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Chapter 1

Introduction

1.1 Scope of This Thesis

Viral hepatitis poses significant challenges to public health worldwide. Infec-

tions of hepatitis A, B, C, D (or delta), and E viruses constitute the main burden of

viral hepatitis. Among them, hepatitis B virus and hepatitis C virus (HBV/HCV)

result in a large proportion of population with chronic infections. The World

Health Organization (WHO) estimates that 3.5% of the world’s population suffer

from HBV infection [1] and ∼1% suffer from HCV infection [2]. In contrast, the

global burden of hepatitis D and hepatitis E virus (HDV/HEV) infections may

be underestimated [3, 4]. Treatments of HDV/HEV infections also lack specific

strategies.

Liver cancer is among the most lethal cancer types. Its incidence is highly re-

lated to chronic inflammations such as viral hepatitis and steatohepatitis. Liver

cancer is difficult to early diagnose thereupon the median survival length of symp-

tomatic advanced-stage cases treated with systemic therapies is only about 1-1.5

years [5]. In 2020, more than 900,000 new cases of liver cancer were diagnosed

worldwide, making up 4.7% of all cancer types and 8.3% of cancer-related mortal-

ity (WHO GLOBOCAN 2020). Efforts embarking upon vaccination have reduced

HBV-related liver cancer in some regions, while metabolic disorders-related liver

cancers are on the rise [6,7]. Recent breakthroughs have been achieved in the man-

agement of advanced hepatocellular carcinoma (HCC) [5], while more efforts are

needed to improve the overall healthcare of liver cancers.

In this thesis, we reviewed the achievements in the development of therapy

against viral hepatitis and liver cancer, as well as the involved methodologies.

We investigated the infections of hepatitis viruses (especially HDV and HEV) and

the pathogenesis of hepatocellular carcinoma (HCC)/cholangiocarcinoma (CCA).

Through exploiting public data, FDA-approved drugs and established biomark-

ers, we aim to facilitate the discovery of potential therapeutic targets and better

treatment of viral hepatitis and liver cancer.
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1.2 Epidemiology and Evolution of HDV

HDV is a defective virus and cannot insult human livers in the absence of HBV

infection. Co-infection of HBV and HDV frequently results in chronicity and multi-

ple end-stage outcomes. The mature HDV virions resemble HBV particles, with the

HDV RNA genome packaged into the capsid made of HBV surface proteins. The

HDV genome consists of a single-stranded negative-sense RNA, which has about

1672–1697 ribonucleotides and encodes the hepatitis D antigen (HDAg). HDAg

has two isoforms, both of which are involved in virus replication [8].

The HDV propagation thus shares the HBV cell receptor – the sodium tauro-

cholate co-transporter peptide – for virus entry. After entry into the hepatocyte,

the viral genome is released and transported into the nucleus. Then the virus

genome is replicated possibly in an RNA-dependent RNA synthesis by hijacking

the host DNA-dependent RNA polymerases. In the presence of HBsAg, HDV par-

ticles are assembled by the Golgi apparatus and released from the host cell. To

create an ideal intracellular environment for efficient replication, HDV simultane-

ously modulates the host immunity and the activity of HBV [9]. Due to the unique

virological characteristics, HBV-HDV coinfections result in high incidence rates of

chronicity, leading to 10-15% of patients developing cirrhosis in 5 years and up to

80% after 30 years [10].

Clinical diagnosis of HDV infection depends on the detection of anti-HDV an-

tibodies (through enzyme-linked immunosorbent assay or radioimmunoassay) and

HDV RNA (through quantitative reverse-transcription polymerase chain reaction).

For the lack of consensus on the HDV screening and experimental protocol for HDV

testing, a diversity of detection rates exists between laboratories and regions [9].

Consequently, debates exist between the studies on HDV epidemiology and phy-

logeny, leading to confusion in the following analyses.

1.3 Development of Anti-HEV Therapy

1.3.1 HEV Is A Potentially Underestimated Pathogen

Hepatitis E virus is the fifth identified pathogen for acute viral hepatitis. Its

infectious particles are made of a positive sense RNA genome (∼7K base pairs) and

180 homogeneous capsid proteins arranged as an icosahedron [11]. Three major

open reading frames (ORFs) have been identified in HEV genome. ORF1 encodes

a polyprotein including the RNA-dependent RNA polymerase (RDRP), which is

responsible for the replication of viral RNA [12]. ORF2 encodes the capsid pro-
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teins. Besides its role as a structural component in the infectious particles, ORF2

has potentially other important functions with different modification patterns [13].

ORF3 are small translational products, with multiple identified functions such as

modulation of host immunity and cell signalling [14]. ORF3 was essential for the

virus egress in cell culture and mouse models [15].

The life cycle of HEV is partially understood. HEV is propagated mainly

through faecal-oral transmission [16]. The recently reported rising numbers also

draw attention to blood-borne transmission [17]. The cellular receptor(s) of HEV

remain(s) to be identified and its entry into the host cell is incompletely de-

scribed [18]. After entry, HEV particles are uncoated and the ORF1 is first

translated. The RDRP encoded by ORF1 replicates the positive-sense parental

genome into a negative-sense copy, which serves as the template for the replication

of positive-sense progeny genomes. Multiple ORF1 products, such as methyltrans-

ferase, helicase, and putative protease, etc., may participate in the viral repli-

cation [19]. Virus offspring are assembled with positive-sense RNA genome and

cleaved, unglycosylated ORF2 products, possibly in the endoplasmic reticulum.

Finally, they escape through the exosomal pathway. A mystery exists for the mas-

sively produced and secreted glycosylated ORF2 and cleaved ORF2, both of which

are not related to infectious HEV particles [20].

1.3.2 Current Treatment of HEV

Treatments of HEV originate from successful experience in the clinical care of

other viral infections. Ribavirin and interferon (INF)-α have been frequently used

as first-line therapy [21].

Ribavirin, a guanosine analogue, came into the spotlight in HEV treatment

in recent years. Ribavirin is a broad-spectrum (including both DNA and RNA

viruses) antiviral agent. There are also reports regarding the synergic effect in

combined administration with interferon. Ribavirin competitively inhibits viral

replication meanwhile modulates host immunity [22]. Ribavirin was introduced

into HEV therapy as an off-label drug. Its efficacy and safety have been validated

in both acute and chronic HEV infections. However, failure of viral clearance

can be observed even after long-term (e.g., several months) administration. As

a non-specific broad-spectrum antiviral agent, ribavirin may lead to resistance-

associated variants [23]. A meta-analysis including 395 cases showed 78% sustained

virological response after ribavirin therapy. Moreover, HEV infection is common

in immunocompromised individuals and pregnant women, ribavirin thus arouses
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safety concerns, such as teratogenicity [21].

Frequently used IFN in clinical practices is the pegylated form (peg-IFN-α)

(with chemical modulation for sustained release), which is responsible for type-

I IFN responses. IFN-α can be produced by human cells. IFN stimulates the

expression of hundreds of downstream genes (also called IFN-stimulated genes,

ISGs), whose activation restricts viral replication. Meanwhile, IFN promotes the

initiation of adaptive immune responses. However, long-term stimulation may re-

sult in the fatigue of effector cells, leading to immunosuppression and subsequent

chronic infection [24]. Peg-IFN-α was first successfully introduced in organ trans-

plant recipients with HEV infection. Peg-IFN-α combined with ribavirin was also

administered in more complicated circumstances, such as co-infection of HIV and

HEV, or HEV-infected patients requiring haemodialysis [21]. However, relapses

frequently occur after the cessation of therapy [25]. On the other hand, as HEV

infections repeatedly offend organ transplant recipients, side effects such as the risk

of increasing graft rejection raise concerns in IFN administration [21]. Therefore,

the limitations of both ribavirin and interferon are evident and innovative therapies

are needed.

1.3.3 Immunity agaist HEV

HEV infection stimulates the host responses of both innate and adaptive im-

munity. HEV also developed multiple strategies to evade the surveillance of host

immunity. The interaction of HEV and host immunity is the key to developing

specific therapies.

During HEV infection, the viral components stimulate two types of sensors –

retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) and toll-like receptors

(TLRs). Subsequently, the classic mammalian antiviral responses – INF signalling

pathways – are activated. HEV components were reported to interfere with the

smooth running of this immune branch at multiple nodes, including RIG-I, MDA-5,

IRF3, etc [26].

The adaptive arm of host immunity against HEV rises after an incubation

period (∼4-6 weeks). IgM antibodies can be first detected in serum following in-

fection. IgGs appear about one month after the initiation of infection and peak

at about two months. Circulatory HEV-specific CD8+ T cells can be detected

mainly in 1-2 months after infection, which is consistent with symptomatic hep-

atitis. The neutralizing titer of HEV antibodies declines within 1-2 years after

the extinguishment of infection. Correspondingly, HEV infection can not produce
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life-long protection [27]. Therefore, challenges exist in the clinical care of chronic

HEV infection.

