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Introduction: As a vital component of the ecosystem of the Qinghai-Tibet

Plateau, alpine wetlands coexist with their vulnerability, sensitivity, and

abundant biodiversity, propelling the material cycle and energy flux of the

entire plateau ecosystem. In recent decades, climate change and human

activities have significantly altered the regional landscape. Monitoring and

assessing changes in the alpine wetlands on the Qinghai-Tibet Plateau requires

the efficient and accurate collection of long-term information.

Methods:Here, we interpreted the remote sensing data of the first meander of the

Yellow River of alpine wetlands from 1990 to 2020 based on Google Earth Engine

(GEE) platform, using geographic information system (GIS) and landscape pattern

index to analyze the spatial and temporal evolution of wetland landscape patterns,

and the primary drivers of changes in wetland area were explored by GeoDetector.

Results: Our result showed that most wetland areas were found in regions with

gradients less than 12° and elevations between 3315 and 3600 m. From 1990 to

2010, the area of alpine wetland in the study area decreased by 25.43%. During the

period between 2010 and 2020 to the 1990s, the wetland area decreased by 322.9

km2. Conversion to and from grassland was the primary form of wetland transfer

out and in, respectively. The overall migration of the wetland centroid in the study

areawas to the southwest between 1990 and 2010 and to the north between 2010

and 2020. The geometry of the wetland landscape was relatively simple, the

landscape was relatively intact, and patches retained a high level of agglomeration

and connectivity. However, their level of agglomeration and connectivity was

disrupted. A quantitative analysis of the factor detector in GeoDetector revealed

that the DEM, slope, and evaporation were the most important driving factors

influencing the change of wetland area, with socioeconomic development also

influencing changes in the wetland area to a lesser extent.

Discussion: Using interaction detectors, it was discovered that the interaction of

various driving factors could better explain the long-term variations in wetland

areas, with a greater degree of explanation than that of each driving factor alone.

KEYWORDS

Google Earth Engine, alpine wetlands, long-term time series, wetland change,
driving factor
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1 Introduction

Wetlands are areas where the soil is frequently or excessively

saturated with water and where plant life is active throughout the

growing season. They cover at least 6% of the Earth’s surface and are

one of the most important and threatened ecosystems on the planet.

Wetlands are indispensable for regulating water flows, hydrological

and biogeochemical cycles, and climate change (Junk et al., 2013;

Maleki et al., 2021). In addition, they provide vital ecosystem

functions (Wondie, 2018). Alpine wetlands are a distinct type of

wetland ecosystem that regulates the local climate and are one of the

most important biological water sources on the Qinghai-Tibet

Plateau (Li W. et al., 2020). However, the degradation and

contraction of alpine wetland habitats on the Qinghai-Tibet

Plateau is becoming increasingly severe (Hou et al., 2020).

The Zoige Alpine Wetland is located on the eastern edge of the

Qinghai-Tibet Plateau. It is the most representative alpine wetland

on the Qinghai-Tibet Plateau in terms of its apparent characteristics

(Zhao and Song, 2004). The numerous lakes and wetland swamps

dispersed across the territory comprise the entire water system of

the Yellow River’s upper reaches. There has been a steady decline in

the environmental quality of the Yellow River’s key water supply

regions since the 1980s. Approximately 80% of the natural

grasslands have been degraded to varying degrees, wetland

landscapes have shrunk, areas affected by desertification have

continued to expand, and soil erosion has intensified (Liang et al.,

2009; Fu et al., 2012; Li et al., 2013; Yue et al., 2018; Fei et al., 2019;

Che et al., 2022). Studies of the dual response of wetland landscape

changes to the natural environment and human productivity in

high-altitude ecologically sensitive areas have become a popular

topic in this field, particularly as global warming and human

activities intensify (Shen et al., 2014; Li et al., 2021). When

considering the primary factors of wetland degradation, climate

change is the most important factor over a small-scale

spatiotemporal range, particularly for remote river sources and

high-altitude regions (Wang et al., 2020; Zhang et al., 2021;

Zhang B. et al., 2022). Wetland ecosystems do not simply

respond to natural changes and the impact of human activities

and the interaction between various natural factors must also be

considered. With increasing economic development, human

activities further aggravate the degradation of wetlands through

population growth, animal husbandry, and tourism (Yan and Wu,

2005; Bai et al., 2013; Dong et al., 2020; Yan et al., 2022).

Due to its broad coverage, real-time information collection,

convenient acquisition, and strong periodicity, remote sensing has

progressively evolved into an effective tool for ecological research

(Roughgarden et al., 1991; Li J. et al., 2020; Chen et al., 2023). It also

provides novel monitoring techniques and technical assistance for

wetland resources (Bwangoy et al., 2010; Amani et al., 2021; Fekri

et al., 2021). The identification and extraction of wetland

information is the basis of wetland change analysis and wetland

ecosystem protection. Studies of wetland change rely on long-term

data accumulation, with the aim of obtaining accurate and

quantitative wetland location information at both the temporal

and spatial scales. Due to the wetland distribution accuracy

requirements in wetland research, there is an urgent need for
Frontiers in Ecology and Evolution 02
improvements in wetland remote sensing information extraction

technology. Traditionally, the monitoring of changes in wetlands

through remote sensing has been largely based on visual

interpretation (Bai et al., 2013; Mabwoga and Thukral, 2014; Shen

et al., 2019a). In recent years, new remote sensing classification

algorithms, such as the simple and effective spatial-spectral (SESS)

(Sun et al., 2021), decision-tree (DT) (Berhane et al., 2018), object-

based image analysis (OBIA) (Zhou et al., 2021), artificial neural

network (ANN) (Saha et al., 2021) and support vector machine

(SVM) methods (Sadeghi et al., 2012), have been used in wetland

information extraction applications. Although most classification

methods have a high degree of accuracy, they suffer from drawbacks

such as complex preprocessing and performance limitations, as well

as being time-consuming and labor-intensive. The Google Earth

Engine is a remote sensing-based platform for global geospatial

analysis. Due to its high computing capacity and advantages in

online data processing and visual analysis, it has been widely

applied in several fields, including land cover and land use

classification, hydrology, urban planning, natural disaster

prediction, and climate change assessments (Amani et al., 2020;

Barboza Castillo et al., 2020; Liu et al., 2020; Yang et al., 2021; Yan

et al., 2022).

