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Objective: This study aimed to evaluate the effectiveness of multi-phase-

combined contrast-enhanced CT (CECT) radiomics methods for noninvasive

Fuhrman grade prediction of clear cell renal cell carcinoma (ccRCC).

Methods: A total of 187 patients with four-phase CECT images were

retrospectively enrolled and then were categorized into training cohort

(n=126) and testing cohort (n=61). All patients were confirmed as ccRCC by

histopathological reports. A total of 110 3D classical radiomics features were

extracted from each phase of CECT for individual ccRCC lesion, and contrast-

enhanced variation features were also calculated as derived radiomics features.

These features were concatenated together, and redundant features were

removed by Pearson correlation analysis. The discriminative features were

selected by minimum redundancy maximum relevance method (mRMR) and

then input into a C-support vector classifier to build multi-phase-combined

CECT radiomics models. The prediction performance was evaluated by the area

under the curve (AUC) of receiver operating characteristic (ROC).

Results: The multi-phase-combined CECT radiomics model showed the best

prediction performance (AUC=0.777) than the single-phase CECT radiomics

model (AUC=0.711) in the testing cohort (p value=0.039).

Conclusion: The multi-phase-combined CECT radiomics model is a potential

effective way to noninvasively predict Fuhrman grade of ccRCC. The

concatenation of first-order features and texture features extracted from

corticomedullary phase and nephrographic phase are discriminative feature

representations.

KEYWORDS
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1 Introduction

Renal cell carcinoma (RCC) is the seventh most common

malignant tumors in humans, and its incidence is increasing 2%

annually around the world (1). RCC is generally categorized into

clear cell renal cell carcinoma (ccRCC) and non-clear cell renal cell

carcinoma (non-ccRCC) (2). ccRCC is the most common

histological subtype of RCC, accounting for more than 70% of all

RCC cases (3). Compared with non-ccRCC, ccRCC receives more

attentions in clinical practice due to its higher metastatic potential

and worse prognosis (4).

The Fuhrman nuclear grade is a widely used grading system in

the pathological nuclear grading of ccRCC (5), which is established

as an independent histological prognostic factor and is significant

for the clinical management of ccRCC (6). Fuhrman nuclear grade

stratifies ccRCC tumors into four grades based on nuclear

morphology (7). A preoperative percutaneous biopsy of renal

masses is a widely used method and considered as a gold

standard for histology diagnosis and treatment plan. However, it

cannot roundly reflect the Fuhrman grades of the entire tumor and

may be discordant with surgical histopathology (accuracy=46–64%)

(8, 9) due to the high spatial heterogeneity and inherent genetic

heterogeneity of ccRCC (10). Since more than 70% of renal masses

are discovered incidentally on routine clinical imaging, preoperative

noninvasive assessment of Fuhrman grade by using multi-phase

contrast-enhanced CT (multi-phase CECT) has received

widespread attentions (7).

In recent years, artificial intelligence methods using radiomics

analysis have gradually attracted increased attention due to its

excellent performance on cancer classification and survival

prediction in radiation oncology. Radiomics methods translate

medical imaging data into high-dimension features, which

represent microscale information of tumors, e.g., tumor

microenvironment, micro-vessel density, and irregularity of

nuclear shape and arrangement. Theoretically, radiomics analysis

is a machine learning architecture, which provides interpretable

image features as noninvasive radiology biomarkers for auxiliary

diagnose or prognosis (11–14). Some studies have shown that

radiomics methods could provide valuable information for

predicting benign and malignant tumors, tumor subtypes, and

tumor grade for RCC (15–17). However, these previous studies

are confined by the limitations that radiomics features were

extracted from single-phase CECT images (usually extracted from

nephrographic phase of CECT) (18, 19), which may lead to the loss
Abbreviations: AUC, area under the curve; ccRCC, clear cell renal cell

carcinoma; CECT, contrast-enhanced CT; CEV, contrast-enhanced variation;

CI, confidence interval; C-SVC, C-support vector classifier; FGS, Fuhrman

grading system; GLCM, gray level co-occurrence matrix; GLDM, gray level

dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level

size zone matrix; ICCs, intraclass and interclass correlation coefficients; mRMR,

minimum redundancy maximum relevance; NGTDM, neighboring gray tone

d i ff e r ence matr ix ; RCC, rena l ce l l ca r c inoma ; ROC, rece iver

operating characteristic.
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of some tumor biological information (20), e.g., wash-in-and-

wash-out.

