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Abstract

Background: Nudix hydrolases form a protein family whose function is to hydrolyse intracellular

nucleotides and so regulate their levels and eliminate potentially toxic derivatives. The genome of

the radioresistant bacterium Deinococcus radiodurans encodes 25 nudix hydrolases, an unexpectedly

large number. These may contribute to radioresistance by removing mutagenic oxidised and

otherwise damaged nucleotides. Characterisation of these hydrolases is necessary to understand

the reason for their presence. Here, we report the cloning and characterisation of the DR0975

gene product, a nudix hydrolase that appears to be unique to this organism.

Results: The DR0975 gene was cloned and expressed as a 20 kDa histidine-tagged recombinant

product in Escherichia coli. Substrate analysis of the purified enzyme showed it to act primarily as

a phosphatase with a marked preference for (deoxy)nucleoside 5'-diphosphates (dGDP > ADP >

dADP > GDP > dTDP > UDP > dCDP > CDP). Km for dGDP was 110 µM and kcat was 0.18 s-1

under optimal assay conditions (pH 9.4, 7.5 mM Mg2+). 8-Hydroxy-2'-deoxyguanosine 5'-

diphosphate (8-OH-dGDP) was also a substrate with a Km of 170 µM and kcat of 0.13 s-1. Thus,

DR0975 showed no preference for 8-OH-dGDP over dGDP. Limited pyrophosphatase activity was

also observed with NADH and some (di)adenosine polyphosphates but no other substrates.

Expression of the DR0975 gene was undetectable in logarithmic phase cells but was induced at least

30-fold in stationary phase. Superoxide, but not peroxide, stress and slow, but not rapid,

dehydration both caused a slight induction of the DR0975 gene.

Conclusion: Nucleotide substrates for nudix hydrolases conform to the structure NDP-X, where

X can be one of several moieties. Thus, a preference for (d)NDPs themselves is most unusual. The

lack of preference for 8-OH-dGDP over dGDP as a substrate combined with the induction in

stationary phase, but not by peroxide or superoxide, suggests that the function of DR09075 may

be to assist in the recycling of nucleotides under the very different metabolic requirements of

stationary phase. Thus, if DR0975 does contribute to radiation resistance, this contribution may be

indirect.
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Background
The Nudix hydrolases are a family of nucleotide hydro-
lases found in virtually all organisms. They hydrolyse a
wide range of substrates including (d)NTPs, pyridine
nucleotides, coenzyme A, dinucleoside polyphosphates
and nucleotide sugars, all of which conform to the general
structure of a nucleoside diphosphate linked to another
moiety X (NDP-X) [1-3]. More recently, non-nucleotide
compounds that do not conform to the NDP-X structure,
such as diphosphoinositol polyphosphates and phos-
phoribosyl pyrophosphate, have been added to the range
of substrates degraded by some of these enzymes [4-7].

Catalytic activity resides in a distinctive motif, the Nudix
(formerly MutT) motif, usually resulting in the cleavage of
a pyrophosphate bond. Substrate specificity, which can be
relatively broad or narrow, results from interactions with
other regions of the protein structure, some of which have
been defined. For example, the sequence
LLTxR[SA]x3Rx3Gx3FPGG located immediately upstream
of the Nudix motif, is found in hydrolases that prefer CoA
and CoA esters as substrates [8-10], while the sequence
SQPWPFPxS is found a short distance downstream of the
Nudix motif in hydrolases characterized as NADH
diphosphatases [11-14]. Other motifs may characterise
ADP-ribose pyrophosphatases [2], diadenosine tetraphos-
phate hydrolases [2] and UTP pyrophosphohydrolases
[15].