1.4 Precision Therapy in HCC and CCA

It is frustrating that centuries of research did not deliver a clear definition of

cancer since its first documentation in 1500 BC [28]. Today, it leads to nearly

10 million deaths each year worldwide (WHO estimation). WHO describes cancer

as “a large group of diseases that can start in almost any organ or tissue of the

body when abnormal cells grow uncontrollably, go beyond their usual boundaries to

invade adjoining parts of the body and/or spread to other organs”. This definition

fails to rigorously distinguish benign and malignant tumours, as metastatic benign

tumours (such as leiomyomas [29], meningioma [30], giant cell tumour of bone [31],

and atypical hemangioma [32], etc.) have been reported frequently. At the turn of

the 21st century, Douglas Hanahan et al. summarized the existing knowledge about

cancer research, and then proposed a set of hallmarks representing the milestone

events in cancer development. These hallmarks have been updated twice [33, 34],

suggesting our progressive understanding of cancer.

Due to the insufficient understanding of cancer development, non-specific sys-

temic chemotherapies in HCC and CCA treatment show frustrating performances

[35, 36]. Meanwhile, innovative agents targeting angiogenesis, fibrogenesis, and

immunotherapy have shown the potential to improve outcomes [37–41]. A shift

from a cancer-centric to the tumour microenvironment (TME)-centric perspective

is required in the future development of precision therapy. The following sec-

tion describes several representative breakthroughs in the development of precision

therapies targeting pivotal components in the tumour.

1.4.1 Cancer Stem Cells

The originality of cancer remains ambiguous. Cancer is notable for its unlim-

ited growth and consistently poorly differentiated state, resembling its embryonic

counterparts. This phenomenon gave rise to the hypothesis of cancer stem cell

(CSC). However, the identification of the physical entity of CSCs proves to be a

difficult task. CSCs tend to proliferate as a pole in the malignant tissue and keep

protected by a rigorous niche. They are more often indirectly observed by lineage

tracing or ablation techniques. Depletion of cell lines with proposed CSC markers

leads to quiescence of tumour growth, suggesting their potential as a therapeutic
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target [42].

HCC is believed to be derived from adult hepatocytes or progenitor cells. Both

conjectures received experimental backing in animal models [43]. For the lack of

clear definition, CSCs are normally defined with the expression of surface mark-

ers. Reported molecular markers for liver CSCs include epithelial cell adhesion

molecules (EpCAM), CD133, CD90, CD13, and OV-6, etc. Their expression is

associated with the acquisition of cancer phenotype and resistance to chemothera-

pies [44]. CSCs, therefore, give rise to multiple strategies aiming at the signalling

pathways supporting the growth of CSCs, e.g., Wnt/β-catenin, Notch, Hedgehog,

TGF-β, etc. Some of the derivative agents have entered clinical trials [45].

The identification of CSCs of CCA is less smooth. For one thing, the inci-

dence rate of CCA is significantly lower than HCC, inevitably limiting the ade-

quate observation of CCAs. On the other, CCAs are highly heterogeneous, leading

to various classifications without accepted international consensus [46]. Mean-

while, multiple origins have been proposed as CSCs of CCA. Reported cell lines

include hepatic stem/progenitor cells, immature neural cell adhesion molecule-

positive (NCAM+) cholangiocytes, mature (NCAM−) interlobular cholangiocytes,

and peribiliary glands (PBGs), etc [47].

1.4.2 Angiogenesis

Among the limited options in chemotherapies of HCC, those targeting angio-

genesis achieved the best performance. In 2007, sorafenib received approval for

systemic therapy of HCC. Sorafenib is an oral multikinase inhibitor targeting the

vascular endothelial growth factor receptor (VEGFR), the platelet-derived growth

factor receptor (PDGFR), and possibly Raf. Compared with the placebo group, so-

rafenib extended the overall survival of late-stage HCCs by about three months [48].

HCC is highly angiogenic, but it does not mean the tumour grows in sufficient

blood supplies. Overexpression of VEGF is common in HCC cases and correlated

with poor prognosis. High levels of VEGF lead to abnormal structure and function

of tumour vessels. These aberrant vasculatures do not support normal blood flow

and oxygen gradient, leaving the tumour tissues hypoxia. The hypoxic tumour

tissues thus generate more VEGF molecules and fall into a deteriorating spiral [49].

1.4.3 Immunotherapy in Liver Cancer

Cancer rises after the failure of tumour surveillance by the immune system,

which leads to the speculation that resuscitation of tumour immunity would help
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eradicate malignant cells. Among the vast immune cells, T cells are the executor

of tumour immunity and inevitably stand in the spotlight of immunotherapy [50].

Programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1

(PD-L1) pathway was a key regulator of immune tolerance within the tumour

microenvironment of most cancer types. PD-1 expresses on all conventional CD4+

T cells and CD8+ T cells. The functions of PD-1 remain to be understood. Two

tyrosine motifs of PD-1 become phosphorylated when engaged with PD-L1, leading

to decreased T-cell activation and survival. Chronic infection often leads to T

cell exhaustion, which can be re-invigorated by PD-1 blockade. Thus the PD-

1/PD-L1 inhibitors quickly become the favourite of pharmaceutical manufacturers

[50]. Indeed, delivery of antibodies targeting PD-1/PD-L1 to patients achieved

unprecedented responses in clinical trials. It is still puzzling that only a fraction

of the subjects shows expected tumour regression. Thus, the tolerance modulated

by the immune checkpoint requires further investigation and may contain more

therapeutic targets [51].

1.5 Identifying Therapeutic Targets through Bioinformatics

and Repurposing FDA-approved Drugs

The following section describes the methodology adopted in this thesis. These

methods can be categorised into in silico and in vitro. In silico investigations in-

clude prediction of protein structure and function, deconvolution of bulk RNA-seq

data with single-cell RNA-seq (scRNA-seq) atlases, and data mining techniques

such as meta-analysis and phylogenetic analysis. In vitro experiments mainly in-

volve repurposing FDA-approved drugs and established biomarkers.

1.5.1 Prediction of Protein Structure and Function

Protein structure and function are pivotal to the discovery of therapeutic tar-

gets. Exhaustive studies on the structure and function of RNA polymerase and

other virus-encoded enzymes led to the success of direct-acting antiviral (DAA)

therapy against HCV infection [52–54]. Unfortunately, the polymerase of HBV,

the RDRP of HEV, and all the translational products of HDV, etc., have not been

resolved yet. The situation of cancer research is even more complicated. Only a

fraction of human proteins has physically determined structures, most of which

are on a fragment of the whole sequence. In addition, cancer research encounters

countless mutations whose impacts on the protein structure and function are poorly
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understood [55, 56]. Therefore, more advanced technologies for protein structure

determination are needed.

Methods of protein structure determination can be divided into biophysical or in

silico. Biophysical methods include X-ray crystallography, cryo-electromicroscopy

(cryo-EM), nuclear magnetic resonance (NMR) spectroscopy, etc. Four types of in

silico methods are frequently used: ab initio, homology, threading and the latest

emerging deep learning methods [57].

X-ray resolution remains the “gold standard” method when the atomic protein

structure is required [58]. However, this approach faces multiple technical chal-

lenges, such as sample preparation [59] and unfavourable microscopic artefacts [60],

etc. Meanwhile, bioinformatic methods provide an economical approach. The crit-

ical concern of bioinformatic prediction is reliability, which is under the regular

test – Critical Assessment of Structure Prediction (CASP). Recent advances in

predictive accuracy suggest that in silico modelling is leapfrogging towards matu-

ration [61,62].

Protein function prediction methods are sequence-based or structure-based.

Both approaches search for the closest entities with known functions [63]. Fre-

quently used libraries include gene ontology (GO), the Universal Protein Resource

(UniProt), etc.

1.5.2 Discovering Therapeutic Targets in the Age of Big Data

The semiconductor industry and information technology boomed fast in the

second half of the last century, boosting the exponentially accumulated biomedical

and healthcare data. This process has been termed “in the age of big data” for the

enormity of three dimensions: volume, variety and velocity (3Vs) [64]. Data accu-

mulation is so quick that data-driven research has become a specialized discipline.

This thesis adopted two methods to exploit the public omics data and literature.

Deconvolution of Cell Fractions for Bulk RNA-seq Data RNA-seq has a

short history of fewer than two decades and has become the mainstream technol-

ogy of transcriptome tests. It resulted in high-quality joint research programs such

as The Cancer Genome Atlas (TCGA) and the Pan-Cancer Atlas [65]. However,

cancer growth is embedded in the tumour microenvironment (TME). Cancer devel-

opment involves angiogenesis, fibrogenesis, disordered immunity, non-cellular struc-

tures such as extracellular matrix, and complicated interactions with the TME [66].

Thus, RNA-seq technology confronts difficulties in deciphering the complexity of
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TME.

ScRNA-seq technology characterises the transcriptome for each cell. It has

brought new insights into cancer evolution, metastasis, resistance to therapy, etc

[67]. However, the main body of transcriptomic studies is based on RNA-seq,

while an update of all these scientific scenarios with scRNA-seq is prohibitive. By

estimating the cell fractions of bulk RNA-seq data with scRNA-seq atlases, de-

convolution algorithms provide an economical method. This transformation allows

the analysis of the relationship between single-cell components and other clinical

characteristics, providing an alternative approach for the decomposition of TME

and the identification of therapeutic targets. Present state-of-the-art deconvolution

algorithms include Cibersortx [68] and MuSiC [69].