The primary purpose of this study was to investigate the

effectiveness and ability of multi-phase-combined CECT

radiomics models with incorporated 3D classical radiomics and

contrast-enhanced variation features to noninvasively distinguish

low and high grades in simplified Fuhrman grading system

of ccRCC.
2 Materials and methods

2.1 Patients

The study was approved by our local institutional review board.

We collected CT images, histopathology reports, and clinical data of

patients who had undergone surgical resections of ccRCC between

January 2009 and January 2019.

A patient was included in this study if he/she underwent a

preoperative CECT with a four-phase renal mass CT imaging

protocol (unenhanced phase, corticomedullary phase, nephrographic

phase, and delay phase) and had a histopathology report proven as

ccRCCwith a diagnosis of Fuhrman grades. The exclusion criteriawere

as follows: 1) lack of Fuhrman grades in histopathology reports (n=36);

2) lack of CT images (n=4); 3) incomplete contrast-enhanced phases

(n=17); 4) incomplete lesion in CT images (n=2); and 5) suboptimal

CT imaging quality (n=1).

A total of 187 samples were finally enrolled in our retrospective

study. All samples were categorized into low- and high grade

according to the simplified Fuhrman grade system. Figure 1

portrays the patient recruitment flowchart.
2.2 Fuhrman stage

In order to ensure reproducibility of pathological diagnosis and

reduce the intra-/inter-observer variability (5), the traditional four-

tiered Fuhrman grading system (FGS) was re-categorized into a

simplified Fuhrman grading system with low grade (corresponding

to grade I and II in the traditional FGS) and high grade (grade III

and IV in the traditional FGS). The simplified FGS could predict

prognosis and cancer-specific mortality as good as the traditional

four-tiered FGS, which is also widely used in clinical practice (21).

Fuhrman grading was accomplished by a genitourinary pathologist

with 12 years of experience.
2.3 Four-phase renal mass CT
imaging protocol

Preoperative four-phase CECT images were acquired from our

institutional PACS. All patients underwent CT on a 64-channel

MD-CT scanner (GE, Philips). The acquisition parameters were as

follows: tube voltage, 120 kV; auto tube current, 200–400 mA

depended on patient size; reconstruction slice thickness, 0.625–1.5

mm; pitch, 0.984; collimation, 0.625×64 mm; and tube rotation of
frontiersin.org

https://doi.org/10.3389/fonc.2023.1167328
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2023.1167328
0.5 s. The contrast agent for enhanced scanning is iohexol injection

(300 mgI/ml, Yangzi River Pharmaceutical Co., Ltd., Taizhou,

Jiangsu Province, China), the dosage of contrast agent is 0.5gI/kg

body weight, and the injection time of contrast agent is fixed at 30 s.

All patients in this study underwent preoperative four-phase

CECT scans: unenhanced phase, corticomedullary phase,

nephrographic phase, and delay phase. The timing of the

corticomedullary phase was established by bolus tracking (GE

Medical Systems, Beijing, China), which was used to determine

the onset of imaging. A circular region of interest (ROI) was placed

in the thoracoabdominal aorta junction with a trigger set to begin at

150 HU. CECT images were acquired at 10s (corticomedullary

phase), 70–80s (nephrographic phase), and 120–180s (delay phase)

after the threshold of 150 HU was reached.
2.4 Image preparing

Figure 2 shows the flowchart of building a multi-phase-

combined CECT radiomics model for the Fuhrman grade

prediction of ccRCC, which mainly includes three steps: image

preparing, feature extraction, and radiomics model building. The

workflow detail of building multi-phase-combined CECT radiomics

model was described in the following subsections.

