial constituents

CaMKII, MAPK, PKA,
PKC, CK1

Axelsen et al. (2013), Islam et al. (2012), Ren et al.
(2022)

n.d., non-described.
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DNA (Park et al., 2021). Since O-GlcNAc has been previously
implicated in protein quality control (Collins and Chatham,
2020), it is tempting to speculate whether mitochondria undergo
a pre-selection before being charged and released. Little is known
about the internalization of EVs carrying mitochondria, but it entails
the activation of the integrin-mediated Src/Syk signaling pathway
(Hayakawa et al., 2016) (Figure 2).

4.3 Targeting possible MT-associated
enzymes

4.3.1 MIRO1-associated enzymes
MIRO1-mediated MT relies on the synchronized interaction of

many enzymes involving myosins, dynein, and the kinesin
superfamily proteins (KIFs). A proposal of their interaction
during MT is detailed in Figure 2, while their molecular
mechanisms are summarized in Table 3.

Myosins are molecular motors that produce mechanical energy
through ATP consumption, comprising a superfamily classified into
18 classes (Foth et al., 2006). These proteins contain C-terminal light
chain-associated domain, which is regulated through
phosphorylation to modulate myosin’s activity (Sata et al., 1997).
Furthermore, myosins contain motor domains that catalyze the
hydrolysis of ATP. The direct interaction between myosin and
MIRO1 facilitates actin-based mitochondrial transport (Oeding
et al., 2018).

KIFs are motor proteins whose classification relies on the
location of their motor domains, comprising N- (N-terminal), C-
(C-terminal), andM- (Middle portion) kinesins (Rath and Kozielski,
2012). These enzymes participate in various cellular processes such
as intracellular traffic dynamics, cell division, and the anterograde
transport of mitochondria through axons (Hirokawa et al., 2009).
Mechanistically, KIFs intervene in the binding of motor proteins
and mitochondria, and their loss of function, specifically on the
kinesin-related protein 5 (KIF5), disturbs the traffic of mitochondria
and correlates with abnormalities in their subcellular location
(Utton et al., 2005).

Dynein is a minus-end-direct motor enzyme whose ATP
consumption displaces mitochondria across the cell body,
distributed in axonal and cytoplasmic isoforms (Gibbons and
Rowe, 1965). Dynein functionality is subject to the cofactor
dynactin, a 23-subunit complex that supports the retrograde
transport of cellular constituents, including mitochondria
(Urnavicius et al., 2015). The genetic inhibition of dynein
ameliorates its binding to mitochondria and gives rise to
cytoplasmic inclusions that interfere with mitochondria’s
transport in neurons (Chen et al., 2014).

4.3.2 CD38-associated enzymes
The topology of CD38 is still a matter of discussion. It is

predicted to be a type-II transmembrane protein with a catalytic
C-terminal domain pointing to the extracellular media (Wei
et al., 2014). This presents a dilemma because the NAD
substrate is stored intracellularly. Cells co-express different
types of CD38, which differ in the subcellular distribution and
structurally (Zhao et al., 2012). In this hypothesis, some catalytic
domains should be oriented outside the cell, while others should

be disposed to the cytoplasm. In this scheme, the catalytic
C-terminal domain takes relevance since it contains multiple
serine (Ser) residues, among which a phosphorylation site for
protein kinase A (PKA) is predicted to exist (Lee, 2011; Wei et al.,
2014).

Sigma-1 receptor (Sig-1R), one of two sigma receptor subtypes,
is a 223-amino-acid-long trans-membrane chaperone at the
endoplasmic reticulum (Zhemkov et al., 2021). Mechanistically,
the activation of Sig-1R upregulates the expression of
CD38 through extracellular regulated protein kinases 1/2 (ERK1/
2), facilitating the CD38-driven MT. Knocking down
CD38 abolishes Sig-1R-induced MT (Wang et al., 2020).