Systematic Review and Meta-analysis Meta-analysis is a simple method to

integrate the results of multiple studies at the population level. It wins popularity

in many scientific fields for its easy implementation. Meta-analysis is normally

conducted with two purposes: to assess the evidence for the effectiveness of specific

interventions in different studies, or to reach a broad generalization of a conclusion

and a comprehensive picture for a specific research topic [70].

Meta-analysis has provided clues in the research of anti-HCC therapy. People

regularly taking statins show a significantly reduced risk of liver cancer [71] and

recurrence rate [72]. Similar effects were seen in patients with type 2 diabetes who

regularly receive metformin [73]. As obesity and metabolic disorders have close

relationships with the incidence of liver cancer, these findings not only provide

potential new strategy for anti-cancer therapy, but also direct biological research.

1.5.3 Repurposing FDA-approved Drugs and Established Biomarkers

Drug discovery goes along with high attrition rates. Thus, the search for new

indications of FDA-approved drugs arouses high interest. Some wide-spectrum an-

tiviral agents were tested on different pathogen infections. Ribavirin was first ap-

proved for HCV infections. Later it showed effectiveness in anti-HEV therapy [21].

Other successful cases seem to be “by accident”. Aspirin was originally an anti-

inflammatory agent or pain-killer but acquired new indications in anti-colorectal

cancer therapy. Subsequent observations of clinically-administered drugs are also

informative to clinical decisions. For example, pregnancy is a contraindication of

ribavirin for its teratogenicity [74]. Finally, the failure of studied chemicals may

hint at upcoming success.
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1.6 Brief Introduction of Following Chapters

Part I – The Epidemiology and Evolution of HDV

Chapter 2. Estimating the Global Prevalence, Disease Progression, and

Clinical Outcome of Hepatitis Delta Virus Infection

This study aims to estimate the global incidence of HBV-HDV co-infection

through meta-analysis. Through a systematic review of the records up to 2019, 634

studies from 48 countries were recruited. Given the controversy arising from the

previous studies, this analysis was performed with a refined methodology. Subjects

of interest were categorised into general population or HBsAg-positive carriers. In

more granular analysis, the groups were further divided into blood donors, the

general population, intravenous drug users, people with high-risk sexual activities,

patients infected with human immunodeficiency virus (HIV), patients infected with

HCV, blood transfusion recipients, mixed patients, patients with liver diseases, and

asymptomatic HBV carriers, etc. In the analysis of patient outcomes, HBV-infected

patients were further divided into those with acute hepatitis, fulminant hepatitis,

chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma.

Chapter 3. Recombinant identification, molecular classification and pro-

posed reference genomes for hepatitis delta virus

Motivated by the fact that the epidemiological, pathological and pharmacolog-

ical characteristics of HBV/HCV infections differ between virus genotypes, similar

efforts were made to investigate the relationship between HDV phylogeny and the

characteristics of propagation. However, uncertainties have been gradually found

in the previous studies regarding the unique characteristics of HDV genome. HDV

has a circular negative single-stranded RNA whose length is nearly 1700 base pairs.

HDV genome is highly self-complement for the high GC-content [75], accompanied

by the co-existence of genomic and anti-genomic RNA during virus replication.

Moreover, RNA editing exists during the maturation of HDV genome. All of these

may confuse.

In this chapter, we used state-of-the-art algorithms to re-examine all published

full-length HDV genomes. By excluding possible errors in the public databases, we

made an update of HDV phylogeny. After eight subtypes of HDV have been estab-

lished, 21 full-length genomes were proposed as references to facilitate subsequent

analysis.

Part II – Development of Anti-HEV Therapy
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Chapter 4. Conservation and variation of the hepatitis E virus ORF2

capsid protein

HEV is a potentially underestimated pathogen of viral hepatitis. The infectious

HEV particles are made of 180 homogenous capsid proteins and a single-stranded

positive sense RNA genome [76]. The capsid protein of HEV is therefore the only

translational products fully attending the life cycle of HEV. Previous studies have

successfully resolved three structural domains of the capsid protein [77]. As the

capsid proteins are assembled after cleavage of two terminal fragments, physically

resolved structure is about 2/3 of the whole ORF2 transcript. Through threading

method (I-TASSER [78]), we predicted the whole structure of the protein. With

the quantitative algorithms (ConSerf [79] and DeepAlign [80]), we estimated the

conservation of ORF2 at both sequence and structure level. Finally, we estimated

the intensity of antigen-antibody interaction across genotypes/subtypes to observe

the conservation of antigen epitopes.

Chapter 5. Mitochondria in the biology, pathogenesis, and treatment of

hepatitis virus infections

This chapter focuses on the role of mitochondria in antiviral immunity against

viral hepatitis. We reviewed frequently observed alterations of mitochondria during

viral infection, the mutual interactions between mitochondria and viruses, mito-

chondrial metabolites in the infection of hepatitis viruses, and the implications of

these findings for future therapy.

The interaction between the mitochondrial components and their viral counter-

parts falls in our scope. Viral components such as double-stranded RNA (dsRNA)

initiate the innate immunity of host cells. Severely infected cells may initiate

apoptosis, further limiting the propagation of virus progenies. Conversely, viruses

modulate or interfere with the host cell responses. We highlighted the role of

mitochondria-mediated apoptosis, mitochondria antiviral-signalling (MAVS) com-

plex and mitochondria DNA (mtDNA), mitochondrial morphodynamics, mitochon-

drial electron transport chain (ETC), as well as the mitochondrial permeability

transition pore (mPTP).

Chapter 6. Mitochondrial electron transport chain complex III sustains

hepatitis E virus replication and represents an antiviral target

Our previous study showed that the hepatitis E virus is unique in response

to energy restriction or the transformation of cellular metabolism from anabolic to
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catabolic [81]. As mentioned in the previous review, mitochondria scaffold the anti-

viral machinery (MAVS) against viruses. We thus investigated which component

is essential in the anti-HEV responses.

Through different inhibitors of mitochondrial complexes, we first identified that

mitochondria complex III is essential in anti-HEV responses. In a broad-spectrum

screening with FDA-approved drugs, we found that among the pharmacological

inhibitors of mitochondria electron complexes, those targeting complex III show

significant anti-viral effects on HEV replication. Based on the technique that con-

secutive cell culture with medium adulterated with ethidium bromide (EB) induces

artificial deficiencies of cellular mitochondria [82], we built a cell-culture system of

mitochondria dysfunction for a laboratory-adapted hepatitis E virus strain. With

this model, we found that the anti-viral effects of ETC inhibitors attenuated in the

absence of mitochondria. We proposed the key role of mitochondrial permeability

transition pore (mPTP) and speculated that HEV disturbs the mPTP-mediated

anti-viral events. To prove this hypothesis, we silenced the key regulator of mPTP

formation and investigated the impact on HEV replication.

Part III – Development of Precision Therapies against Liver
Cancer

Chapter 7. LGR5 marks targetable tumor-initiating cells in mouse liver

cancer

Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is an es-

tablished stem cell marker, especially in colorectal cancer [83]. LGR5+ liver stem

cell has been successfully established in vitro [84]. LGR5 also potentiates the

Wnt/β-catenin signalling pathways [85, 86], whose activation is common in liver

cancer and malignant transformation [87]. This study thus evaluated the role of

LGR5+ cells in the pathogenesis of liver cancer.

In our study, the gene expression of LGR5 was observed through GFP fluores-

cence (in LGR5-DTR-GRP transgenic mouse model) between three groups: cancer

development (diethylnitrosamine induced), chemical(carbon tetrachloride)-induced

liver injury and control liver samples. The differential expression of LGR5 was also

observed between tumour and paired tumour-free liver samples derived from Eras-

mus MC HCC patient cohort. Then we established an organoid model with LGR5+

cells and tested their responses to conventional therapies, including sorafenib and

5-fluoro-uracil (5-FU).
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Chapter 8. Deciphering the tumour microenvironment of liver cancer

through deconvolution of bulk RNA-seq data with single cell atlas

Failures of recently published trials for HCC and CCA repudiate the potential

of non-specific systemic chemotherapy [35,36]. Meanwhile, preclinical experiments

show promising potential for innovative agents targeting critical components in the

TME [37–41]. ScRNA-seq technology is a powerful tool to depict the transcrip-

tomic landscape of TME. However, the main body of accumulated transcriptome

studies relied on RNA-seq technology. An update of all these scientific scenarios

with scRNA-seq is prohibitive. In this study, we used an economical method –

deconvolution with scRNA-seq atlases – to distil the bulk RNA-seq samples into

cell fractions. With this method, we tried to excavate pivotal components in the

TME responsible for patient outcomes to identify potential therapeutic targets.

We first determined that Cibersortx can accurately deconvolute the fractions of

cell types/subtypes in bulk RNA-seq samples. Then we included nine HCC datasets

and one CCA dataset and compared the difference of each cell type/subtype be-

tween tumour and non-tumour liver tissues. Finally, we investigated the impact

of cell fractions on patient outcomes in the published HCC cohort – TCGA-LIHC.

We also compared the pathway activities of different components in the TME.