All CT images with anonymized DICOM format were retrieved

from PACS. In order to obtain the target ROI in CECT images, two

senior radiologists segmented the entire tumor masses (shown in

Figure 3) by delineating the outline of all contiguous slices of the

tumors in nephrographic phase CECT with itk-SNAP (http://

www.itksnap.org/). Both the two radiologists were blinded to the

segmentation of each other and to the clinical and histopathological

reports. The ROIs of tumor masses in nephrographic phase CECT

images were then applied to the other three phases with slight

adjustments tailoring VOIs in each phase by an affine-registration

method. The affine registration was performed by elastix (22)

(https://elastix.lumc.nl/) to guarantee the corresponding voxels on

different phases fits to each other.
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Some other preprocessing methods were performed before

radiomics feature extraction: all images were resampled into voxel

spacing of 1 mm ×1 mm ×1 mm using B- spline interpolation, the

size of bin width is 25, and the density value of each voxel was

shifted 1,000 HU to guarantee a positive value.
2.5 Feature extraction

A total of 110 3D classical radiomics features were extracted from

each ROI in single-phase CT image by using PyRadiomics (14),

which is an open-source python package for radiomics feature

extraction from medical images. These classical radiomics features

could be categorized into seven types: first-order features (n=19),

shape features (n=16), gray level co-occurence matrix features

(GLCM, n=24), gray level run length matrix features (GLCM,

n=16), gray level size zone matrix features (GLSZM, n=16),

neighboring gray tone difference matrix features (NGTDM, n=5),

and gray level dependence matrix features (GLDM, n=14). GLCM,

GLCM, GLSZM, NGTDM, and GLDM are widely known as texture

features. The detail of extracted feature names is listed in Appendix

A. All features are in compliance with the definitions of Imaging

Biomarker Standardization Initiative (23). In this study, the classical

radiomics features were termed as Fpha
1 , Fpha

2 , Fpha
3 , and Fpha

4

corresponding to the unenhanced phase, corticomedullary phase,

nephrographic phase, and delay phase. In order to comprehensively

reflect the tumor biological information, features extracted from

different phases were furtherly concatenated together to build multi-

phase-combined radiomics models. Concretely, the concatenation of

features combined with two phases were termed as Fpha
1 ; 2, F

pha
1 ; 3, F

pha
1 ; 4,

Fpha
2 ; 3, F

pha
2 ; 4, and Fpha

3 ; 4, including 220 features in the two-phase feature

set; the concatenation of features combined with three phases were

termed as Fpha
1,2,3, F

pha
1,2,4, F

pha
1,3,4, and Fpha

2,3,4, including 330 features in the

three-phase feature set; the concatenation of features combined with

four phases were termed as Fpha
1,2,3,4, including with 440 features in it.

Variations in contrast enhanced between different phases were

quantitative descriptors to represent wash-in-and-wash-out, which
FIGURE 1

Patient recruitment flowchart.
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macroscopically reflected the hemodynamics andmicro-vessel density

of individual ccRCC lesion. However, the direct concatenation of

classical radiomics features may be limited, since it is a challenge for

common machine learning classifiers to mine the latent variations in

contrast enhanced between different phases. Therefore, contrast-

enhanced variation (CEV) features FCEV were proposed as

FCEV
i = Fpha

i − Fpha
3 ,   i = 1; 2; 4

of which Fpha
i denoted the extracted feature from non-

nephrographic phase and Fpha
3 was a corresponding feature

extracted from the nephrographic phase. FCEV quantitatively

represented the variation of first-order features and texture

features between nephrographic phase and others phases. The

nephrographic phase was selected as a fiducial phase in this study

due to its key role in noninvasive auxiliary diagnose for ccRCC (24–
Frontiers in Oncology 04
27), although any phase could be theoretically considered as a

fiducial phase to calculate CEV features. The concatenation of

nephrographic phase features F3 and other single-phase CEV

features were termed as FCEV
1,3 (concatenation of Fpha

3 and Fpha
1

–Fpha
3 ), FCEV

2,3 (concatenation of Fpha
3 and Fpha

2 –Fpha
3 ), and FCEV

3,4

(concatenation of Fpha
3 and Fpha

4 −Fpha
3 ). The concatenation of

nephrographic phase features Fpha
3 and two-phase CEV features

were termed as FCEV
1,2,3 (concatenation of Fpha

3 , Fpha
1 –Fpha

3 , and Fpha
2

–Fpha
3 ), FCEV

1,3,4 (concatenation of Fpha
3 , Fpha

1 –Fpha
3 , and Fpha

4 –Fpha
3 ),

FCEV
2,3,4 (concatenation of Fpha

3 , Fpha 2–Fpha
3 , and Fpha

4 –Fpha
3 ). The

concatenation of nephrographic phase features and other three-

phase CEV features were termed as FCEV
1,2,3,4 (concatenation of Fpha

3 ,

Fpha
1 -Fpha

3 , Fpha
2 –Fpha

3 , and Fpha
4 –Fpha

3 ). Two examples (Fpha
2,3,4, F

CEV
2,3,4 ) of

multiple-phase feature concatenation are shown as Figure 4.