The alpine wetland at the first meander of the Yellow River is

essential for climate regulation and regional ecological environment

improvement in both the upper reaches of the Yellow River and the

entire Qinghai-Tibet Plateau, and is directly linked to the economic

growth and sustainable development of the Yellow River Basin. The

degradation of the alpine habitat in the first meander of the Yellow

River is the consequence of a combination of natural and

anthropogenic factors. Previous studies have investigated the

primary mechanism of wetland degradation due to natural and

human factors, but these studies have primarily focused on natural

factors. There have been relatively few quantitative studies of the

driving forces of wetland degradation, particularly the quantitative

identification of driving forces under the influence of climate

change and human activities. This study focused on the first

meander of the Yellow River and explored the changing

characteristics and driving forces of the alpine wetland from 1990

to 2020.
2 Materials and methods

2.1 Study area

The Yellow River surrounds Maqu County from the south,

north and east. As it flows through the Maqu grassland, it forms the

first meander of the Yellow River. The upper sections of the Yellow

River are one of the most important ecological water conservation

zones in China (Chu et al., 2014). The main stream of the Yellow

River flows through the Maqu grassland with a diameter of 433 km

and a drainage area of 10,190 km2, accounting for 59% of the area of

the Yellow River basin in Gansu Province. The water supply

accounts for 58.7% of the total runoff in the source area of the

Yellow River (Zhang T. et al., 2022). Based on a hydrological

analysis. Using digital elevation model (DEM) data with a
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resolution of 30 m and taking the Yellow River into and out of

Maqu County as the control points, the small watershed of Maqu

where the Yellow River is located was extracted as the study area.

The Yellow River control basin of Maqu is located in the eastern

extension of the Qinghai-Tibet Plateau (32°16’-34°51’N, 100°76’-

103°41’E), at the junction of Gansu, Qinghai, and Sichuan

provinces. Administratively it is under the jurisdiction of Maqu

County, Luqu County, Aba County, and Henan Mongolian

Autonomous County. The total area is 30,000 km2, with an

elevation of 3315−4984 m, and the terrain is high in the

northwest and low in the southeast (Figure 1). The Yellow River

originates from Qinghai and becomes a river in Maqu (Li et al.,

2012). The district is an important area for water conservation in

the upper levels of the Yellow River. This area has a dry and cold

plateau continental alpine humid climate with long winters and

brief summers. It has an average annual temperature of 2.15°C

(Zhang et al., 2011). It is a moist region as a result of the average

annual precipitation of 680.52 mm, which is concentrated from July

to September when 80% of the annual precipitation is received

(Zhang B. et al., 2022). Resources for plants and animals are

plentiful, with the vegetation mainly being plateau shrub meadow

and swamp vegetation (Zhang et al., 2007). It is the largest alpine

swamp wetland in China and contains the Gansu Yellow River

Shouqu Nature Reserve and Zoige National Wetland Park.
2.2 Data sources and preprocessing

This study mainly uses remote sensing data, land use data and

driving factor data. The driving factors mainly include topographic

factors, meteorological factors and socioeconomic factors. The data

sets and data source information used in this study are shown

in Table 1.
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Based on the GEE platform, Landsat TM/OLI satellite images

for seven time periods from 1990 to 2020 were selected, and the

1989 images were finally chosen as a replacement due to the high

image cloud coverage in the 1990 study period. The vegetation in

the region is withered in winter and spring, precipitation is scarce

and the remote sensing images are monotonous in color and low in

brightness, which is not conducive to feature identification and

classification, while summer and autumn are the best seasons for

remote sensing monitoring of wetlands due to the high

temperature, abundant precipitation, and the best growth of

wetland vegetation. Therefore, based on the built-in function set

of the GEE platform, remote sensing data was selected from June to

September to realize preprocessing operations such as rapid data

screening, image cloud masking, splicing, and cropping, and 4, 3, 2

and 5, 4, 3 band combinations were used for TM and OLI

data respectively.
2.3 Methods

In this study, we acquire land cover findings for the study region

from 1990 to 2020 based on the GEE platform, and then assess the

extent, distribution, and variations of alpine wetland. Finally, we

explored the driving factors for the area change of alpine

wetlands (Figure 2).

2.3.1 Classification system and selection of
classification features

The land cover classification system for remote sensing in the

study area was established with reference to the classification

standards of wetlands in the international Convention on

Wetlands and the domestic National Wetland Resources Survey

and Monitoring Technical Regulations. The wetland types in the
FIGURE 1

Schematic diagram of study area location.
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FIGURE 2

Flow chart for the analysis of this study.
TABLE 1 Information on datasets and data sources used in this study.