Chapter 9. Tracking EpCAM-positive Cells in the Carcinogenesis of

Liver Cancer

Chapter 8 revealed unfavourable components in the TME, bi-potent cells, pro-

liferative cells and cholangiocytes, etc. Extensive bioinformatic analyses show that

these components have close relationships with liver CSCs. Thus in Chapter 9,

we focused on the EpCAM-positive cells. EpCAM mediates cell contact in normal

epithelial tissues and overexpresses in most cancers. EpCAM-positive cells were

proposed as a tumour-initiating component in liver cancers. However, whether

EpCAM-positive cells participate in the pathogenesis of most liver cancers lacks

substantial evidence. With support vector regression and scRNA-seq atlases, we

estimated the existence of EpCAM-positive cells in bulk RNA-seq studies. We also

analysed the biological activities of EpCAM-positive cells with various bioinfor-

matic tools to guide further research for innovative therapies.
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Abstract

Background: Hepatitis delta virus (HDV) coinfects with hepatitis B virus (HBV)

causing the most severe form of viral hepatitis. However, its exact global disease

burden remains largely obscure. We aim to establish the global epidemiology, in-

fection mode-stratified disease progression, and clinical outcome of HDV infection.

Methods: We conducted a meta-analysis with a random-effects model and per-

formed data synthesis.

Results: The pooled prevalence of HDV is 0.80% (95% confidence interval [CI],

0.63-1.00) among the general population and 13.02% (95% CI, 11.96-14.11) among

HBV carriers, corresponding to 48-60 million infections globally. Among HBV pa-

tients with fulminant hepatitis, cirrhosis, or hepatocellular carcinoma, HDV preva-

lence is 26.75% (95% CI, 19.84-34.29), 25.77% (95% CI, 20.62-31.27), and 19.80%

(95% CI, 10.97-30.45), respectively. The odds ratio (OR) of HDV infection among

HBV patients with chronic liver disease compared with asymptomatic controls is

4.55 (95% CI, 3.65-5.67). Hepatitis delta virus-coinfected patients are more likely

to develop cirrhosis than HBV-monoinfected patients with OR of 3.84 (95% CI,

1.79-8.24). Overall, HDV infection progresses to cirrhosis within 5 years and to

hepatocellular carcinoma within 10 years, on average.

Conclusions: Findings suggest that HDV poses a heavy global burden with rapid

progression to severe liver diseases, urging effective strategies for screening, pre-

vention, and treatment.

Keywords: cirrhosis, disease progression, epidemiology, hepatitis delta virus, hep-

atocellular carcinoma.
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2.1 Introduction

Hepatitis delta virus (also known as hepatitis D virus [HDV]) is a defective

subvirus that requires hepatitis B virus (HBV) surface antigens (HBsAgs) to prop-

agate. After its discovery in the 1970s, HDV has been largely neglected over the

past decades, and establishing HDV status has been relatively uncommon in rou-

tine clinical practice. Early reported global prevalence of HDV was estimated at

15–20 million infections, corresponding to approximately 5% of HBV carriers [1].

This relatively complacent view on the HDV public health problem was challenged

in 2017, when a study targeting sub-Saharan Africa estimated the presence of 7 mil-

lion infections in this specific region alone [2]. Indeed, a subsequent study in 2018

estimated the worldwide number of HDV infections at approximately 62–72 mil-

lion [3], and this number was recently upwardly revised to 74 million [4]. Thus, the

public health problem posed by HDV infection appears much bigger than initially

assumed. However, there is ongoing debate regarding the exact global prevalence

of HDV [5,6], and regional estimates remain largely lacking.

Globally, viral hepatitis causes approximately 1.34 million deaths annually, with

66% of the deaths attributed to HBV infection [7]. However, which fraction of the

HBV-associated mortality involves disease complicated by HDV infection remains

uncertain. Despite being a defective virus, HDV is generally associated with the

most severe forms of acute and chronic viral hepatitis in humans. Patients infected

with both HDV and HBV display apparently dramatically accelerated progression

to cirrhosis and development of hepatocellular carcinoma compared with those

patients displaying HBV infection alone [8–10]. Thus, it is likely that HBV com-

plicated by HDV infection is associated with alternative disease progression, treat-

ment response, and patient outcome compared with non-HDV-complicated HBV

infection, but quantitative data on the contribution of HDV infection on outcome

of HBV infection are largely lacking [11–13]. It is interesting to note that HDV

infection can occur either via simultaneous coinfection with HBV of a susceptible

individual or through superinfection of an HBV carrier [14]. These 2 transmission

modes may also lead to distinct clinical outcome, but, again, systematic analy-

sis of such an effect has not been performed [14]. By performing a systematic

review, meta-analysis, and additional data synthesis, we aimed to generate a high-

confidence estimate of the global prevalence of HDV infection and its relation to

outcome HBV infection in the context of both HBV/HDV coinfection as well as of

HDV superinfection in an existing HBV infection.

24



Figure 1: Flowchart of study selection.

2.2 Materials and methods

2.2.1 Literature Search and Selection Criteria

For this systematic review and meta-analysis, we searched EMBASE, Medline

Ovid, Cochrane Database, and China Knowledge Resource Integrated database

for cross-sectional and longitudinal observational studies measuring the prevalence

and outcome of HDV infection, published in English and Chinese languages from

database inception to February 2019. The prevalence of HDV was defined by the

detection of HDV antibodies (anti-HDV immunoglobulin [Ig]G and/or anti-HDV

IgM) using immunoassay, supplemented by the additional detection of delta antigen

and HDV ribonucleic acid (RNA). Study subjects were classified either as general

population or HBsAg-positive carriers, and for further subanalysis groups were

divided into blood donors, population at large (general group), intravenous drug
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users (IDUs), people with high-risk sexual activity, human immunodeficiency virus

(HIV) patients, hepatitis C virus (HCV) patients, blood transfusion recipients,

mixed patients, patients with liver disease, and asymptomatic HBV carriers, as

per cohort information. Hepatitis B virus patients with liver disease were divided

into different categories: acute hepatitis (AH), fulminant hepatitis (FH), chronic

hepatitis (CH), liver cirrhosis, and hepatocellular carcinoma (HCC).

2.2.2 Data Collection and Processing

Nonredundant records were initially screened by title and abstract according

to the selection criteria independently performed by Z.Mi. and S.L. The selected

results were cross-checked to resolve discrepancies, and the remaining disagree-

ments were discussed with J.L. and Q.P. and resolved by consensus. Subsequently,

the selected records were subjected full-text assessment, and data were extracted

from the primary literature independently by Z.Mi. and S.L. Discrepancies were

identified and resolved by discussing or arbitrage by J.L. and Q.P. For exclusion

of potential duplicate data from the same geographical location, consensus by the

investigational team was achieved. Authors from primary studies were contacted

for clarification if required.

The quality of the studies included was assessed by a scoring system [15, 16],

which was independently performed by 2 investigators (Z.Mi. and S.L.) and re-

viewed by the other investigators (J.L. and Q.P.). Then, sensitivity analyses were

performed to assess the effects of study quality and data source. Our study was

done in accordance with the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines and Guidelines for Accurate and Transparent

Health Estimates Reporting (GATHER) statements [17,18].

2.2.3 Statistical Analysis

The Metaprop module in the R-3.4.2 statistical software package was used for

meta-analysis. The pooled prevalence was calculated by the DerSimonian-Laird

random-effects model with Freeman-Tukey double arcsine transformation [19, 20].

The 95% confidence interval (CI) was estimated using Wilson score method. Odds

ratios (ORs) were pooled with DerSimonian-Laird random-effects model. To avoid

small sample bias in the random effects model, we excluded studies with fewer

than 100 subjects for the general population and 20 for HBsAg-positive carriers.

Detailed information regarding materials, methods, and related references as well

as additional discussion are provided in the online Supplementary Data File.
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Figure 2: Global prevalence of hepatitis D virus (HDV) infection.
(A) General population; (B) hepatitis B virus surface antigens-positive carriers. Blank means
HDV-pooled prevalence is not applicable due to lacking HDV epidemiological data. First 10
counties for the estimates of HDV burden were listed, respectively.

2.3 Results

2.3.1 Estimates of Hepatitis D Virus Prevalence at National, Regional,

and Global Levels

Our search returned 3518 records, and 634 of these met the inclusion criteria

(Figure 1). In total, 332,155 individuals of the general populations from 48 coun-

tries and regions and 271 629 HBsAg-positive carriers from 83 countries and regions

were included (Supplementary Figure 1). For estimating the global prevalence, we

calculated that the pooled prevalence of HDV is 0.80% (95% CI, 0.63–1.00) in

the general population and 13.02% (95% CI, 11.96–14.11) among HBsAg-positive

carriers, corresponding to 48–60 million infections worldwide (Figure 2). China,

India, and Nigeria are the leading countries in this respect (Figure 2 and Sup-

plementary Table 1). Regionally, HDV is highly prevalent in central Asia, eastern

Europe, tropical and central Latin America, as well as central and west sub-Saharan
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Africa (Table 1). Asia (44.41%–56.55%) followed by Africa (22.30%–38.37%) are

predominant with respect to global HDV burden. Hepatitis D virus infection is

especially prevalent in low-income and lower-middle-income countries, but con-

comitantly data from these resource-limited countries are relatively limited (Table

1 and Supplementary Figure 2).