The proposed functions of this family are to eliminate
potentially toxic nucleotide metabolites from the cell, e.g.
oxidised, mutagenic purine nucleotides in the case of E.
coli MutT [16-19] and human NUDT1 (MTH1) [20,21],
and to regulate the concentrations of nucleotide cofactors
and signalling molecules for optimal cell growth and sur-
vival in response to the cellular environment [1]. The
number of genes encoding Nudix hydrolases varies
widely, from zero in most Mycoplasma species to around
30 in streptomycetes. This variation correlates fairly
closely with genome size and presumably reflects the met-
abolic capacity and growth or environmental adaptability
of the different organisms. However, some bacteria have
many more Nudix genes than would be expected from
their DNA content. One such is the radiation- and desic-
cation-resistant Deinococcus radiodurans [22,23] which has
roughly three times as many Nudix genes as would be
expected from its genome size of 3.3 Mb [24,25], suggest-
ing a particular selective pressure on this organism to
maintain an expanded set of these genes. In order to
understand how the possession of 25 Nudix hydrolases
relates to the biology of D. radiodurans, we are studying
the gene products, particularly those that have no obvious
orthologues in other organisms. Here, we describe a new
Nudix hydrolase that has a marked degree of specificity

for ribonucleoside and deoxyribonucleoside 5'-diphos-
phates [(d)NDPs].

Results
Expression and purification of the DR0975 gene product

The DR0975 gene was cloned by PCR from genomic DNA
into the pET15b expression vector to yield a 20 kDa N-ter-
minally hexahistidine-tagged protein. This protein was
purified by chromatography on a Ni-CAM HC affinity col-
umn (Sigma) and the resulting product was judged to be
95% pure (not shown).

Substrate analysis

The ability of the DR0975 gene product to hydrolyse a
range of potential nucleotide substrates was determined
under a standard set of conditions comprising 100 µM
nucleotide, pH 8 and 5 mM Mg2+ ions. Assays involving
(d)NTPs included inorganic pyrophosphatase to release
Pi from any PPi produced initially, assays involving dinu-
cleoside polyphosphates (e.g. Ap4A, NADH) included
alkaline phosphatase to release Pi from primary products,
while those involving (d)NDPs contained neither auxil-
iary enzyme. Under these conditions, high activity was
obtained with the purine (deoxy)ribonucleoside 5'-
diphosphates (d)GDP and (d)ADP with dGDP being the
best substrate (Table 1). dTDP was also hydrolysed but
UDP and (d)CDP appeared to be resistant to breakdown.
Lower activity was observed with the long chain (di)nucl-
eoside polyphosphates Ap5A, Ap6A, p4A and p5A and also
with NADH, but not with other compounds of this gen-
eral structure. Notably, all (d)NTPs, NDP-sugars and
NDP-alcohols tested were inactive as substrates. These
included (d)ATP, (d)GTP, (d)CTP, UTP, dTTP, ADP-glu-
cose, ADP-mannose, ADP-ribose, IDP-ribose, UDP-glu-
cose, UDP-galactose, GDP-glucose, GDP-mannose, GDP-
α-fucose, CDP-choline, CDP-ethanolamine, CDP-glucose
and CDP-glycerol.

Assay conditions were then optimised using dGDP as sub-
strate and an HPLC assay. Maximum activity was obtained
at pH 9.4 and 7.5 mM Mg2+. DTT was not required. Mn2+

at 0.5 mM supported 18% of the optimum activity with
Mg2+. The (d)NDPs were then retested as substrates under
these new conditions using a higher substrate concentra-
tion of 500 µM. The results in Table 2 show that purine
(d)NDPs were still the preferred substrates, although
activity was now evident with all the pyrimidine com-
pounds as well.

HPLC analysis of the products of dGDP hydrolysis
showed them to be dGMP and Pi (results not shown). No
further degradation of the dGMP was observed, therefore
the enzyme is acting primarily as a nucleoside diphos-
phate phosphohydrolase (EC3.6.1.6). Since the low activ-
ity observed with Ap5A, Ap6A and NADH would require
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pyrophosphatase activity, degradation of these substrates
was checked by colorimetric and HPLC assays and con-
firmed. In the case of Ap5A, for example, initial products
were ADP and ATP, the ADP then being rapidly converted
to AMP + Pi (results not shown).