Category Data Period Spatial
resolution

Sources

Remote sensing
data

Landsat 5 TM
Landsat 8 OLI

1990,1995,2000,2005,2010,
2015,2020

30m
30m

Google Earth Engine
Google Earth Engine

Land use data GlobeLand 30
V2020

2020 30m http://www.globeland30.org/

Terrain factors Elevation (SRTM
V3)

– 30m Google Earth Engine

Slope – 30m Calculated by ArcGIS 10.8

Aspect – 30m Calculated by ArcGIS 10.8

Natural factors Precipitation 1990,1995,2000,2005,2010,
2015,2020

1km
1 km
1km

(http://www.geodata.cn/)

Temperature

Evaporation

NPP 500m,1km Google Earth Engine (MODIS MOD17A), https://
www.geodoi.ac.cn/

Socioeconomic
factors

Population density 1990,1995,2000,2005,2010,
2015,2020

1km https://www.worldpop.org/project/categories?id=18, https://
www.resdc.cn/

GDP 1990,1995,2000,2005,2010,
2015,2020

1km http://www.gisrs.cn/

Road 2020 – https://download.geofabrik.de/

Administration
center

– – http://www.webmap.cn
F
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study area were mainly swamp wetland, wet meadow, and swamp

meadow. In this study, the three wetland types were grouped

together, and together with the total area of all water bodies were

defined as the area of wetlands in the study area. The other

landscape categories in the study area were forest, grassland, bare

land, and construction land, and samples were selected and

generated from the Landsat series of images using the GEE

platform to create a training sample set.

The classification features used for wetland information

extraction mainly included spectral indices, texture features, and

terrain data. First, the spectral bands of the image were selected

from the red, green, blue, near infrared, and short-wave infrared

bands that were similar to the spectral bands of Landsat 8/OLI and

Landsat 5/TM. The vegetation and water body indices were more

stable than the single bands when reflecting land cover types.

Combining vegetation and water body indices for classification

can improve the accuracy of image classification to a certain extent.

The normalised difference water index (McFeeters, 1996), improved

normalised difference water index (Xu, 2006), the normalised

difference vegetation index (Tucker, 1979), normalized building

index (Li and Chen, 2018), the land surface water index (Özelkan,

2020), and the enhanced vegetation index were selected (Huete

et al., 2002).

Texture features are an important attribute of remotely sensed

images and are an important basis for identifying different feature
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types (Wan et al., 2018). The Gray-Level Co-occurrence Matrix

(GLCM) is a classical statistical method used to analyse texture

features of images (Haralick et al., 1973). The study area has a

complicated topography, and the wetlands are mostly located in

plains with flat terrain and gentle slopes. The classification features

also incorporate auxiliary classification feature data related to

topographic factors. All characteristic variables are described

in Table 2.
2.3.2 Classification method and
accuracy verification

The Random Forest (RF) algorithm was used to classify remote

sensing images in this study. The RF is an algorithm for machine

learning proposed by Leo Breiman in 2001 (Breiman, 2001a). The

advantages of this method are its speed, effectiveness, and stability

compared to alternative algorithms and its classification accuracy is

also high (Breiman, 2001b; Rodriguez-Galiano et al., 2012; Ye et al.,

2021). The RF is an integrated learning model based on the decision

tree as the basic classifier. It includes several trained decision trees.

When the samples to be classified are input, multiple trees are used

to train the samples and the output of the tree is voted on. The

number of decision trees in this study is 50, and each node has five

attributes to choose from. The final classification model can be

expressed as:
TABLE 2 The formula of each classification feature variable.

Feature category Abbreviation Formula

Index features NDVI pNIR−PRED
pNIR + PRED

NDWI pGREEN−PNIR
pGREEN + PNIR

MNDWI pGREEN−PSWIR

pGREEN + PSWIR

NDBI pSWIR−PNIR
pSWIR + PNIR

EVI
2:5� PNIR − PRED

PNIR + 6PRED − 7:5PBLUE + 1

LSWI pNIR−PSWIR

pNIR + PSWIR

Textural features asm oi  oj   Pði, jÞ2

contrast oi  oj   ði − jÞ2ði, jÞ

Corr ½oi  oj((ij)P(i, j)) − mxmy �=sxsy

ent −oi  oj   P(i, j) log P(i, j)

idm
o
i
o
j

P(i,jÞ
1 + (i − j)

var −oioj(i − a)2m(i, j)a is the mean of m(i,j).

Terrain Features Slope

Aspect

Hillshade
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H(x) = Cargj maxoT
i=1h

j
i(x) (1)

In the formula, H (x) is the random forest model, Cj is the

category j mark, T is the number of decision trees, and hi is the i th

decision tree.

To evaluate the accuracy of the classification results, 80% of the

sample data are chosen as training samples, while 20% of the

samples are chosen as verification data. The confusion matrix of

the classification results, kappa coefficient, overall accuracy (OA),

producer accuracy (PA) and user accuracy (UA) were calculated to

evaluate the accuracy of the classification results. The specific

formula is as follows:

(1) Kappa Coefficient

Kappa =
Po−Pe
1 − Pe

(2)

Pe =
a1 � b1 + a2 � b2 +… + ai � bi

n� n
(3)

Po is the total sample classification accuracy, ai is the true

number of samples in class i, bi is the predicted value of the sample,

n is the total number of samples.

(2) Overall accuracy (OA)

OA = Nr=Na (4)

Nr is the number of correctly classified samples, and Na is the

total number of samples.

(3) Producer Accuracy (PA)

PA = Nir=Nia (5)

Nir is the number of samples that are correctly classified as class

i, and Nia is the number of real reference samples of class i.

(4) User accuracy (UA)

UA = Nir=Nin (6)

Nir is the number of samples that are correctly classified into class

i, and Nia is the number of samples that are classified into class i.