Figure 3: The epidemiological profile of hepatitis D virus (HDV) infection.
(A) Prevalence of HDV among acute hepatitis B virus (HBV) patients. (B) Prevalence of HDV
among chronic HBV patients. (C) Forest plot of HDV prevalence among patients with chronic
liver diseases compared with asymptomatic controls. Data are pooled from a random-effects
model. ASC, asymptomatic carrier; CH, chronic hepatitis; CI, confidence interval; FH, fulminant
hepatitis; HBsAg, HBV surface antigen; HCC, hepatocellular carcinoma.

2.3.2 Analysis of Risk Factors for Hepatitis D Virus Transmission

Further analysis of our data showed that the prevalence of HDV is high among

IDUs but low among blood donors (Supplementary Table 2). Intravenous drug

use, HIV, and HCV are the remain risk factors for HDV transmission observed in

HBsAg-positive carriers with respective ORs of 15.44 (95% CI, 8.68–27.49), 2.99

(95% CI, 1.84–4.88), and 3.05 (95% CI, 1.19–7.86), relative to controls (Supple-

mentary Table 2). There is no significant difference for the prevalence of HDV in
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males (14.95%; 95% CI, 12.43–17.67) versus females (14.18%; 95% CI, 11.49–17.10)

among HBsAg-positive carriers, with an OR of 1.05 (95% CI, 0.91–1.21) (Supple-

mentary Figure 3–5).

2.3.3 Hepatitis D Virus Infection Presents a Distinct Epidemiological

Profile Among Hepatitis B Virus Patients

There are hardly data that comprehensively capture how and to what extent

HDV contributes to severe liver diseases. It is interesting to note that the preva-

lence of HDV infection in HBsAg-positive patients is very distinct between different

forms of liver pathology. Among acute HBV patients, the rate of HDV infection is

much higher in FH (26.75%; 95% CI, 19.84–34.29) compared with less symptomatic

cases of AH (11.70%; 95% CI, 8.90–14.81) (Figure 3A). In chronic HBV patients,

HDV infection rates are low in asymptomatic carrier (3.96%; 95% CI, 3.13–4.88),

but they are high in CH (16.75%; 95% CI, 14.00–19.69), cirrhosis (25.77%; 95% CI,

20.62–31.27), and HCC (19.80%; 95% CI, 10.97–30.45) (Figure 3B). Comparison of

symptomatic chronic HBV patients with asymptomatic controls of the same pop-

ulation yielded an OR for HDV infection of 3.56 (95% CI, 2.72–4.65), 6.75 (95%

CI, 4.42–10.30), and 5.61 (95% CI, 2.60–12.09) for CH, cirrhosis, and HCC, respec-

tively (Figure 3C). The pooled OR of these severe liver diseases is 4.55 (95% CI,

3.65–5.67), and thus HDV infection is significantly linked to more serious pathology

in HBV patients.

2.3.4 Different Infection Patterns of Hepatitis D Virus Infection Result

in Distinct Outcomes

Two major HDV infection patterns, coinfection and superinfection, provoke dif-

ferent outcomes (Figure 4A). The majority of HBV-HDV-coinfected patients spon-

taneously recover from HDV infection (80.96%; 95% CI, 48.71–98.91), but only a

minor proportion of superinfected patients recover (30.35%; 95% CI, 12.05–52.70).

In contrast, only a relatively small proportion of coinfected patients develop chronic

disease (10.45%; 95% CI, 4.49–18.52), but a substantial proportion of superinfected

patients progress to chronic disease (77.38%; 95% CI, 55.09–93.54). The OR to

recover or become chronically infected after HDV coinfection are 5.05 (95% CI,

1.45–17.56) and 0.05 (95% CI, 0.01–0.27), respectively, relative to HDV superin-

fection. Stratification according to the pattern of viral infection reveals that most

patients are HDV dominant (69.28%; range, 56.30–85.25) or HBV-HDV codom-

inant (27.56%; range, 14.52–40.60), with only a small fraction of patients being

29



HBV dominant (3.16%; range, 3.10–3.23). Thus, patients with HBV infection will

clearly benefit from measures that prevent further HDV infection.

Figure 4: Schematic diagram of hepatitis D virus (HDV) infection and disease
progression.
(A) Hepatitis D virus infection patterns. Coinfection is that HDV and hepatitis B virus (HBV)
simultaneously infect an individual or HDV infects the individual at the early stage after HBV
infection. The essential diagnostic marker of this pattern is positive HBV surface antigen (HBsAg)
and high titer of anti-hepatitis B core (HBc) immunoglobulin (Ig)M antibodies. Superinfection is
that HDV infects the individual who has already established HBV infection or is a chronic HBV
carrier (HBsAg positive). Anti-HBc IgM antibodies are absent in this pattern. HDV>HBV, HDV
replication dominant; HDV∼HBV, HDV and HBV codominant; HDV<HBV, HBV replication
dominant. (B) Clinical progression of HDV infection. Pooled probability was shown with 95%
confidence interval unless specifically indicated. Time was shown as mean (range). The total
percentage exceed 100% after data synthesis.

2.3.5 Hepatitis D Virus Infection Leads to Rapid Progression to Severe

Liver Diseases

We observe that HDV infection predisposes to rapid progression into severe

liver diseases (Figure 4B). Upon acute infection, 39.20% (95% CI, 13.14–69.16) of

HDV-infected patients develop CH within a mean of 1.5 years (range, 1.0–1.7),

and 30.44% (95% CI, 13.32–50.99) will progress to cirrhosis within 3 years (mean;

range, 1.5–4.0). For established chronic infection, 76.47% (95% CI, 63.98–86.98)

of HDV-infected patients develop CH within a mean of 3 years, and 29.74% (95%
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CI, 19.43–41.22) will progress to cirrhosis within 3.1 years (mean; range, 0.5–12.0).

With respect to patients with CH, 53.79% (95% CI, 35.16–71.88) of the patients

with CH will progress to cirrhosis within a mean of 3.3 years (range, 0.5–8.0),

and 14.04% (95% CI, 9.51–19.30) of the cirrhotic patients will progress to HCC

within a mean of 3.7 years (range, 1.0–9.0). In general, HDV infection progresses

to cirrhosis, on average, within 5 years and to HCC, on average, within 10 years.

Compared with HBV monoinfection, double infection with HDV results in

more severe clinical outcome. Among double-infected patients, only 14.99% (95%

CI, 2.87–34.22) are asymptomatic but 38.85% (95% CI, 31.57–46.39) are cirrhotic

(Figure 5A). In contrast, from the HBV-monoinfected patients, 14.36% (95% CI,

10.04–19.30) are cirrhotic, whereas 57.2% (95% CI, 26.10–85.42) are asymptomatic.

For double-infected patients, the ORs for being asymptomatic or having a diag-

nosis of cirrhosis, HCC, or mortality are 0.12 (95% CI, 0.06–0.21), 3.90 (95% CI,

2.94–5.18), 1.97 (95% CI, 1.02–3.78), and 2.05 (95% CI, 1.18–3.56), respectively,

relative to HBV-monoinfected patients (Figure 5B). The observed probability for

cirrhosis development is much higher among double-infected patients (40.50%; 95%

CI, 22.09–60.43) than HBV-monoinfected patients (14.22%; 95% CI, 8.46–21.17),

with an OR of 3.84 (95% CI, 1.79–8.24) (Figure 5C). It is interesting to note that

the positive rates of either HBeAg and HBV deoxyribonucleic acid in serum of

double-infected patients are lower than those observed in HBV-monoinfected pa-

tients with respective ORs of 0.74 (95% CI, 0.06–0.93) and 0.47 (95% CI, 0.30–0.74)

(Figure 5D).

2.3.6 Quality and Sensitivity Analyses

In our quality and sensitivity analyses (Supplementary Tables 3 and 4, Sup-

plementary Figures 6–11), the exclusion of low-scoring studies or the data from

literature of Chinese language only showed minor effects on the estimates of the

overall prevalence of HDV infection both among the general population and HBsAg-

positive population. However, the exclusion of these Chinese studies published in

the Chinese language decreased the pooled prevalence in China of the general pop-

ulation from 0.69% to 0.48%, probably due to the influence by an extremely large

negative cohort study from Hong Kong, but it increased the rate of HBsAg-positive

individuals from 10.16% to 14.37%. In addition, we noted significant heterogeneity

within our meta-analysis.
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Figure 5: Clinical outcome comparison between hepatitis D virus (HDV)-
positive and HDV-negative patients.
(A) Radar chart represents the composition of liver diseases among patients. (B) Forest plot of
liver disease ratio among HDV-positive patients compared with HDV-negative patients. Data are
pooled from a random-effects model. (C) The development of liver diseases among HDV-positive
patients compared with HDV-negative patients. (D) The suppressive effect of HDV on hepatitis B
virus (HBV) replication. Hepatitis B e antigen (HBeAg) and HBV deoxyribonucleic acid (DNA)
are the indicators of HBV replication. ASC, asymptomatic carrier; CI, confidence interval; HCC,
hepatocellular carcinoma; OR, odds ratio.