A total of 22 types of image feature sets were finally constructed,

which could be categorized into five groups: (1) single-phase feature
FIGURE 2

Flowchart of multi-phase-combined radiomics model building for Fuhrman grade prediction of ccRCC.
FIGURE 3

The segmentation of entire tumor mass (red region) on nephrographic phase CT. From left to right are axial, coronal and sagittal.
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group, including Fpha
1 , Fpha

2 , Fpha
3 , and Fpha

4 ; (2) two-phase-combined

feature group, including Fpha
1 ; 2, F

pha
1 ; 3, F

pha
1 ; 4, F

pha
2 ; 3, F

pha
2 ; 4, and Fpha

3 ; 4; (3)

three-phase-combined feature group, including Fpha
1,2,3, F

pha
1,2,4, F

pha
1,3,4,

and Fpha
2,3,4; (4) four-phase-combined feature group: Fpha

1,2,3,4; and (5)

CEV feature group, including FCEV
1,3 , FCEV

2,3 , FCEV
3,4 , FCEV

1,2,3 , F
CEV
1,3,4 , F

CEV
2,3,4 ,

and FCEV
1,2,3,4.

This study aimed to comprehensively investigate the

effectiveness of multi-phase- combined radiomic features. Some

existing methods were included in the 22 models. The single-phase

models (Fpha
1 , Fpha

2 , Fpha
3 , and Fpha

4 ) were equivalent to the method in

(28), FCEV
1,3 was equivalent to the method in (29), and Fpha

1,2,3 is

equivalent to the method in (30).
2.6 Multi-phase-combined CECT radiomics
model building

2.6.1 Feature selection
As a preprocessing procedure of feature selection, each feature

was standardized to achieve a zero mean and unit variance in the

training cohort to avoid the effect of different scales. The feature of

test cohort was standardized by applying the standardized

hyperparameters (mean and standard deviation) obtained from

the training cohort. In order to select discriminative features, a

sophisticated feature selection procedure was performed as follows.

First, low reproducibility features were removed if variance in

normalized feature value was smaller than 10−3. Some uncertainty

could be introduced into the tumor delineation. The segmentation

of intra- and inter-observer was confirmed by two experienced

radiologists. The intraclass correlation coefficients (ICCs) were

computed by a two-way mixed-effect model to assess the inter-

and intra-observer reproducibility. The features with ICC lower

than 0.75 were considered as the poor agreement of the feature and

therefore were removed. Second, Pearson correlation analysis (31)

was performed to identify the distinctiveness of features and remove

the redundant features if their absolute correlations were higher

than 0.5. Some studies have shown that an additional feature

ranking procedure was an effective way to improve the final

performance of classification (32). Therefore, a multivariate

ranking method, named as minimum redundancy maximum

relevance (mRMR), was applied to identify the most important

features on the criterion of both minimum redundancy and

maximum relevance. Finally, only the top 20 important features

in each features set were selected and input into a C-SVC (C-

support vector classifier) (33) to build multi-phase-combined
Frontiers in Oncology 05
radiomics models. C-SVC is a widely used classifier based on

support vector machine, which showed its efficiency and

robustness in disease prediction (34–36).