2.3.3 Land use transition matrix
The land use transition matrix was derived through a system

analysis using a quantitative description of the system state and

state transfer (Yang et al., 2020). The land use transition matrix

reflected the quantitative characteristics of the changes in area of

each land use class following transitions in the region (Huang et al.,

2021). The formula is as follows:

Sij =

S11   S12  …   S1n

S21   S22  …   S2n

:   :   :   :

:   :   :   :

  :   :   :   :  

Sn1   Sn2  …   Snn  

 

2
666666666666664

3
777777777777775

  (7)
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where: S denotes the area; Sij denotes the area where land use

type i at the beginning is transferred to land use type j at the end; i, j

(i, j=1, 2,…, n) indicates the kind of land use at the start and the

conclusion of the research period.

2.3.4 Centroid model
The centroid is essential when characterizing the spatial

distribution of geographical elements. Using ArcGIS 10.8

software, the wetlands were weighted by area to obtain the

centroid of wetlands in each year and the dynamic migration

trend of the distribution. If the wetland developed in a balanced

manner in all spatial dimensions, its centroid remained basically

unchanged; if it increased or decreased significantly in a certain

direction, its centroid shifted significantly (Zhou et al., 2020; He

et al., 2023). Following is the formula:

Xt =
on

i=1(Cti � Xi)

on
i=1(Cti)

 Yt =
on

i=1(Cti � Yi)

on
i=1(Cti)

(8)

Where Xt and Yt indicate, in turn, the latitude and longitude of

the distribution centre for a certain land use category in year t, Cti

represents the area of the type of the i-th community; Xt and Yt

denote the latitude and longitude coordinates of the geometric

centre of the i-th cell respectively.

2.3.5 Landscape pattern analysis method
In the related discipline of landscape ecology, the landscape

index is a frequently employed quantitative research method for

analyzing the evolution of landscape patterns (Liu et al., 2014; Mu

et al., 2021; Yang et al., 2022). This study selects the Patch Cohesion

Index (COHESION), Patch Density (PD), Landscape Shape Index

(LSI) and Shannon’s Diversity Index (SHDI), with the conceptual

and ecological significance of their related indices as shown

in Table 3:

2.3.6 Geodetector
Geodetector is a statistical method used to study spatial

heterogeneity among data and to reveal the driving forces of spatial

distributions. It is widely used in the analysis of the mechanisms that

drive different land uses (Zhu et al., 2020). In this study, to analyze the

factors that cause changes in wetland areas, we primarily employed

factor probes and interaction probes in geographic probes. Among

them, one-way detection was used to detect the strength of the

explanatory power of a factor X on variable Y. The value q was

denoted by q∈[0, 1], and the magnitude of the value was

autocorrelated with the strength of the explanatory power of X on

Y (Huo and Sun, 2021). The q value is calculated as follows:

q = 1 −o
L
h=1Nhs

2
h

Ns 2 = 1 −
SSW
SST

(9)

SSW =oL
h=1Nhs

2
h ,  SST = Ns 2 (10)

where L is the stratification of variable Y or factor X, Nh and N

represent the number of cells in a given stratum and the whole area,

s2
h and s2 are the sum of variances in a particular stratum and the
frontiersin.org
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whole region, respectively, and SSW and SST are the sum of

variances within a stratum and the total variance in the whole

region, respectively.

The primary objective of the interaction detection was to

determine if the driving forces and the interaction’s intensity

interacted, i.e., the change in the explanatory power of the

variable Y after the combination of different factors X. The

principle was to calculate the values of q(X1) and q(X2) separately

from q(X1∩X2) and determine the mode of interaction by

comparing the magnitude of the values (Wang et al., 2022). The

interaction relationship among the driving factors is shown

in Table 4.
3 Results

3.1 Classification accuracy

Based on Google Earth high-resolution images and 96 data

points from a field survey conducted in the study area in June 2023

(Figure 1), the accuracy of the sample set was selected, compared,

supplemented, and verified and its OA, Kappa coefficient, UA, and

PA were calculated (Figure 3) . The results showed that the average

OA value of the seven-period classification results was 86.83%

(81.25%-91.37%), the average kappa coefficient was 0.83 (0.79-

0.89), the average PA value was 84.33%, and the average UA

value was 85.18. The average classification accuracy of each
Frontiers in Ecology and Evolution 07
category was higher than 77%, and the classification accuracy of

water bodies and wetlands was relatively stable and high. These

results show that the remote sensing classification results had a high

degree of accuracy and met the requirements of follow-up research.

Additionally, we selected the GlobeLand30 V2020 data product

for a comparison with the classification results from our research

and further assessed their accuracy (Figure 4). For 2020, we selected

three typical wetland areas (A, B, and C) and evaluated the 2020

classification outcomes by visually assessing how well the outcomes

matched the growing season images. The visual check revealed that

the geographic distribution of our categorization outcomes was

uniform. Overall, the classification results were shown to have a

good degree of accuracy and satisfied the demands of the

wetland analysis.
3.2 Wetland area and distribution

3.2.1 Wetland area and variation characteristics
A statistical analysis of the wetland information extracted from

the seven time periods in the study area showed that the wetland

area and its spatial distribution had clearly changed from 1990 to

2020 (Figure 5). Between 1990 and 2010, the area of alpine wetlands

declined, but from 2010 to 2020 it grew steadily. The wetland area

was largest in 1990, accounting for 14.4% of the study area’s overall

size, The wetland area decreased from 4349.15 km2 in 1990 to

3242.94 km2 in 2010, i.e., a total reduction of 1106.21 km2 (25.43%)

in 20 years. The wetland area then increased from 3242.94 km2 in

2010 to 4023.16 km2 in 2020, i.e., a total increase of 783.22 km2 in

10 years, but compared with 1990, the wetland area had still

decreased by 322.99 km2.
3.2.2 Horizontal distribution
characteristics of wetlands

Alpine wetlands were widely distributed in the study area, and

mainly consisted of swamp wetlands along rivers and lakes. The
TABLE 3 Types, formulae and ecological significance of landscape pattern indexes.