4.3.3 Connexons-related enzymes
The stabilization and maintenance of Gap junctions entail

the synchronic displacement of connexins along the plasma
membrane, laterally assembled into connexin hemichannels,
known as connexons (each one formed by six connexins)
(Zimmermann, 1984). Gap junctions’ formation is
coordinated through several phosphatases and kinases (Solan
and Lampe, 2016). The specific phosphorylation of serine (Ser)
and tyrosine (Tyr) residues in connexins instruct their correct
displacement and assembly into connexons (Solan and Lampe,
2016). Some sites of phosphorylation and their specific kinase
include 1) Ser244 and Ser314 for Ca2+/calmoduline-dependent
kinase II (CaMKII); 2) Tyr247 and Tyr265 for Src kinase; 3) Ser255,
Ser279, and Ser282 for Mitogen-activated protein kinase (MAPK);
4) Ser262 for protein kinase C (PKC); 5) Ser325, Ser328, and Ser330

for casein kinase 1 (CK1); and 6) Ser364, Ser365, Ser368, Ser369,
Ser372, and Ser373 for PKA and PKC [Reviewed in (Axelsen et al.,
2013)]. Their possible interactions are proposed in Figure 2.

4.4 MT in brain degeneration

Different types of cells employ spontaneous mitochondrial
transfer in the central and peripheral nervous systems,
including various subtypes of neurons (Li et al., 2019;
English et al., 2020; van der Vlist et al., 2022), astrocytes
(Hayakawa et al., 2016; English et al., 2020), neural and
endothelial progenitor cells (Hayakawa et al., 2018), and
nervous tissue-residing immune cells (Luz-Crawford et al.,
2019; Court et al., 2020). Although the incorporation
mechanisms remain poorly detailed, host cells recover their
survival and mitochondrial functionality by increasing oxygen
consumption and ATP generation (Hayakawa et al., 2016). Cells
carrying mitochondrial impairment incorporate approximately
40% more biomass than healthy acceptor cells (English et al.,
2020); current evidence suggests that donor cells can transfer
between 5% and 13% of their whole mitochondrial biomass
(Hayakawa et al., 2018; Gao et al., 2019), allowing them to
remain viable. Both proteomic and gene ontology
determinations support that adult neural progenitors can
transfer mitochondrial complexes encoded in mitochondrial
and nuclear genomes (Peruzzotti-Jametti et al., 2020). The
purification and subsequent intravenous administration of
mitochondria increase the expression of antioxidant enzymes,
reduce lipid peroxidation, limit the generation of oxygen and
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nitrogen-derived reactive species in oxygen-deprivation
conditions, and increase neuronal survival (Zhang et al., 2019).

In the host tissue, MT modulates pro-angiogenic properties,
endothelial permeability, neuronal survival in front of oxygen and
glucose deficiency, and inflammatory pain resolution, as well as the
restriction of reactive astrogliosis and the induction of adult
neurogenesis (Bond et al., 2015; Hayakawa et al., 2018; Zhang
et al., 2019; van der Vlist et al., 2022). Even neuroglial
transmitophagy represents an MT-based mechanism through
which astrocytes internalize and degrade axonal mitochondria
(Lampinen et al., 2022), which can induce neuroprotection in
pathological contexts (Hayakawa et al., 2016; English et al.,
2020). Analogously, this mechanism is also employed by cone
photoreceptors. These retinal neurons can transfer injured
mitochondria from the cone to Müller glia to be degraded (Hutto
et al., 2023).

The therapeutic potential of MT in degenerative brain disorders
is still a growing field of research. Mice expressing 1-Methyl-4-
phenil-1,2,3,6-tetrahydropyridine (MTPT)-induced PD-like
phenotype respond positively to mitochondria’s administration,
improving their locomotor and behavioral abilities (Zhang et al.,
2019). Zhang et al. tested the impact of muscle-derived
mitochondria once intraventricularly injected into rats’ brains.
They showed that mitochondria confer strong resistance against
oxidative stress and significantly increase mitochondrial biomass
after injury (Zhang et al., 2019). In addition, AD mice intravenously
injected with mitochondria improve their cognitive performance,
which correlates with a significant increase in neurons’ survival and
further restriction of reactive astrogliosis (Nitzan et al., 2019). These
effects are subjected to Gap-junctions-mediated MT. Activating the
GJA1-20K/connexin 43 (Cx43) axis rescues the dendrite length and
promotes mitochondrial protein expression in neurons after brain
injury through the spontaneous transfer of mitochondria from
astrocytes (Ren et al., 2022). Consistently, the loss of MT from
astrocytes to neurons has also been documented in toxic-induced
cognitive impairment and leukodystrophies (Gao et al., 2019;
English et al., 2020).