2.6.2 Modeling and statistical analysis
A total of 22 radiomics models were built to evaluate the ability

and effectiveness of the proposed multi-phase-combined radiomics

models. A total of 126 samples who underwent surgery before

December 2016 were assigned into the training cohort, and the

remaining 61 samples were assigned into the test cohort. We trained

models and fine-tuned hyper-parameters by fivefold cross-

validation with five repeated experiments in the training cohort to

reduce the data selection bias and alleviate the overfitting. In the

training cohort, the training data and validation data were

randomly re-selected for fivefold cross-validation in each

experiment. Finally, the model’s performance was assessed on the

testing cohort, which was independent to the training cohort. The

fine-tuned hyper-parameters were C=0.5, kernel=ploy, degree=7,

and gamma=1/(feature number). The test cohort was used to assess

the performance of all models by the area under the curve (AUC) of

receiver operating characteristic curve (ROC). The statistical

analysis was completed by using Python v3.8.
3 Results

3.1 Demographics

There were 187 patients (mean age, 58.80 ± 13.88 years; age

range, 21–88 years) enrolled in this study, including 127 men (mean

age, 59.76 ± 13.45 years; age range, 24–88 years) and 60 women

(mean age, 56.77 years ± 13.63; age range, 21–83 years). There were

135 low-grade ccRCC patients (Fuhrman I: n=24, 12.83%; Fuhrman

II: n=111, 59.36%) and 52 high-grade ccRCC patients (Fuhrman III:

n=47, 25.13%; Fuhrman IV: n=5, 2.67%). The demographics and

characteristics of the whole patient cohort are provided in Table 1.

There were significant differences in gender between low grade and

high grade (p<0.05), while there was no significant difference in age

and tumor size between low grade and high grade (p > 0.05).

Specifically, 126 samples (low grade=93, high grade=33) who

underwent surgery before December 2016 were assigned into the

training cohort, and the rest 61 samples (low grade=42, high

grade=19) were assigned into the test cohort. The demographics

and characteristics of training and test cohorts are demonstrated

in Table 2.
FIGURE 4

The samples of multiple-phase feature concatenation.
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3.2 Performance of multi-phase-combined
radiomics methods

3.2.1 Discriminative capability
The 22 radiomics models were built by importing top 20

important features into a C-SVC classifier, and the optimized

parameter configurations were determined by fivefold cross-

validation with five repeated experiments. The training and

validation data were randomly re-selected in each experiment.

The discriminative capabilities of all radiomics models were

evaluated on the test cohort with AUC, which are illustrated in

Figure 5. The ROC value of an individual model was higher than 0.7

considered as a discriminative model in this study (26). Eight

models showed their excellent discriminative capabilities: one

model was built by single-phase features (Fpha
3 ), five models were

built by the concatenation of multi-phase features (Fpha
1,3 , F

pha
2,3 , F

pha
1,2,3,

Fpha
1,2,4, and Fpha

1,2,3,4), and two models were built by concatenation of

CEV features (FCEV
2,3,4 and FCEV

1,2,3,4). The ROC curves of these

discriminative models are shown in Figure 6.

In comparison to other single-phase models, Fpha
3 showed its

best performance (AUC=0.711), which suggested that features

extracted from nephrographic phase may be considered as

potential radiology biomarkers for ccRCC Fuhrman grade

prediction. Figure 6 also shows that six multi-phase-combined

radiomics models (Fpha
1,2,3: AUC=0.777; F

pha
2,3 , AUC=0.776; F

pha
1,2,4:

ACU=0.762; FCEV
2,3,4 : ACU=0.723; F

CEV
1,2,3,4: ACU=0.718; and Fpha

1,3 :

ACU=0.712) had better performance than Fpha
3 , which
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demonstrated that the employing of multiphasic features could

achieve superior statistical performance for Fuhrman grade

differentiation of ccRCC. Fpha 1,2,3 showed its highest

performance in all models (AUC=0.777, 95% CI: 0.732–0.836,

accuracy=0.743, sensitivity=0.692, and specificity= 0.819). A

significant difference was observed between Fpha
1,2,3 and Fpha

3 (p

value=0.039), which demonstrates that the multi- phase-

combined CECT radiomics models outperforms the radiomics

model with single-phase radiomics features.

3.2.2 Key feature analysis
mRMR ranked all features and selected 20 key features to build

radiomics models. We counted the frequency of these key features

in all radiomics models, and their percentage is summarized in

Figures 7, 8. Figure 7 summarizes the percentage of key features

selected by mRMR in discriminative models. It showed that first-

order, CEV, and GLCM types were the most frequently selected

feature types in all models and discriminative models. There were

39 features selected by mRMR as key features (3D classical

radiomics features=24, CEV feature=15) in discriminative models,

and their frequencies are shown in Figure 8.