2.4 Discussion

In the present study, we estimate that there are 48 to 60 million cases of HDV

infection in HBV-infected individuals worldwide, yielding a global prevalence of

0.80% in the general population and 13.02% in HBsAg-positive carriers. A recent

study reported a global prevalence of 0.98% [3], but our study provides a more

accurate estimate (Supplementary Data), and it is in line with the recently pos-

tulated global prevalence of 0.82% [6]. The discrepancy with earlier studies can

largely be attributed to the stratification for different populations and the exclu-

sion of nonrepresentative populations (eg, IDUs, HIV patients, and patients with

liver diseases). This avoids overestimation as was the criticism made with regard

to the previous studies [5, 6].

The substantial global burden of HDV infection is fostered by several factors.

Although it was previously identified as the satellite virus of HBV, a recent ex-
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perimental study has demonstrated that HBV-unrelated viruses can also act as

helper viruses for HDV transmission, such as HCV [21]. To our surprise, we ob-

served a high prevalence rate and a 3 times increase in the odds for HDV infection

among HBV-HCV double-infected patients. These results appear to support the

experimental findings that HCV may assist the assembly and secretion of HDV in-

fectious particles in patients, but it requires further confirmatory investigation [21].

Moreover, our study shows that the prevalence of HDV is extremely high among

HBV-positive IDUs. Thus, our study fits well with previous work showing the

importance of injection drug use in driving HDV transmission [2, 3]. Also of note,

previous study reported that IDUs represent a large reservoir of HDV burden [7].

Indeed, we observe a 15 times increase in the odds for HDV infection in HBV-

positive IDUs compared with HBV-positive nondrug using counterparts. However,

we estimate that only approximately 1.24%–1.56% and 1.04%–1.31% of the HDV

burden can be attributed to users of intravenous drugs (743,000 cases) and HIV

exposure (624,000 cases), respectively [16, 22]. Thus, strategies aimed at reduc-

ing HDV transmission by IDUs are mainly effective in reducing HDV prevalence

because they prevent contagion of the population at large.

The prevalence of HDV varied substantially between geographical regions. With

respect to the general population, in 18 countries the prevalence is over 1%, and

over half of the countries involved are from Africa, whereas Latin America also

has a fair number of high- prevalence countries. In particular, HDV infection

rates highly prevail in Tunisia (15.33%), Mongolia (8.31%), and Niger (5.04%).

Among HBsAg-positive carriers, the prevalence of HDV in 13 countries exceeds

30%, whereas in 10 countries the prevalence is between 20% and 30%, and in

23 countries it is between 10% and 20%. Consistent with previous observations,

central Asia, eastern Europe, tropical and central Latin America, as well as central

and west sub-Saharan Africa are high-endemic areas of HDV infection [3]. Our

findings show that Asia (44.41%–56.55%) and Africa (22.30%–38.37%) constitute

the largest populations hit by HDV infections. It is interesting to note that Asia

and Africa are the large reservoirs for HBV infection and accordingly are also the

worst-hit areas with respect to HDV burden [23].

Regarding the estimation at national level, potential bias may be present in

particular countries. Because of the limited sample number, there could be overes-

timation in the general population from these countries, such as Colombia (1703),

Nigeria (1419), Pakistan (2076), Tunisia (750), and Uganda (358), compared with

the estimations among HBsAg-positive carriers (Supplementary Table 1). More-
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over, the limited origin of the samples among general population may also lead to

overestimation in country like Brazil (Supplementary Data). Finally, the national

estimations of HDV prevalence are balanced by the estimations among general

population and HBsAg-positive carriers (Supplementary Data). Our results show

that China, India, and Nigeria are the top 3 countries with respect to the number

of HDV-infected individuals.

The importance of highlighting the high global prevalence of HDV infection

is illustrated by the neglect in screening for HDV. Indeed, there is a paucity of

studies about HDV prevalence in low-income and lower-middle-income countries.

Such countries account for 50% of the world population, 60% of HBV burden,

but 70.34%–75.34% of HDV burden [23]. Also in view of the observed propensity

for serious liver disease in HDV-superinfected individuals observed in the present

study, a global health need emerges for effective prevention especially aimed at

these countries.

The implementation of a global HBV vaccination program may be a cost-

effective approach in this respect. Previous studies and mathematical modeling

suggest that an HBV vaccination coverage above 80% is sufficient for eventual

eradication of both HBV and HDV infection [3, 24]. However, early childhood

HBV vaccination coverage is still low (globally only 39% in 2015), especially in

African and Southeast Asia [7], and it is estimated that more than 100 million

people are annually de novo infected with HBV [25,26]. Thus, more efforts in this

respect are necessary.

An important finding of our study is the dichotomy in outcome between simul-

taneous coinfection with HBV/HDV and a later HDV superinfection. The majority

of the HBV-HDV-coinfected patients spontaneously recover, whereas a substantial

proportion of superinfected patients progress to chronic disease (Supplementary

Data). The implication of this result is that treatment of HBV carriers is impor-

tant, to prevent later chronic HDV infection. It is unfortunate that only 10% of

HBV infections are diagnosed, and only 5% receive antiviral therapy, also because

of the relatively high costs associated with HBV-directed antiviral therapy [23].

We find clinical evidence that HDV and HBV actively interact with each other,

resulting in 3 replicative patterns, but most patients are HDV dominant (Supple-

mentary Data). Mechanistically, this may be partially explained by a previous

experimental study that HDV replication can suppress HBV replication by inter-

fering with HBV messenger RNA synthesis and stability [11]. Furthermore, HDV

infection can induce the production of both type I and type III interferons (IFN-β
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and IFN-γ), both of which inhibit HBV infection, whereas HDV is resistant to

self-induced innate immune responses [27,28].

Hepatitis D virus infection is associated with progression to severe liver dis-

ease, but, intriguingly, different liver diseases associated with HBV infection show

a distinct relationship to HDV status. Among acute HBV patients—although

the vast majority of the data were collected from the studies published before

year 2000—the rate of HDV infection is much higher in FH (26.75%) compared

with that in less symptomatic cases of AH (11.70%) (Figure 3A) [29–31]. Among

chronic HBV patients, HDV infection is also much more often observed in more

severe symptomatic than less symptomatic cases, and this is further supported

by the pooled OR (Figure 3). Together, HDV prevalence is particularly high in

symptomatic HBV patients, especially patients with FH and cirrhosis, than less

symptomatic or asymptomatic cases. More than half (52%) of the patients suffer-

ing from acute HDV infection develop chronicity, and the majority (76%) of these

chronically infected patients progress to CH. In turn, half (54%) of the CH patients

progress to cirrhosis within 3 to 5 years [10, 32–34] and thus disease progression

is much more aggressive in patients with HDV infection compared with those suf-

fering from HCV or HBV infection alone [35, 36]. These results may correspond

to previous findings that HDV replication synergistically activates HBV X (HBx)-

mediated transforming growth factor-β and c-Jun signaling cascades, both linked

to fibrosis (Supplementary Data) [37, 38]. Counterintuitively, however, protective

effects have been associated with an HDV-positive status on the outcome of liver

transplantation for cirrhosis or HCC [39].

There are several limitations of our study. First, we failed to collect sufficient

data regarding antiviral treatment. Second, we mainly included publications in

English, but we also included the literatures published in Chinese language. This

improves results because China bears a large part of the global HBV burden, but

available English publications are mainly from Taiwan, and the prevalence of HDV

may be different from the mainland and Taiwan. Third, HDV is currently classified

into 8 genotypes [40], and different genotypes maybe lead to distinct clinical out-

comes, but we did not include this aspect in the analysis because available data are

limited. Fourth, we performed the estimates both among the general population

and HBsAg-positive population. Interpretation of results relating to the latter is

directly influenced by the HBV burden reference, but this itself is uncertain with es-

timates ranging from 250 million to 500 million [41]. We used the most frequently

cited reference burden of 367 million and estimated the infection of HDV as 48
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million, but HDV estimates range from 32 million to 61 million when referring to

different HBV estimates (Supplementary Figure 12). Finally, the interpretation of

our estimates may be affected by the study quality, data source, and study popu-

lation included, resulting in variations that may increase the heterogeneity in our

analysis (Supplementary Data). Thus, our current estimates will likely evolve as

more high-quality epidemiological data become available.

2.5 Conclusions

In summary, we now provide a high-confidence estimate of global HDV preva-

lence, although our results also show the need for high-quality epidemiological

surveys for HDV in low-income and lower-middle-income countries. Our results

quantify the effect of HDV infection in the context of HBV infection and highlight

the risk of HDV superinfection in this context. Overall, our study shows that the

global HDV burden is substantial, whereas its association to rapid progression to

severe liver disease calls for more efforts with respect to screening, prevention, and

treatment.