4.5 What about the pathological
microenvironment?

Differences in preserving or declining the integrity of certain
neuroanatomic regions through brain degeneration remain a long-
standing question (Morrison et al., 1998; Mrdjen et al., 2019).
Cellular and molecular differences between CNS-residing cells
seem to explain the vulnerability or resistance against stressor
factor, such as secretory and biosynthetic demands, oxidative
stress, misfolding and aggregation of proteins, calcium fluxes,
glucose and oxygen restriction, and nervous and/or peripheral
inflammatory responses (Mrdjen et al., 2019). Moreover, aging
gradually impairs the capacity of cells to deal with these stressors
(Mrdjen et al., 2019).

The neuroanatomical perspective takes strength due to the
specific pattern of cell decline for each disorder, involving
corticocortical neurons in AD, cingulate and insular neurons in
FTD, upper and lower motor neurons in ALS, striatal neurons in
HD, and nigrostriatal neurons in PD (Morrison et al., 1998; Nana

et al., 2019). In this regard, the differential expression of
neurofilament proteins and neuron-specific receptors has been
proposed as major vulnerability mechanisms. For example,
glutamatergic neurons expressing N-methyl-D-aspartate (NMDA)
receptors are highly vulnerable to voltage-gated Ca2+ channel-
dependent excitotoxicity (Morrison et al., 1998).

Although the chronic course of degenerative brain disorders
compromises other brain regions, there are areas with high
resistance that remain intact even in advanced stages (Mrdjen
et al., 2019). Thus, stimulating endogenous MT could represent a
complementary method to induce the regeneration of diseased brain
regions from healthy ones. Even it may cover some technical aspects
associated with the exogenous administration of mitochondria, a
research field with promising advances (McCully et al., 2009;
Masuzawa et al., 2013; Cowan et al., 2016; Emani et al., 2017; Shi
et al., 2017).

4.6 Experimental and biological
considerations

Biodistribution studies show that nervous cells store significant
amount of mitochondria after being intravenously administered,
increasing ATP biosynthesis, restoring the energetic failure and thus
promoting survival in recipient cells (Shi et al., 2017). Nevertheless,
some experimental considerations should be covered when studying
the therapeutic potential of isolated mitochondria.

Mitochondria’s onion-like organization plays a fundamental
role in maintaining mitochondria’s functionality, favoring the
establishment of cristae-like structures that increase the reaction
surface. Mitochondrial swelling is a morphological feature resulting
from the opening of the permeability transition pore, the entry of
water, and then the disorganization of cristae structures (Javadov
et al., 2018), representing a hallmark of mitochondrial dysfunction.
Mitochondria are isolated using centrifugation steps aimed at
separating them from the rest of cellular components (Caicedo
et al., 2015), and to be subsequently added to cell cultures, and
injected directly into the tissue or circulation (McCully et al., 2009;
Caicedo et al., 2015; Cowan et al., 2016; Kaza et al., 2017; Shi et al.,
2017). Since these environments do not preserve the osmolarity of
the intracellular microenvironment given that calcium oscillates in
micromolar concentrations (Valentine et al., 2018), it is interesting
to speculate about how intact remain mitochondria once transferred
outside the cell. Current evidence show that isolated mitochondria
remain functional and conserve their ultrastructural organization
(Caicedo et al., 2015; Peruzzotti-Jametti et al., 2020). However, our
knowledge on the route they follow after being incorporated into
cells is largely unknown. Perhaps, these mitochondria become
dysfunctional on the way to be incorporated but still contribute
to the energetic failure in recipient cells by acting as a substrate for
the recycling of components needed to initiate mitochondrial
biogenesis.