Index
Name

Index
Type

Formula Ecological Implications

COHESION Patch
Cohesion
Index COHESION =

1 − o
n
j=1

P*ij

h i

o
n
j=1

P*ij ffiffiffi
aij

p

2
4

3
5

a − 1ffiffiffi
A

p � 100

This index represents an index of the degree of physical connectivity between patches in the
landscape, and the larger the value, the higher the spatial connectivity between patches.

PD Patch Density
PD =

N
A

This index describes the amount of landscape fragmentation by expressing the number of
patches of a certain kind per unit area.

LSI Landscape
Shape Index

LSI =
0:25Effiffiffiffi

A
p The form of the landscape tends to be more regular and intricate in proportion to the LSI

value, which ranges from tiny to high.

SHDI Shannon’s
Evenness
Index

SHDI = −om
i=1(pi)log2pi) A value of 0 indicates that only one patch makes up the whole landscape. As SHDI increases,

it indicates that the landscape is becoming more unstable and more fragmented.
n is the total number of patches in a certain patch type, j is the number of patches, j = 1, n; aij is the perimeter of all patch types in the landscape; Pij is the i-th The perimeter of the type of patch; A
is the total area of the landscape, N is the number of a certain type of patch in the landscape; E is the total length of all patch boundaries in the landscape, 0.25 is the square correction coefficient; m
is the number of landscape types, pi is The proportion of landscape type i.
TABLE 4 Types of interactions.

Criterion Interaction

q(X1∩X2)<Min[q(X1), q(X2)] Nonlinear weakening

Min[q(X1), q(X2)]< q(X1∩X2)< Max[q(X1), q(X2)] Unilinear reduction

q(X1∩X2) > Max[q(X1), q(X2)] Bilinear enhancement

q(X1∩X2) = q(X1) +q(X2) mutual independence

q(X1∩X2) > q(X1) +q(X2) Nonlinear enhancement
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Yellow River flows over the Maqu grassland and has many

tributaries, including the Heihe and Baihe rivers. Figure 6 shows

the geographical distribution of wetlands in the research region.

Lake wetlands were mainly distributed on both sides of the Baihe

River in the eastern part of the study area and were relatively

concentrated and scattered in other areas of the study area. From

the perspective of administrative divisions, lake wetlands were

mainly distributed in Zoige County and Hongyuan County.

Geographically, the wetlands were mainly distributed in the

central and eastern parts of the study area, the central wetlands

were mainly distributed in the first meander of the Yellow River of

the Maqu grassland, and the eastern wetlands were mainly

distributed on both sides of the Heihe and Baihe Rivers. From the

perspective of administrative divisions, the wetland area was largest,

and the proportion of wetlands was highest in Zoige County. Most

wetlands in the study region were river wetlands and marsh

wetlands, with some scattered lake wetlands.
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3.2.3 Vertical distribution
characteristics of wetlands

The upkeep and growth of wetlands depends heavily on water,

which is generally located in areas with gentle topography, good

waterlogging conditions, and poor drainage (Gao et al., 2012). Based

on the elevation and slope data, the elevation and slope of the study

area were divided into six grades. To determine how wetlands were

distributed vertically, wetland distribution data, elevation data, and

slope data from the seven time periods were overlaid (Figure 7). The

results showed that wetlands were mostly found in regions with

slopes of< 12°, 95.79−98.41% of wetlands were distributed in areas

with slopes< 12° and 1.32−3.91% of wetlands were distributed in

areas with slopes of 12–24°, while areas with a slope > 24° had almost

no wetlands. Wetlands were concentrated in areas with elevations

between 3315−3600 m, where they accounted for 89.6−95.49% of the

total area. At elevations between 3600−3900 m, there was a small

wetland distribution and they accounted for only 4.3−9.31% of the
A B

FIGURE 3

The accuracy of classification results. (A) OA and kappa coefficient, (B) PA and UA.
A

B

C

FIGURE 4

Comparison of classification results (A, B, and C are three wetland areas; the left is the Landsat 8 image of the growing season, the middle is the
GlobeLand30 product in 2020; the right is the classification result of this study in 2020.).
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total area. There was almost no wetland area at 3900−4800 m, and

there was no wetland distribution above 4800 m.
3.3 Analysis of wetland spatialchanges

3.3.1 Spatial pattern of wetland changes
The spatial distribution of the increase and decrease of alpine

wetland in the six time periods is shown in Figure 8. In the study
Frontiers in Ecology and Evolution 09
area, the wetland area declined from 1990 to 2010. The areas with

relatively obvious shrinkage were mainly distributed in the border

areas around the wetlands of Maqu County and Zoige County. The

decline was mainly concentrated in the northern and eastern

regions of the study area, with a particularly serious loss in the

northern region. The areas of wetland loss in the Heihe and Baihe

wetlands were relatively large and concentrated, whereas the loss

areas of other areas were relatively small and distributed at the edge

of the wetlands. From 2010 to 2020, wetlands in some areas were
FIGURE 5

Changes in wetland landscape type area in the study area from 1990 to 2020.
A B D

E F G

C

FIGURE 6

Distribution of wetlands in the study area from 1990 to 2020. (A), 1990 (B), 1995 (C), 2000 (D), 2005 (E), 2010 (F), 2015 (G), 2020.
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A

B

FIGURE 7

Wetland distribution and changing topographical features. (A) Elevation (B) Slope.
A B

DC

FIGURE 8

Spatial pattern of wetland changes (A), 1990-2000 (B), 2000-2010 (C), 2010-2020 (D), 1990-2020.
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lost, but a small number of non-wetland areas were converted to

wetlands. The areas with increased wetland cover were mainly

distributed in the northern areas of the Maqu and Zoige

wetlands. The distribution of the increase and decrease in the

study area was uneven, but the area of decrease significantly

reduced over the study period, with the environmental system of

the Gannan alpine wetland gradually recovering during this period.