The preference for (d)NDPs was surprising. At the time of
conducting these experiments, no other nudix hydrolase
had been reported to have activity with (d)NDPs.
Recently, however, the human NUDT5 hydrolase, previ-
ously characterized as an ADP-sugar pyrophosphatase
[26,27] and the orthologue of the yeast YSA1 protein [2],
was shown to have a preference for 8-OH-dGDP as sub-
strate [28]. We therefore compared the kinetic constants
for dGDP and 8-OH-dGDP hydrolysis by DR0975 (Fig.
1). Km values of 110 µM and 170 µM and kcat values of

0.18 s-1 and 0.13 s-1 were determined for dGDP and 8-OH-
dGDP respectively. Km/kcat ratios were 1.68 × 103 s-1 M-1 for
dGDP and 0.78 × 103 s-1 M-1 for 8-OH-dGDP. Thus,
DR0975 exhibits a 2-fold preference for dGDP as a sub-
strate. This, coupled with the relatively high Km of 170 µM
for 8-OH-dGDP, a substrate that is likely to exist at very
low concentrations, suggests that the primary function of
DR0975 is not the elimination of 8-OH-dGDP. These
results should be contrasted with the properties of the E.
coli MutT 8-OH-dGTPase, which has similar kcat values for
dGTP and 8-OH-dGTP hydrolysis but respective Km values
of 1100 and 0.48 µM for these nucleotides [16] and with
human MTH1, which has respective Km values of 870 and
12.5 µM for dGTP and 8-OH-dGTP, again with similar kcat

values [29]. Both these enzymes display a marked prefer-
ence for the oxidised dGTP derivative.

Non-nudix (d)NDP phosphohydrolase activities have
previously been described in mammalian tissues, and
some of these enzymes are also active towards the struc-
turally similar enzyme cofactor thiamine pyrophosphate
[30-32]. Therefore, TPP was tested as a possible substrate
for the DR0975 protein, but no activity was detected.

Expression analysis of the DR0975 gene

Expression of the DR0975 gene was measured by quanti-
tative RT-PCR analysis of RNA isolated from logarithmic
and stationary phase cells, from cells exposed to hydrogen
peroxide or menadione (a superoxide generator) and
from cells subjected to rapid desiccation by freeze drying
or slow dehydration, followed by rehydration in each
case. These conditions were chosen to reflect the known
resistance of D. radiodurans to ionizing radiation and
dehydration/rehydration, both of which result in DNA
damage, particularly double-strand breaks and oxidised
lesions [23,33,34]. The concentration of hydrogen perox-
ide used (10 mM for 1 h) is known to have little effect on
the growth and survival of D. radiodurans [35] while 10
mM menadione leads to growth arrest (J. Cartwright,
unpublished observation). The results show that DR0975
mRNA expression was below the limit of detection in log-
arithmically growing cells but was induced at least 30-fold
in stationary phase cells, (Fig. 2). Superoxide, but not per-
oxide, and slow, but not rapid, dehydration both caused a
slight induction of the DR0975 gene. It appears, therefore,
that the requirement for (d)NDPase activity is confined to
the stationary phase of the growth cycle and is not a
response to oxidative stress.

Discussion
The DR0975 protein is unusual in its preference for
(d)NDPs, showing that X can be H in the commonly used
NDP-X substrate designation. Such activity has only
recently been observed in one other nudix hydrolase, the
human NUDT5 ADP-sugar pyrophosphatase that,

Table 1: Hydrolysis of nucleotide substrates by DR0975 protein. 
Nucleotides were screened for substrate activity as described in 
Materials and Methods.

Nucleotide nmol hydrolysed

dGDP 9.3

dADP 2.8

GDP 2.7

dTDP 2.1

ADP 1.7

(d)CDP, UDP 0

(d)NTPs 0

Ap3A, Ap4A 0

Ap5A 1.8

Ap6A 0.8

p4A 0.4

p5A 0.7

NADH 0.35

NAD, NADP(H), FAD, CoA 0

NDP-sugars 0

Table 2: Hydrolysis of (d)NDP substrates by DR0975 protein 
under optimised conditions. Assays containing 50 mM 
BisTrisPropane, pH 9.4, 7.5 mM Mg acetate, 3 µg/DR0975 protein 
and 500 µM substrate were incubated at 37°C for 15 min.

Nucleotide nmol hydrolysed

dGDP 19.8

ADP 13.6

dADP 13.4

GDP 11.7

dTDP 9.3

UDP 3.4

dCDP 3.2

CDP 1.9
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surprisingly, is actually more selective for 8-OH-dGDP
[28]. However, DR0975 has no activity with any of the
NDP-sugars tested and so seems unlikely to be a NUDT5
orthologue. Phosphatase activity among the nudix hydro-
lases has previously been observed with those active
towards diphosphoinositol polyphosphates and phos-
phoribosyl pyrophosphate [4-7]. Interestingly, these
enzymes also act as pyrophosphatases with the alternative
diadenosine polyphosphate substrates. Similarly,
DR0975 has low activity with some long chain (di)adeno-
sine polyphosphates and with NADH. Determination of
the structure of this enzyme should reveal how this is
achieved.