Following the line of structural integrity, immune system
activation arises as a possible pitfall. Despite MT induces anti-
inflammatory responses in different tissues (Luz-Crawford et al.,
2019; van der Vlist et al., 2022), the loss of mitochondria’s integrity
could derive in the release of mitochondrial DNA (mt-DNA).
Several pathological conditions including oxidative damage,
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genotoxic stress, activation of pro-inflammatory factors and
mitochondrial dysfunctions favor the release of mt-DNA (Kim
et al., 2023). Once released, mt-DNA is recognized as a strong
agonist of innate immunity, activating pro-inflammatory pathways
such as endosomal localized TLR9, cytosolic cGAS-STING, and
cytosolic inflammasome AIM2/NLRP3 (Riley and Tait, 2020).
Therefore, experimental approaches that poorly preserve
mitochondrial integrity through the isolation step could generate
results conditioned by the activation of the immune system, but not
associated with the incorporation of functional mitochondria.

Spontaneous mitochondrial transfer occurs through the
formation of TNTs and connexons and the release of EVs. The
deepening into MT-associated molecular and cellular mechanisms,
and the development of strategies aimed at modulating them could
represent an alternative to the osmolarity and immune
considerations since bypass the exposure of mitochondria to the
extracellular medium.

5 Conclusion and perspectives: looking
for “help-me” signals

Most pharmacologic and genetic approaches aimed to modulate
the MT-related enzymatic machinery are oriented to its inhibition
since states of overactivation correlate with the appearance of
pathological features (Braicu et al., 2019; Nassal et al., 2020).
This represents a limitation given the need to enhance its
function to induce mitochondrial transfer, calling to identify new
mechanisms to activate endogenous MT.

Neural cells employ various “help-me” signals (i.e., cell-derived
molecules released when cells undergo different types of damage,
including mitochondrial damage) able to modulate neuroprotective
mechanisms, such as regulating neurogenic and angiogenic
pathways. These mechanisms include the release of
mitochondrial debris, growth factors, chemokines, and cytokines,
which have been extensively reviewed in the literature (Xing and Lo,
2017). Once released, these extracellular signals recruit neighboring
cells, potentiate neuroprotection and promote endogenous brain
regeneration (Xing and Lo, 2017). There is no evidence regarding
variations in the secretome of cells with energy failure, not at least in
neural cells. However, mitochondrial damage-associated molecular
patterns (DAMPs) are conserved in mammals (Nakahira et al., 2015;
Grazioli and Pugin, 2018). These patterns involve the release of mt-
DNA andmitochondrial proteins from damaged cells, mediating the
activation of diverse cellular mechanisms in their environment or
even distant niches as they enter circulation (Nakahira et al., 2015;
Grazioli and Pugin, 2018). On the other hand, experiments
performed in epithelial, adipose, and fibroblast cells suffering
dysfunction in oxidative phosphorylation revealed significant
variations in their secretome (Llobet et al., 2017; Garrido-Perez
et al., 2020). Molecules associated with focal adhesion, complement,
and coagulation cascades, extracellular matrix receptors, glucose
transporters, intracellular trafficking proteins, and hormones related
to regulating appetite and satiety in the hypothalamus presented
significant variations (Llobet et al., 2017; Garrido-Perez et al., 2020;
Sturm et al., 2023). Besides, the secretion of cytokines and
metabokines also suffers modifications in cells with age-related

mitochondrial dysfunction. The progressive decline in
mitochondria’s functionality is closely associated with a
hypermetabolic state presenting significant mt-DNA instability
and elevated secretion of growth differentiation factors (Sturm
et al., 2023). Lastly, ROS overproduction represents a critical
stimulus. It has been described that rotenone-induced oxidative
damage potentiates MT efficiency, which is inhibited through
administrating ROS scavenger molecules (Jiang et al., 2016; Burt
et al., 2019). In this regard, NADPH oxidase-2-derived superoxide
radicals are critical. Marlein et al. reported that blocking the
generation of superoxide species abolishes MT in myeloid
leukemia blasts (Marlein et al., 2017).

Based on the above data, an exciting projection regarding MT-
related enzymes could rely on identifying “help-me” signals from
cells undergoing bioenergetic stress. Indeed, there is little evidence
regarding the regenerative potential of MT in degenerative brain
disorders. However, both in vitro and in vivo determinations,
associated or not with the nervous system, suggest that this is a
promising tool to promote the endogenous revitalization of
damaged tissue. Going deeper into identifying “help-me” signals
could put us one step ahead of genetic or pharmacological
approaches to modulate MT-related enzymes.
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