From the land use transfer map (Figure 9), the reduction of

wetlands from 1990 to 2010 mainly occurred through the transfer to

grassland, with the largest transfer occurring during 1990−2000. The

transfer rate slowed down during 2000−2010 in the Gannan alpine

wetland. From 2010 to 2020, the area of wetland in the study area

increased, and the transferred-in area was larger than the transferred-

out area. Overall, the dynamic change between wetlands and
Frontiers in Ecology and Evolution 11
grasslands was most pronounced during 1990−2020, with 780.63

km2 of wetlands transferred to other land use types, of which 92.98%

was converted to grasslands and 3.7% was converted to construction

land and bare land. Of the areas converted into wetlands, 78.96%

were converted from grassland and 20.12% from construction land

and water bodies. The increase in the area of construction land was

mainly due to conversion from grassland, while some construction

land was also converted to grassland. Bare land and grassland were

frequently converted to each other, with the conversion of bare land

to grassland being more common and accounting for an area of

328.94 km2. The area of grassland converted to bare land was only

104.58 km2. The area of forest and water bodies that were converted

to other land uses was low, with conversions between forest and

grassland being more common.
A B

DC

FIGURE 9

Land use transfer map (A), 1990-2000 (B), 2000-2010 (C), 2010-2020 (D), 1990-2020.
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3.3.2 Analysis of the migration
of the wetland centroid

The migration of wetland core in the study area in 7 typical

years (Figure 10) shows that: the wetland centroid moved 4.85 km

to west by south from 1990 to 1995. The wetland centroid moved to

south by west 6.34 km from 1995 to 2000. The wetland centroid

moved to south by east 6.72 km from 2000 to 2005. The wetland

centroid moved to south by east 4.04 km from 2005 to 2010.The

wetland centroid moved to north by west 0.77 km from 2010 to

2015 and the wetland centroid moved to north by east 5.21 km from

2015 to 2020.

The centroid of the wetland in the whole area shifted from 1990

to 2010, and indicated that the northeast was more severely

impacted than the southwest during this time. The northeastern

portion of the study area had a much lower wetland area because of

extensive drainage ditch excavation during the 1990s, which caused

the centroid of the wetland to migrate to the southwest. Several

wetland restoration initiatives have been conducted in recent years,

during which drainage ditches in Zoige County were filled in.
Frontiers in Ecology and Evolution 12
Wetlands in the northern portion of the research area were

recovered. The wetland centroid in the whole area migrated to

the northeast between 2010 and 2020.

3.3.3 Characteristics of the wetland
landscape pattern

The landscape pattern index at the landscape level can reflect the

area’s overall landscape characteristics on a larger geographical scale.

Four indices were used to analyze the evolution of the landscape

pattern of the alpine wetlands (Figure 11). PD first decreased, then

increased, and then decreased again during 1990 to 2020, with a

maximum in 2015, indicating that the fragmentation degree of the

wetland landscape displayed a decreasing-increasing-decreasing trend.

The COHESION value was high indicating that the landscape was

relatively intact, with high levels of agglomeration and connectivity

between patches. The dominant patches in the landscape had a good

connectivity, but they fluctuated and decreased over time, suggesting

that their level of agglomeration and connectivity was gradually being

undermined to some extent. Except for 2005 and 2015, the LSI values
FIGURE 10

The centroid change of wetland patch area from 1990 to 2020.
A B

FIGURE 11

Landscape index of wetlands in the study area. (A), COHESION and PD (B), LSI and SHDI.
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were relatively large, and the LSI values were relatively large, and the

LSI values in other time periods were small and did not fluctuate,

indicating that the fluctuation of the wetland shape decreased, the

geometry of the wetland was simplified, and the degree of patch

irregularity gradually decreased.

The quantity of landscape variation is determined by the

number of patch types and the regularity of their distribution

within an area. With an increase in the diversity index, the

composition of landscape structure tends to be complex. From

1990 to 2020, the SHDI value in the study area displayed a

fluctuating downward trend. In 2015, the SHDI value in the study

area increased slightly, but was still lower than in 1990–2005,

demonstrating that the degree of landscape fragmentation was

steadily reducing at this stage, and the wetland landscape in the

study area was evolving in a balanced direction.
3.4 Analysis on the driving factors of alpine
wetland area change

The drivers selected for this study were X1 (Slope), X2 (Aspect),

X3 (DEM), X4 (the distance from the road), X5 (the distance from

the administration center), X6 (GDP), X7 (NPP), X8 (Population

density), X9 (Temperature), X10 (Precipitation), X11 (Evaporation)

(Figure 12).
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3.4.1 Single factor detection
Based on the GeoDetector analysis of each driver (Figure 13),

the single-factor detector revealed that evaporation was the main

factor in 1990 (q-value of 0.24), the dominant factor was NPP in

2005 (q-value of 0.52), and the DEM had the greatest influence on

changes in wetland area in all the remaining years with q-values of

0.53, 0.49, 0.65, 0.56, and 0.72, respectively. From the different q-

values of each factor in different years it was determined that X3

(0.51) > X1 (0.48) > X11 (0.42) > X7 (0.29) > X9 (0.27) > X10 (0.22) >

X4 (0.14) > X8 (0.12) > X5 (0.1) > X6 (0.09) > X2 (0.07), further

indicating that the DEM was the main driver of changes in wetland

area. This indicated that natural factors had a significant influence

on the spatial and temporal evolution of wetlands. The explanatory

power of socio-economic and locational factors was smaller, but

with economic development, the driving force of population density

and distance from roads was further strengthened. The q-value of

the distance from the administration center and GDP did not

change significantly and its explanatory power was weak.