The top 10 most frequently selected features are shown in

Table 3. In order to further verify the effectivity of the top 10 most

frequently selected features, the significant differences in these

features between low grade and high grade were calculated on the

nephrographic phase, which is also summarized in Table 3. CEV

features also played important roles in Fuhrman grading of ccRCC;
TABLE 2 Demographics and characteristics of the training cohort and validation cohort.

Characteristic
Training cohort Validation cohort

Low grade High grade p-value Low grade High grade p-value

Gender

Male (n/%) 62 (65.26%) 29 (76.32%)
<0.01*a

26 (65.00%) 12 (75.00%)
<0.01*a

Female (n/%) 33 (34.74%) 9 (23.68%) 14 (35.00%) 4 (25.00%)

Age (mean ± STD, year) 57.48 ± 15.67 63.19 ± 10.26 0.046 *b 59.70 ± 10.04 54.44 ± 11.56 0.102 b

Tumor size (mean ± STD, mm) 58.96 ± 27.58 60.15 ± 26.41 0.830b 53.37 ± 28.03 72.72 ± 39.33 0.071b
fron
* p-value<0.05 was considered as statistically significant difference.
aChi-square test.
bIndependent t-test.
TABLE 1 Demographics and characteristics of the study population.

Characteristic Total number
n=187

Low grade
(Fuhrman grade I and II)

n=135

High grade
(Fuhrman grade III and IV)

n=52
p-value

Gender

Male (n/%) 127 (67.91%) 88 (65.19%) 39 (75.00%)
<0.01*a

Female (n/%) 60 (32.09%) 47 (34.81%) 13 (25.00%)

Age (mean ± STD, year) 58.80 ± 13.88 58.17 ± 14.27 60.50 ± 11.42 0.426b

Tumor size (mean ± STD, mm) 60.18 ± 30.43 57.21 ± 28.38 67.87 ± 35.17 0.095b
* p-value<0.05 was considered as statistically significant difference.
aChi-square test.
bIndependent t-test.
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the characterization of the most frequently selected CEV features is

summarized in Table 4.
4 Discussion

The originality of this retrospective study was to proposed

multi-phase-combined CECT radiomics models for the

noninvasive Fuhrman grading of ccRCC, which concatenated

multi-phase 3D radiomics features and CEV features to

comprehensively reflect the microscale information of tumors.

Some studies have shown that single-phase radiomics model

may be a promising noninvasive method to predict the Fuhrman

grade of ccRCC (37, 38). Demirjian et al. (39) evaluated the

effectiveness of CT-based radiomics features in discriminating

Fuhrman grades and TNM stages. Saelin et al. (40) evaluated

some statistical differences in sex, age, tumor size, and CT
Frontiers in Oncology 07
imaging features according to the Fuhrman grade of ccRCCs.

They found intratumoral necrosis on CT was a strong and

independent predictor of biologically aggressive ccRCCs. Hussain

et al. (41) proposed a learnable image histogram in a deep neural

network framework that can learn task-specific image histograms.

This method learned a statistical context features directly from the

images and deploys it to extract representative discriminant textural

image features.

Lin et al. (24) built a machine learning model to predict

Fuhrman grades by combining three phases of CECT and

claimed that it achieved superior statistical performance

compared with the single-phase radiomics model. Ding et al. (12)

incorporated texture features and six non-texture features for

preoperatively differentiating Fuhrman grades. The texture

features were extracted from the corticomedullary- and

nephrographic-phase CECT images. The LASSO (42) was used to

select the most valuable texture features and calculate a texture
FIGURE 6

The performance (ROC and AUC value) of the discriminative models (AUC>0.7).
FIGURE 5

The bar height represents an AUC value of individual model; the error bar represents the upper and lower bounds of 95% CI.
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score for each patient. A logistic regression model was used to

discriminate the high- from low- grade ccRCC at nephrectomy.

Mostafa et al. (43) used three-phase CT scans (unenhanced,

corticomedullary phase, and nephrographic phase) to build

radiomic models. They first applied Laplacian of Gaussian and

wavelet filter on delineated tumor volumes and then extracted

tumor shape, size, intensity statistics, and texture from each

segmented tumor volume. They selected features to build three

classification models (SVM, random forest, and logistic regression)

to discriminate Fuhrman grades. Shu et al. (15) extracted 1,029

radiomic features from corticomedullary and nephrographic phases

and then used LASSO regression method to select features. Then,

the selected features were constructed using three classification

models (corticomedullary phase, nephrographic phase, and their

combination) by logistic regression method to discriminate high-

and low- grade ccRCC. Feng et al. (44) also used three-phase CECT

(non-contrast phase, corticomedullary phase, and nephrographic

phase) to extract first-order image features and reflect tumor

heterogeneity. They also found that entropy, which reflects

texture irregularity and chaos, was an independent and excellent

texture feature to discriminate Fuhrman grades. However, they did
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not comprehensively investigate the performance of different

phases and their combinations.