The D. radiodurans genome contains 23 nudix genes, two
of which encode proteins with two distinct nudix motifs
(active sites). It has been suggested that this large number
is related to the ability of this organism to withstand high
doses of ionizing radiation [24,25], itself a probable con-
sequence of the desiccation tolerance of the organism
[34]. Both ionising radiation and dehydration/rehydra-
tion impose severe oxidative stress and might be expected
to generate potentially toxic and mutagenic oxidised
derivatives within the nucleotide pool. Nudix hydrolases
with a degree of specificity for oxidised nucleotide such as
8-OH-dGTP, 2-OH-dATP, 8-OH-dATP, 5-OH-CTP and 8-
OH-dGDP have been isolated from E. coli [16,17,36,37]
and mammalian cells [20,28,38,39] and so it is possible
that some of the additional nudix genes in the D.

Lineweaver-Burk plot of the hydrolysis of dGDP and 8-OH-dGDP by DR0975 proteinFigure 1
Lineweaver-Burk plot of the hydrolysis of dGDP and 8-OH-dGDP by DR0975 protein. Assays were performed by 
HPLC as described in Materials and Methods.
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radiodurans genome encode enzymes active towards other
oxidized nucleotides. However, the lack of preference for
8-OH-dGDP compared to dGDP suggests that the former
nucleotide is unlikely to be an important substrate for this
enzyme in vivo. It is possible, of course, that some other
oxidized (d)NDP derivative or derivatives are physiologi-
cally relevant substrates and this highlights the problem
with the study of new nudix hydrolases – that conclusions
are often limited by the availability of suitable, novel sub-
strates. In the case of DR0975, however, the dramatic
induction of activity upon entry into stationary phase and
the lack of significant induction by peroxide or superoxide
suggest an alternative function.

The bacterial stationary phase is characterised by extensive
changes in patterns of gene expression leading to physical
and morphological adaptations that are designed to
maintain viability during starvation [40,41]. DNA synthe-

sis ceases and there is considerable RNA degradation to
supply energy for maintenance metabolism. These
changes will inevitably involve nucleotide pools as they
are diverted to other activities, such as cell wall synthesis.
Thus, the DR0975 protein may have the relatively non-
specific function of recycling nucleic acid nucleotides.
Alternative, more specific functions can also be imagined.
For example, the nucleoside diphosphatase of the mam-
malian endoplasmic reticulum is believed to eliminate
UDP, a product of UDP-glucose:glycoprotein glucosyl-
transferase [32]. UDP inhibits this enzyme and, if allowed
to accumulate, would inhibit protein glucosylation. Thus,
although not a nudix hydrolase, this enzyme seems to ful-
fil the housecleaning role proposed for nudix hydrolases
[1]. The D. radiodurans DR0975 protein may serve a simi-
lar function in stationary phase bacteria in pathways lead-
ing to the synthesis of various NDP-sugars. Hence,
DR0975 may be involved in the reprogramming of nucle-
otide pools to meet the requirements of stationary phase.
Stationary phase D. radiodurans are more radiation resist-
ant than logarithmic phase cells [42], so an indirect con-
tribution of DR0975 to radiation tolerance is conceivable.
Such a role may indeed be unique to this organism as a
BLAST search reveals no sequences of close similarity to
DR0975 among the nudix genes of other sequenced bac-
terial genomes (>100).

Conclusions
In the absence of evidence to the contrary, we would sug-
gest that a likely role of the DR0975 nucleoside diphos-
phate phosphohydrolase is to recycle (deoxy)nucleoside
diphosphates as part of the general reprogramming of
metabolism that occurs during stationary phase. Whether
this is true of others among the large number of nudix
genes in this organism remains to be determined. Ulti-
mately, an understanding of the roles of the nudix hydro-
lases of D. radiodurans will require systematic gene
disruption and phenotypic analysis. Due to the overlap-
ping substrate specificity of these enzymes, multiple dele-
tions may be required in order to observe a phenotype.
This will present an interesting but worthwhile challenge
for future research.