2.6 Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases

online. Consisting of data provided by the authors to benefit the reader, the

posted materials are not copyedited and are the sole responsibility of the authors,

so questions or comments should be addressed to the corresponding author.
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Summary

Hepatitis delta virus (HDV), as a defective sub-virus that co-infects with hepatitis B

virus, imposes an emerging global health burden. However, genetic characteristics

and molecular classification of HDV remain under investigated. In this study, we

have systematically retrieved and analysed a large set of HDV full-length genome

sequences and identified novel recombinants. Based on phylogenetic and genetic

analyses, we have established an updated classification system for HDV when re-

combinants were excluded. Furthermore, we have mapped the global distribution

of different genotypes and subtypes. Finally, we have compiled a complete set of

reference genomes for each subtype and proposed criteria for future identification of

novel genotypes and subtypes. Of note, the global distribution map indicates that

currently available HDV genetic data remain limited, and thus our proposed clas-

sification will likely evolve as future epidemiological data will accumulate. These

results will facilitate the future research on the diagnosis, screening, epidemiology,

evolution, prevention and clinical management of HDV infection.

Keywords: cRNA, genetic recombination, genotype, hepatitis delta.

43



3.1 Introduction

Hepatitis delta virus (also known as hepatitis D virus, HDV) is a defective

sub-virus that requires hepatitis B virus (HBV) surface antigen (HBsAg) for virion

assembly. The genome of HDV is a circular negative single-stranded RNA (ssRNA)

composed of approximately 1700 nucleotides (nt) [1]. It is considered the smallest

RNA genome in all known animal viruses. There are three forms of HDV RNA

without any DNA intermediate during viral replication, including circular genomic

RNA (negative), circular complementary antigenomic RNA (cRNA, positive), and

a short linear polyadenylated antigenomic RNA (positive) [2]. This linear form is

the messenger RNA (mRNA) template encoding only one functional open reading

frame (ORF) for the translation of the hepatitis delta antigen (HDAg) [3]. Though

HDV RNA is single-stranded, it is capable of undergoing self-cleavage and ligation

to generate circular RNA. Due to the high GC content of the nucleotide sequence,

HDV RNA can also fold as an unbranched, double-stranded, rod-like structure with

over 70% intra-molecular base-pairing [4].

Since the identification of HDV in the 1970s, this peculiar pathogen has been

neglected over the past decades [5,6], and routine diagnosis is rare in clinical prac-

tice [7]. However, co-infection of HDV with HBV causes the most severe form of

acute and chronic viral hepatitis in humans [1]. It has been estimated that almost

5% of HBV infected patients have HDV co-infection and up to 80% of these co-

infected patients can further progress to cirrhosis [8,9]. This long-term co-infection

is associated with more rapid and severe progression to cirrhosis or hepatocellular

carcinoma (HCC) than HBV infection alone [7]. Worse yet, clustered outbreaks

of HDV superinfection periodically occur across the world, imposing an emerging

global health burden [1, 7].

As a single-stranded RNA, HDV is expected to evolve rapidly. Previous studies

have indicated that HDV genotype plays an important role in pathogenesis and the

efficiency of RNA editing can affect its natural history [10]. However, the genetic

features of HDV remain poorly characterized, and the current molecular classifica-

tion systems are inconsistent [11,12]. Given that the epidemiology, virus evolution,

infection course, clinical outcome and treatment response are likely associated with

the different genotypes or subtypes, we aim to clarify the molecular classification

of HDV and to propose standardized reference genomes.
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Figure 1
Phylogenetic analysis of 312 hepatitis delta virus (HDV) full-length antigenomic RNA (cRNA)
sequences. The maximum-likelihood (ML) tree of eight HDV genotypes with subtypes showing
the overall classification framework. All original HDV full-length genomic RNA sequences were
transformed to cRNA sequences and standardized to read from 1 to 1678. The tree was recon-
structed using the best DNA model, General Time Reversible (GTR) model of evolution with
5 rate categories (G) and invariable sites (I). Potential recombinants were excluded from the
tree. Branch support was calculated using 1000 replications, and only bootstrap values >70% are
shown. The tree was rooted with woodchuck hepatitis B virus (WHV).
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3.2 Materials and Methods

3.2.1 Sequence Download

All HDV full-length genome sequences available before 1 December 2017 were

downloaded from NCBI Nucleotide Database. “Hepatitis delta virus” [Organism]

NOT “patent” [title] was used as the search term, and the search results were

filtered by sequence length from 1500 to 2000 nt. 357 full-length sequences were

retrieved from the search records but the final dataset comprised 345 sequences after

removing duplication. Information on accession number-strain/isolate-collection

date-country/geographic origin, if available, was simultaneously retrieved from the

database.

3.2.2 Sequence Alignment and Recombinants Identification

The original dataset was aligned by ClustalW (1.6) listed in the MEGA (ver-

sion 7.0.26) using a gap-opening penalty (GOP) of 15 and a gap extension penalty

(GEP) of 6.66 [13–15]. RNA sequences were standardized to antigenomic cRNA

form reading from normal initial site. The standardized dataset was realigned with

woodchuck hepatitis B virus (WHV, accession number J04514, WHV8 strain) [16]

by ClustalW and went through minimum manual corrections. The well-aligned

dataset was used to construct the preliminary phylogenetic tree using different al-

gorithm models listed in MEGA. Strains emerged as outlier branches or clustered

as peculiar branches located at the crotch of different trees indicating the presence

of recombinant sequences. These strains presenting the conflicting signals were

regarded as potential recombinants and require further recombination identifica-

tion. Recombination events were confirmed by Bootscanning analysis performed

in Simplot v3.5.1 programs using Kimura 2-parameter with a 160 base pair (bp)

window, a 20 bp step increment, and 1000 bootstrap replicates. The recombination

criterion is breakpoint high than >80% of the permuted tree.

3.2.3 Phylogenetic and Genetic Analyses

The new dataset without potential recombinants was realigned. Model Selection

(ML) implemented in MEGA was used to find the best DNA/protein model. The

best DNA and protein models were the General Time Reversible (GTR) model and

the Jones-Taylor-Thornton (JTT) model, respectively. The maximum-likelihood

(ML) tree was reconstructed using the best model with 5 rate categories (G) and

46



invariable sites (I). The neighbour-joining (NJ) tree was reconstructed using p-

distance model with Bootstrap method test. Branch support was calculated using

1000 replicates, and only bootstrap values >70% were showed. Trees were rooted

with WHV8 strain.

Hepatitis delta virus genotype distribution map was modified according to the

free map templates using Inkscape 0.92.2 software. Nucleotide similarities were

calculated by the program Sequence Distances implemented in MegAlign software

(Lasergene software; DNASTAR), and genetic distances were calculated by MEGA

with the Kimura 2-parameter/gamma model and 1000 bootstrap replicates.

3.3 Results

3.3.1 Standardization of HDV Full-length Genome Sequences and Iden-

tification of Potential Recombinants

Three hundred and fifty-seven original full-length sequences were retrieved, but

345 valid sequences were finally included after removing duplications. Our prelim-

inary alignment of original dataset found that only a set of strains isolated from

Brazil (accession number from KF786305 to KF786352) were cRNA form [17], and

all the others were genomic RNA form. Furthermore, several strains from Turkey

(accession number from HQ005364 to HQ005372) showed abnormal initial reading

site, starting and ending at site 227 [18]. For further phylogenetic and genetic

analysis, all original genomic RNA sequences were transformed to cRNA form and

these Turkey strains were standardized to read from 1 to 1678.

Through preliminary phylogenetic analysis, 53 strains presenting conflicting sig-

nals were screened out for further Bootscanning analysis. 33 out of these 53 strains

were finally confirmed that substantial recombination events occurred. Among

these, two strains (AB118845 and KF660598) have been previously reported as

recombinant [19, 20] and the other 31 strains were newly identified recombinants

in this study (Figures S1 and S2). The recombination genotype component and

corresponding breakpoint positions were summarized in Table S1.

3.3.2 Phylogenetic Analysis and Updated Molecular Classification

After removing the recombinant sequences, the phylogenetic trees were con-

structed using two different models, ML and NJ. The tree topologies obtained with

the two models were similar. The ML tree was shown in Figure 1 and the NJ tree

was shown in Figure S3. In our rooted trees, 312 full-length strains were clustered
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Figure 2
Genetic analysis of 312 hepatitis delta virus (HDV) full-length antigenomic RNA (cRNA) se-
quences. Cartoon representation of the identification criteria of HDV novel genotype or subtype.
The comparisons of mean intergenotypic and intersubtypic nucleotide similarity and genetic dis-
tance were based on 312 HDV full-length cRNA sequences. Axes show the percentage similarity
and genetic distance, respectively. The blue dash line indicates the lowest range of intergenotypic
nucleotide similarity and genetic distance, the red dash line indicates the cut-off range between
genotype and subtype, and the green dash line indicates the highest range of intersubtypic nu-
cleotide similarity and genetic distance. The detailed results of calculation were shown in Figure
S5A,B.

as three big clades and further clearly grouped as eight small solid clades with 100%

bootstrap value support. These eight clades were corresponding to eight genotypes,

and in line with the classification previously descripted [12]. Notably, genotype 2

and genotypes 4-8 were consistently clustered as one big clade, and genotype 3 was

located more close to the root of the trees.