In this study, we built multi-phase- combined radiomics models

by extracting 3D classical radiomics features and computing CEV

features from the entire 3D tumor mass. The following were the

innovations of this study. (1) We extracted radiomics features from

four-phase CECT to build multi-phase-combined radiomics models

for ccRCC Fuhrman grading. The advantage of multi-phase-

combined radiomics models is that the multi-phase features may

be theoretically related to the hemodynamics and micro-vessel

density of ccRCC tumors (45–47), since ccRCC is a highly

angiogenic and vascularized tumor type (48). The experiments

also showed that the combined model with the corticomedullary

phase and the nephrographic phase could identify Fuhrman grades

with the best performance. (2) We introduced 3D CEV features to

quantitatively represent the variation in classical radiomics features

between different phases, since the variation of first-order and

texture features may reflect the enhancement of the

inhomogeneity of the ccRCC tumor mass (49, 50). CEV features

could serve as potential radiology biomarkers to macroscopically

depict the hemodynamics and micro-vessel density of ccRCC
A B

FIGURE 7

Pie charts representing the percentage (%) of key features selected by mRMR. (A) The percentage of key features in all radiomics models; (B) the
percentage of key features in discriminative models.
A B

FIGURE 8

The frequency of key features selected by mRMR in discriminative models. The higher frequency of individual feature denoted that it played the
more important role in the discriminative model. (A) The frequencies of key 3D classical radiomics features selected by mRMR in discriminative
models; (B) the frequencies of CEV features selected by mRMR in discriminative models.
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tumors. (3) We comprehensively investigated the roles of classical

radiomics features, CEV features, and their combinations, found

that the first- order, CEV, and GLCM feature types played key roles

in ccRCC Fuhrman grading.

Our study showed that there was one single-phase model (Fpha
3 )

and seven multi-phase-combined models (Fpha
1,3 , F

pha
2,3 , F

pha
1,2,3, F

pha
1,2,4,

and Fpha
1,2,3,4, FCEV

2,3,4 , FCEV
1,2,3,4) considered as discriminative model

(AUC>0.7). The statistical results demonstrated that five multi-

phase-combined radiomics models had better performance than

single-phase models, of which Fpha
2,3 and Fpha

1,2,3 model shown the

highest AUC values in all models. The performance of Fpha
2,3 and

Fpha
1,2,3 is significantly better than Fpha

3 (p- value <0.05). Compared

with other single-phase models, the Fpha
3 model showed its high

performance, whose AUC value was comparable to some multi-

phase-combined radiomics models. In addition, four discriminative

multi-phase-combined radiomics models (Fpha
1,2,3, F

pha
2,3 , F

pha
1,3 , and

Fpha
1,2,3,4) included nephrographic phase features, which denoted that

nephrographic phase features played a key role in distinguishing

Fuhrman grades of ccRCC.
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First-order, CEV, and GLCM feature types were the top 3 most

frequently selected feature types in discriminative models, meaning

that they played crucial roles in Fuhrman grade prediction. The top

10 most frequently selected features respectively belong to first-

order type (n=3), GLCM type (n=3), GLDM type (n=1), GLRLM

type (n=2), and NGTDM type (n=1). Coarseness was the top 1 most

frequently selected feature in discriminative models. It captures the

spatial change rate of gray-level intensities and reflects the gray level

difference between the central pixel and its neighborhoods.

Skewness is the second most frequently selected feature, which

measures the asymmetry of the gray-level intensity distribution

curve. Large dependence, low gray-level emphasis is the third most

frequently selected feature, which measures the joint distribution of

large dependence with lower gray-level values. Entropy and sum

entropy measure the inherent randomness of gray-level intensities,

which reflect the tumor heterogeneity and were usually considered

as biomarkers for tumor stage in radiation oncology (15, 44, 51).