Methods
Materials

8-Hydroxy-2'-deoxyguanosine 5'-diphosphate (8-OH-
dGDP) was prepared as described previously [21]. All
other nucleotides were from Sigma. Calf intestinal alka-
line phosphatase and yeast inorganic pyrophosphatase
were from Roche. NdeI, BamHI and the pET15b expres-
sion vector were from Novagen. Pfu DNA polymerase was
from Stratagene and M-MLV reverse transcriptase (RNase
H minus) was from Promega. Oligonucleotides were from
MWG Biotech. TRIzol and DNAse I (Amplification Grade)
were from Invitrogen.

Expression analysis of the DR0975 gene in cultures exposed todifferent conditionsFigure 2
Expression analysis of the DR0975 gene in cultures 
exposed todifferent conditions. The level of DR0975 
mRNA expressed in logarithmic (log) and stationary (sta) 
phase cells, in cells exposed to hydrogen peroxide (per) or 
menadione (sup) and from cells subjected to rapid desicca-
tion by freeze drying (rap) or slow (slo) dehydration, fol-
lowed by rehydration in each case, was quantified by RT-PCR 
as described in Materials and Methods. Each value represents 
the mean of triplicate amplifications of each of three inde-
pendently prepared RNA samples for each condition. The 
amount of amplified product was determined by densitome-
try by comparison with the concentrations of the standards 
amplified from genomic DNA by gene-specific primers. The 
limit of detection was 4.23 × 10-16 M.
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Cloning of DR0975 from genomic DNA

The DR0975 coding region was amplified from genomic
DNA by PCR using Pfu DNA polymerase, a 33-mer oligo-
nucleotide forward primer d(CGAGGACCCATAT-
GGGGCGGCGTGATCTGCTGG) and 32-mer reverse
primer
d(GCCCTGCCTGGATCCGCTAGCGGTCCTTGACC).
These primers incorporated an NdeI restriction site at the
start of the gene, and a BamHI site at the end. After ampli-
fication, the DNA was recovered by phenol-chlorofom
extraction and digested with NdeI and BamHI. The gel-
purified restriction fragment was ligated into the
appropriate restriction sites of plasmid pET15b and the
resulting construct, pET-0975 containing the DR0975
coding region with an upstream His tag sequence under
the control of a T7 lac promoter, was used to transform E.
coli XL1-Blue cells for propagation.

Protein expression in E. coli and purification

E. coli strain BL21(DE3) was transformed with pET-0975.
A single colony was inoculated into 10 ml LB medium
containing 60 µg/ml ampicillin and grown overnight at
37°C. The cells were transferred to 1 litre LB medium con-
taining 60 µg/ml ampicillin and grown to an A600 of 0.6.
Isopropyl-1-thio-β-D-galactopyranoside was added to 1
mM and the cells induced for 3 h. The cells (4.3 g) were
harvested, washed and resuspended in 25 ml breakage
buffer (50 mM Tris-HCl, pH 8.0, 300 mM NaCl). The cell
suspension was sonicated and centrifuged at 10,000 g for
10 min. The supernatant was recovered and loaded in 10
ml aliquots at 1 ml/min on to a 7 × 50 mm Ni-CAM HC
affinity resin column equilibrated with breakage buffer.
After elution of unbound protein, a 20 min linear gradient
of 0–50 mM histidine in breakage buffer was applied at 1
ml/min. Fractions of 1 ml were collected and analysed by
SDS-PAGE. Fractions containing the 20.9 kDa His-tagged
DR0975 protein were pooled and DTT was added to a
final concentration of 1 mM.

Enzyme assay

Nucleotide substrates were assayed as previously
described [26] using the following conditions. Assays
(200 µl) contained 50 mM Tris-HCl, pH8.0, 5 mM Mg
acetate, 1 mM DTT, 100 µM substrate, 0.5 µg inorganic
pyrophosphatase or 1 µg/ml alkaline phosphatase as
appropriate (except with (d)NDP substrates) and 5 µg
DR0975 protein and were incubated at 37°C for 15 mins.