3.4.2 Interaction between factors
The interaction results showed that the influence of the two-

factor interactions was significantly higher than that of a single

factor, and the interactions between the main drivers of wetland

change in the research region from 1990 to 2020 were largely two-

factor enhanced and non-linear enhanced, with no independent
FIGURE 12

Drivers of wetland area change.
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interactions and non-linear weaker factors (Figure 14). The

interaction between X10 (Precipitation) and X8 (Population

density) was the strongest interaction in 1990, reaching 0.819.

The interaction between X8 (Population density) and X1 (Slope)

was the strongest interaction in 1995. In 2000, the interaction

between X11 (Evaporation) and X1 (Slope) was the strongest

interaction, reaching 0.706. The interaction between X8

(Population density) and X1 (Slope) fluctuated from 2005 to

2020, but still had a high explanatory power, with the highest

explanatory power of 0.816 in 2005. From 2010, the interaction

between X7 (NPP) and X1 (Slope) gradually strengthened and had

the highest explanatory power, exceeding 0.8. The interaction

between X11 (Evaporation) and X1 (Slope) had a high explanatory

power in all years and gradually strengthened, reaching 0.838 in

2020. The single factors of X7 (NPP) and X11 (Evaporation) did not

significantly drive the distribution of wetlands in the study area, but

when combined with X1 (Slope), they had a strong explanatory

power of the change in wetland area. This indicated that these

factors did not affect the change in wetland area independently but

had a stronger influence when combined with other factors.

Additionally, the distance from the administration center and

GDP, which had less explanatory power, also had a stronger

influence when combined with other factors. The interaction

between socioeconomic factors and natural factors had a

significantly greater explanatory power than the interaction

between socioeconomic factors, indicating that natural factors and

socioeconomic factors both promoted the spatial and temporal

evolution of wetlands in the study area.
4 Discussion

In the extraction of wetland information, it is extremely difficult

to obtain long time-series data for wetlands and their changes, and

the traditional analysis of remote sensing images faces several

challenges and limitations. Therefore, previous studies have also

focused on small-scale short time-series. In recent years, with its

tremendous computational capabilities, the GEE platform has
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progressively become an indispensable cloud processing tool.

Based on the GEE platform, this study generated a classification

map of the first meander of the Yellow River alpine wetlands, and

analyzed changes in the past 31 years, including changes in the

wetland area, space, and landscape The study confirmed the

superiority and feasibility of the GEE platform for monitoring the

dynamic evolution of wetland ecosystems over a long time-series.

The study area can be considered a microcosm of the Yellow River

source area, both in terms of wetland ecology and the regional

socioeconomics. This situation is particularly striking in terms of

wetland ecological management. Based on the land use statistics, we

found that 2010 was a turning point in the change of wetland area.

A large area of the first meander of the Yellow River alpine wetland

was lost after the 1990s due to the combination of natural factors

such as climate warming and wetting, and human factors such as

overgrazing. Additionally, the water level in hundreds of lakes in the

first meander of the Yellow River dropped significantly, the surface

runoff dropped sharply, and the wetland area significantly declined.

The alpine wetland in the first meander of the Yellow River has

faced serious ecological restoration issues. From 2010 to 2020, the

area of alpine wetlands increased annually, but compared with the

1990s, the wetland shrinkage was still severe. These results were

consistent with those of other studies that investigated changes in

the wetland landscape of key counties within the region (Shen et al.,

2019b; Li W. et al., 2020; Zhang et al., 2021).

In terms of natural drivers, the study area was a typical high-

altitude ecologically fragile zone, with poor ecological stability and a

strong sensitivity to climate change. Climatic factors have played an

important role in wetland change over time. There was a steady

upward trend in temperature in the study area over the 31-year

study period and a large inter-annual variation, and the annual

average temperature growth trend was significantly higher from

2002 to 2020 than from 1990 to 2002. Precipitation basically

maintained a steady upward trend, with wetlands in the study

area relying mainly on precipitation recharge. A continued increase

in precipitation will promote the expansion of wetland areas. The

warm and wet background of the Qinghai-Tibet Plateau has led to

an overall trend of increasing surface evapotranspiration on the
FIGURE 13

Variation of q value of detection factors in 1990-2020.
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plateau, with annual evaporation fluctuating and increasing over a

period of 31 years. There was a steady increase before the watershed

year of 2006 when evaporation reached 303.12 mm, which was

related to the substantial decrease in wetland area from 1990 to

2010. From 2010 to 2020, the annual average temperature increase

trend slowed, and precipitation increased, resulting in relatively low

evaporation. The main method of water consumption in alpine

wetlands is evapotranspiration. As the temperature rises more heat

is generated, making the climatic conditions in the study area more

favorable for the growth of mesophytic plants, due to the increase in

evapotranspiration. Mesophytic plants gradually became the

dominant species and the number of wetland plants decreased,

resulting in the gradual degradation of grassland in wetlands. The

increase in wind speed and the decrease in relative humidity directly

caused an increase in evapotranspiration in the wetland

environment, The increase in wind speed and the decrease in

relative humidity directly caused an increase in evaporation from

the wetland environment, but also increased transpiration from the

wetland vegetation, thus causing a decrease in the moisture content

of the wetland and triggering a wetland retreat. Zhang et al. (2016)
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showed that the warming and drying of Zoige Plateau led to the

degradation of wetlands, while the degradation of wetlands

subsequently intensified the warming and wetting of the climate.