Two models combining CEV features (FCEV
2,3,4 , F

CEV
1,2,3,4) were

considered as discriminative models, which denoted that CEV
TABLE 4 The characterization of the most frequently selected CEV features.

Feature name Low grade (mean ± SD) High grade (mean ± SD) p-valuea

90 Percentile (Fc–Fn) −0.09 ± 22.82 −6.95 ± 21.15 0.278

Energy (Fd–Fn) 1.67×108 ± 7.60×109 4.09×109 ± 5.81×109 0.044*

Range (Fd–Fn) −272.10 ± 540.50 −244.42 ± 445.02 0.848

Root mean squared (Fd–Fn) 9.29 ± 16.87 2.16 ± 14.01 0.118

Total energy (Fc–Fn) 1.60×108 ± 7.60×109 4.09×109 ± 5.81×109 0.043*

Cluster prominence (Fc–Fn) −608.43 ± 1396.13 −295.93 ± 378.83 0.349

Maximum probability (Fc–Fn) 0.01 ± 0.04 0.02 ± 0.04 0.559

Small area emphasis (Fc–Fn) 0.01 ± 0.02 0.01 ± 0.02 0.383

Busyness (Fd–Fn) 4.881 ± 14.612 15.994 ± 27.647 0.048*
fro
* p-value <0.05 was considered as statistically significant difference.
aIndependent t-test.
TABLE 3 The characterization of the top 10 most frequently selected features on nephrographic phase images.

Type Name Frequency Low grade (mean ± SD) High grade
(mean ± SD) p-valuea

First-order

Skewness (2nd) 7.61% 2.83 ± 0.24 2.68 ± 0.32 0.044*

Uniformity (5th) 4.89% 0.46 ± 0.64 0.50 ± 0.55 0.793

Entropy (7th) 4.35% 0.18 ± 0.04 0.19 ± 0.05 0.141

GLCM

Sum entropy (4th) 5.43% 3.57 ± 0.27 3.43 ± 0.36 0.117

Cluster tendency (5th) 4.89% 10.22 ± 3.97 8.49 ± 3.69 0.112

Sum squares (7th) 4.35% 3.20 ± 1.130 2.62 ± 1.03 0.044*

GLDM Large dependence low gray level emphasis (3rd) 7.07% 1.09 ± 0.880 1.32 ± 1.04 0.416

GLRLM
Gray level variance (7th) 4.35% 3.89 ± 1.20 3.18 ± 1.19 0.037*

Long run low gray level emphasis (10th) 3.26% 0.04 ± 0.03 0.05 ± 0.04 0.583

NGTDM Coarseness (1st) 8.15% 0.02 ± 0.01 0.00 ± 0.01 0.010*
* p-value <0.05 was considered as statistically significant difference.
aIndependent t-test.
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features could be used as supplementary features for decision-

making in Fuhrman grading. There were 15 CEV features ranked

as important feature by mRMR, of which the variation in first-order

features (frequency=9.24%) made up the highest proportion in the

CEV feature group.

There were some limitations in this study. It was a relatively

small sample size, and there was no external test set due to our strict

inclusion criteria, which required all four phases of contrast-

enhanced CT to be available for all patients. The radiomics

applications would suffer from poor external validation due to

inter-institutional variations of CT protocol and workflow.

Therefore, a prospective and multicenter experimental study was

necessary for further validation in an independent cohort. The

second limitation is the use of the Fuhrman nuclear grading system

instead of the latest WHO/ISUP grading system (52–54), as some of

the included cases date back to 2009 when the Fuhrman grading

system was widely used. The third limitation is that only 110 3D

classical radiomics features were extracted from each phase to build

the models. Some preprocessing methods (e.g., Laplacian of

Gaussian, wavelet filter, gradient filter, and local binary pattern

filter) could generate derived images, and more features extracted

from derived images could enhance the performance of radiomic

models (43). Moreover, the AUC value will be higher if clinical

variables are incorporated into the models (55, 56).

In conclusion, the multi-phase-combined CECT radiomics

methods could noninvasively predict the Fuhrman grades of

ccRCC. The multi-phase features with 3D classical radiomics

features and CEV features may serve as noninvasive radiology

biomarkers for Fuhrman grade prediction.
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