HPLC analysis of dGDP and 8-OH-dGDP hydrolysis

Assay samples (50 µl) were injected directly on to a 2.1 ×
100 mm Brownlee AX300 column in buffer A (0.1 M
potassium phosphate, pH 6.1) and eluted with a gradient
of 0–5% buffer B (4.5 min), 5–40% B (7.3 min), 40% B
(13.0 min), where B = 0.1 M potassium phosphate, pH
6.1, 50% (v/v) acetonitrile at a flow rate of 0.5 ml/min.

Expression analysis of the DR0975 gene

Expression of the DR0975 gene was determined in cells
grown under different conditions using a reverse tran-
scription-coupled PCR (RT-PCR) assay. D. radiodurans was
grown in TGY medium (0.8% w/v tryptone, 0.1% w/v glu-
cose and 0.4% w/v yeast extract) at 30°C, 200 rpm and
samples removed hourly for turbidity analysis at 600 nm.
Cultures (100 ml) were grown to early log phase (A600 =
0.1) and well into stationary phase (40 h after inocula-
tion). Oxidised log phase cells were prepared by incubat-
ing early log phase cells with 10 mM H2O2 for 1 h.
Superoxide-treated log phase cells were prepared by incu-
bating early log phase cells with 10 mM menadione for 1
h. Rehydrated log phase cells were prepared by harvesting
early log phase cells by centrifugation (2000 g for 10 min)
and then lyophilising. Several days later the cells were
resuspended in TGY medium and incubated at 30°C, 200
rpm for 2 h before processing for RT-PCR. Slowly dehy-
drated, rehydrated log phase cells were prepared by har-
vesting early log phase cells by centrifugation (including a
wash with PBS) and then resuspending the pellets in 1 ml
PBS. The resuspended pellets were placed into 35 mm
petri-dishes and then sealed in a desiccator over silica-gel
at 30°C for 58 days. Cells were resuspended in TGY
medium and incubated at 30°C, 200 rpm for 2 hours
before processing for RT-PCR. Cultures were prepared in
triplicate for each set of conditions.

RNA was extracted from the cell pellets using TRIzol rea-
gent according to the manufacturers instructions, dis-
solved in ddH2O and adjusted to 125 µg/ml (from A260).
The RNA was then further treated with DNase I according
to the manufacturers recommendations in order to
remove traces of genomic DNA. Reverse transcription was
performed in a 10 µl reaction containing 10 pmol spe-
cific-downstream primer (5' AACGCTAGCGGTCCTT-
GACCACCG 3'), 0.5 µg DNase-treated RNA, 500 µM of
each dNTP and 100 U M-MLV reverse transcriptase. Reac-
tions were incubated at 50°C for 1 h before being termi-
nated by the addition of 40 µl TE buffer and storage at -
20°C. Control RT reactions were also performed which
contained all of the reaction components except the spe-
cific-downstream primer.

Polymerase Chain Reaction (PCR) was performed in 20 µl
assays and contained 1.0 U Pfu polymerase, 200 µM of
each dNTP, 10 pmol each of upstream primer (5' ACCAG-
CATGGGGCGGCGTGATCTG 3') and downstream primer
(5' TCCCAGCCCTTGAAGGCATAGAAG 3'), 5 µl RT or
control-RT reaction and 5% (v/v) DMSO. The PCR cycle
was 45 sec at 95°C (dissociation), 45 sec at 60°C, and 75
sec at 72°C (extension) for 40 cycles. All conditions were
analysed in a single PCR experiment which contained
samples of the triplicate first-strand cDNAs for each of the
six growth conditions, individual controls for each of
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these samples, and a range of empirically determined
dilutions of a gene-specific template which demonstrated
that amplification was within the exponential range. The
gene-specific template was prepared from D. radiodurans
genomic DNA by PCR using primers external to those
used in the RT-PCR reactions and the product was quanti-
fied according to adsorption at 260 nm [43]. The identity
of the RT-PCR product was confirmed by its co-migration
with the product of the gene-specific template as deter-
mined by agarose gel electrophoresis. Data were obtained
by densitometry (Syngene GeneGenius) of PCR products
resolved using agarose gel electrophoresis and stained
with ethidium bromide. Densitometric data for each sam-
ple were converted to the equivalent concentration of
gene-specific template from a linear calibration plot of log
[gene-specific template concentration] versus relative den-
sity using GeneTools software (Syngene) [44].
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