The results of our study were consistent with this pattern.

GeoDetector further showed that evaporation was the main factor

leading to changes in the alpine wetland landscape in the study area.

This was basically consistent with the conclusions obtained from

the correlation analyses of Zhang B. et al. (2022) and Li W. et al.

(2020), with both studies investigating the driving forces of marsh

wetland evolution in Maqu County.

The GeoDetector analysis revealed that the changes in wetland

area in the study area between 1990 and 2020 were more responsive

to climatic factors than social drivers. This does not mean that the

effects of social factors, such as the development of animal

husbandry, were not important, but only that the impact of

population and socioeconomic development on wetlands in

alpine regions was less important than the ecological effects of

changes in climatic factors. Because of the region’s unique

topography and climate, large livestock and their by-products,

such as yaks and Tibetan sheep, have become an important
A B

D E F
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C

FIGURE 14

Interaction detection map of drivers of wetland area change. (A), 1990 (B), 1995 (C), 2000 (D), 2005 (E), 2010 (F), 2015 (G), 2020.
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source of income for farmers and herders. The rapid increase in

population in the region between 1990 and 2020, and the high

demand for yaks and their related produce by human society, led

herders to expand their farming activities. Both Zoige and

Hongyuan counties have overgrazing problems, with the rate of

overgrazing in Zoige County increasing every year. In the 1990s, to

develop the local economy and increase the livestock capacity of the

study area, 700 km of drainage ditches were dug in the area, causing

the water level to drop by about 50% throughout the marsh area.

This unregulated dredging and draining overwhelmed swamps and

grasslands. Once the soil was damaged, the accumulated water

quickly infiltrated, the wetlands dried up and decreased in size, and

the water conservation capacity of the study area weakened

accordingly. From 2005 to 2018, and especially between 2010 and

2018, various government departments approved and implemented

a series of ecological projects for the conservation, construction, and

restoration of wetlands. In recent years, Zoige County has effectively

maintained the wetland environment and ecosystem by planting

grass and restoring wetness, controlling sand to return wetness,

filling ditches, exterminating rodents, and conducting both wetland

ecological benefit compensation projects and wetland ecological

resource management and protection projects. Since the start of the

drainage ditch filling project in 2004, the Zoige grassland has

gradually become one of the world’s largest wetland restoration

projects. The government of Maqu County has carried out several

key ecological construction and environmental protection projects,

such as the return of pasture to grass and the protection and

restoration of wetlands, which have contributed to the efficient

development of natural resource protection in the upper reaches of

the Yellow River. The natural environment of Maqu County has

been significantly improved, and the ability of Maqu grassland to

supply water to the Yellow River has been enhanced, further

realizing the sustainable development of the ecological

environment and social economy. Since 2005, under the active

promotion of local governments, experts, and researchers,

environmental protection work in Maqu Wetland has received

widespread attention across the country. The “Plan for the

Protection and Construction of the Important Water Supply

Ecological Function Zones in the Upper Yellow River in Gannan”

was included in the national “Eleventh Five-Year Plan”, from 2006

to 2010, the plan focused on grasslands and swamps, with the aim of

controlling the rapid deterioration of the natural environment from

2011 to 2020, conserving water, attempting to restore and improve

the resource supply capacity of the Yellow River Basin, and

gradually embarking on economic and social development

through the establishment of an ecological virtuous circle.

In the context of global climate change, comprehensive and

effective monitoring of alpine wetlands is of great research

significance and academic value. This study used a hydrological

analysis method to extract the control basin of the first meander of

the Yellow River, but it only considered the evolution of the wetland

landscape from a macro perspective. In future research, the

landscape of the study area will be further refined, the

mechanisms of wetland change and shrinkage, and the feedback

mechanism between hydrology and wetland change will be

investigated. This will reveal the hydrological connectivity
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between wetlands and rivers and provide a more accurate basis

for the planning and environmental management of the upper

Yellow River and the protection and restoration of wetlands.

5 Conclusion

In summary, the GEE platform could effectively extract wetland

information. We analyzed the spatial and temporal evolution

characteristics of wetlands by combining GIS technology, the

centroid model, and the landscape pattern index. Additionally, we

effectively explored the driving factors of changes in wetland area

using GeoDetector. The results showed that alpine wetlands are

generally distributed on slopes< 12° and at elevations between 3315

and 3600 m. From 1990 to 2010, wetland landscapes displayed a

serious shrinking trend. The wetland area displayed a slow growth

trend from 2010 to 2020, but compared with the 1990s, the overall

reduction of wetland area remained severe. The main type of

wetland transfers out and in was through conversion to and from

grassland, respectively. The wetland centroid migrated to the

southwest from 1990 to 2010, and to the north from 2010 to

2020. The wetland landscape geometry was relatively simple. The

landscape was relatively intact, and the patches retained a high

degree of agglomeration and connectivity with each other, but the

level of agglomeration and connectivity was damaged to some

extent. Finally, a quantitative analysis using the GeoDetector

factor detector found that the DEM, slope, and evaporation were

the most important drivers affecting changes in wetland area, and

socio-economic development also affected changes in wetland area

but to a lesser extent than climatic factors. Through the interaction

detector, it was found that the interaction of different drivers could

better explain the long-term change of wetland area than the action

of each influencing factor alone.
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