As shown in the trees, eight genotypes were respectively further grouped into

two (a, b) or three (a-c) subtypes (Figures 1 and S3). Genotype 3 and 6 were

segregated into three subtypes, and genotype 1, 2, 4, 5, 7 and 8 were only grouped

into two subtypes. Referring to the nomenclature used for HCV [21], capital in the

nomenclature of HDV subtypes was used to indicate the unconfirmed status due

to the available sequences less than three. Furthermore, we performed the same

phylogenetic analysis using subgenomic HDAg coding gene fragment (600 nt) and

the corresponding amino acid sequences. However, though some genotypes could

be classified faithfully by using subgenomic fragment or HDAg amino acid, the

classification of many other genotypes and subtypes were variable (Figure S4A,B).

To further support our classification system, we compared the nucleotide sim-

ilarities and genetic distances between different groups (Figures 2 and S5). Com-

parative genetic analyses showed that HDV genotype 3 was distantly separated
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from other genotypes. The intergenotypic nucleotide similarities and genetic dis-

tances between genotype 3 and other genotypes were 61.79%-63.97% and 0.334-

0.355, respectively, outside the ranges of intergenotypic nucleotide similarities and

genetic distances between other genotypes (69.64%-79.96%, 0.207-0.285). In addi-

tion, HDV genotype 1 showed higher divergence than other genotypes. The nu-

cleotide similarity of intersubtype between subtype 1a and 1b was 82.58%, which

was lower than the intersubtype nucleotide similarity range within other genotypes

(85.82%-90.49%). The genetic distance of intersubtype between subtype 1a and 1b

was 0.162, higher than the range within other genotypes (0.094-0.139).

3.3.3 Diversity of HDV Genotype Distribution

The global distribution of HDV genotype varies geographically (Figure 3).

Genotype 1 is common globally; genotype 2 and 4 are mainly in Asia; genotype 3 is

in South America; whereas genotype 5-8 are in Africa. It is noteworthy that several

genotypes or subtypes concurrently prevail in most endemic regions, such as Asia

and Africa. Particularly, HDV strains circulating in Africa exhibit extremely high

genotypic diversity.

3.3.4 Proposed Criteria for Identifying Novel HDV Genotype or Sub-

type

Based on our phylogenetic and genetic analysis, we hereby proposed the identi-

fication criteria for novel HDV genotype and subtype. Firstly, standardized HDV

full-length antigenomic sequence is recommended to be used. Secondly, potential

recombination should be excluded and phylogenetically cluster together as a solid

group or subgroup is essentially required. Finally, phylogenetic grouping should

be supported by nucleotide similarity and genetic distance of intergenotype or in-

tersubtype. The demarcation of a novel genotype is the intergenotypic nucleotide

similarity at the range of 60.0%-81.5% and the corresponding intergenotypic ge-

netic distance at the range of 0.200-0.360. For novel subtype, the intersubtypic

nucleotide similarity and the corresponding intersubtypic genetic distance are at

the range of 81.5%-91.0% and 0.090-0.200, respectively (Figure 2).

3.3.5 Proposed Reference Genomes for HDV Subtypes

In order to facilitate the communication between researchers and help clar-

ify the epidemiology of HDV, we proposed a standard reference set of full-length
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genome sequences. These reference sequences were selected according to the follow-

ing detailed criteria. Firstly, only full-length genome sequences were considered,

and subgenomic fragments or potential full-length recombinants were eliminated.

Secondly, to ensure the clarity of the strain origin and to minimize disruption of

previous prototype notification, priority was given to the sequences with full infor-

mation, but previous noted prototype strains [12] were also taken into consideration

at the same time. Thirdly, if there was no sequence with complete information,

priority was given to the prototype strain(s), if prototype strain(s) was/were noted.

Fourthly, if no sequence was available with complete information or noted as proto-

type strain for a subtype, or more than one sequences were available for a subtype,

priority was firstly given to the sequence with earlier collection date, then to the

sequence earlier submitted to GenBank. If the collection or submission dates were

identical, the sequence with lowest alphabetic/numeric accession number was pro-

posed.

Finally, 21 full-length genome sequences were proposed as the references for

eighteen HDV subtypes (Table 1). We proposed one reference sequence for each

subtype of genotypes 2-8. But 5 reference sequences were proposed for two sub-

types of genotype 1. This is because HDV genotype 1 showed more introgenotypic

divergence than other genotypes. As for 1a, a strain of ETH2170 (accession no.

KY463677) collected in 2013 was noted as the prototype strain of genotype 1 [12].

However, another 1a strain named 36011-NIE1150 (accession no. JX888100) was

collected in 2006, which was earlier than the prototype strain. Thus, both strains

were proposed as the reference sequences of 1a. For 1b, 141 full-length genome

sequences were available to date. Because it was previously further classified as

three subtypes [12], thus three sequences were proposed to these three previously

assigned subtypes. Notably, all the proposed reference sequences were RNA form

and only a few of them have collection date available.

3.4 Discussion

With the introduction of HBV vaccine, although the prevalence of HDV has

declined in some sporadic areas, the global prevalence of HDV is still high and even

increasing in most of the endemic areas, such as Central and Northern Africa, the

Amazon Basin, Eastern and Mediterranean Europe, the Middle East and parts of

Asia [4,7,22,23]. In sub-Saharan Africa, the estimated prevalence of anti-HDV has

exceeded the global prevalence and around 7 million people are infected by HDV [7].

HBsAg-positive patients with HDV co-infection showed higher risk to progress to
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Figure 3
Worldwide distribution of hepatitis delta virus (HDV) genotypes and subtypes. Data were based
on HDV full-length genomic sequences. This map was modified according to the free map tem-
plates using Inkscape 0.92.2 software.

liver fibrosis or HCC compared to asymptomatic controls [7,22,24]. Thus, for better

management or prevention of HDV infection, diagnosis and screening for high-risk

populations are recommended [5,7]. This in turn requires a unified HDV genotype

classification system. Due to the confusion as a negative and circular genome,

both genomic and antigenomic RNA forms of HDV genome sequences have been

submitted to the GenBank database by different research groups and a substantial

set of sequences were even read from abnormal initial site [17, 18]. Furthermore,

two different genotype classification systems have been previously proposed [11,12].

Thus, it is urgent to clarify these inconsistencies, in order to facilitate the future

research in this field.

Previous studies have demonstrated that HDV homologous recombination may

occur both in nature (patient with mixed infection) and the laboratory (cotrans-

fection in cell culture system) [25–27]. Through phylogenetic and Bootscaning

analysis, we confirmed two previous reported recombinants and identified 31 new

potential recombinants. The two recombinants, one intra-genotypic recombination

(AB118845, 4a/4b) [20] and the other inter-genotypic recombination (KF660598,

2a/1b) [19] have the same recombination pattern with only one crossover. How-

ever, the other 31 newly identified recombinants have another predominant pat-

tern with two crossovers. The formation of different recombination patterns may
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be associated with the distinct replication mechanisms of HDV genome [27–29].

Recombination events were detected among several genotypes, but more frequent

in genotype 1 and 5. For genotype 1, it may be explained by its global distribution

(Figure 3) [12]. Although genotype 5 is mainly present in Western Africa, the high

recombination frequency may be associated with the intergenotypic evolutional re-

lationship and the African origin [12, 30]. Analysis of the recombination junctions

has indicated that recombination events occurred at four regions throughout the

whole genome. Among these regions, nt 694-872 at genomic RNA corresponding to

nt 807-985 at antigenomic RNA is the hotspot of HDV RNA recombination. This

genome region serves as the pseudoknot ribozyme domain of HDV genome. It is

identical with the hotspot fragment “D” previously shown in the HDV-1/HDV-4

recombination map [28]. A model has been proposed to illustrate the mechanism

of HDV recombination, which is via a viral-RNA-structure-promoted template-

switching mechanism driven by the host RNA polymerase [28], although further

validation is required.

For molecular classification of HDV, eight clades have been proposed a decade

ago, but recently designated as eight genotypes [12]. In contrast, a latest study

has proposed to group the eight HDV genotypes into three large genogroups by

grouping clade 2 and clade 4-6 as one [11]. In our study, we have applied the

ML and NJ models to reconstruct phylogenetic trees based on standardized full-

length antigenomic sequences excluding the potential recombinants. Indeed, all

the HDV strains were clustered as three big clades, but further grouped into eight

groups with high bootstrap value support. Even though the three big clades shared

some characteristics as described, three genotype classification has neglected HDV

genotypic divergence. Besides, this classification system only divided HDV strains

as genotype, but not further into subtypes. Thus, we agree with the classification

system of eight genotypes [12]. However, the subtype classification of genotype 1, 3

and 6 in our system showed clear differences, compared to the previous study [12].

We grouped genotype 1 into two subtypes, 1a and 1b. Because the previously

classified strains of the HDV-1b, HDV-1c and HDV-1d subtypes [12] do not always

cluster as independent groups but rather as one big branch supported by over

70% Bootstrap value in our trees (Figures 1 and S3). Genotype 3 was segregated

into 3a, 3b and 3c three subtypes by including more sequences; whereas this was

not clear in the previous study due to the lacking of sufficient sequences [12].

We classified genotype 6 into three subtypes; whereas only two were previously

defined [12]. Consequently, 312 strains were further classified as eight genotypes
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Table 1. Reference sequences for hepatitis delta virus subtypes

a Capital standing for the unconfirmed status due to the available sequences less than 3. b
Previous designated prototype strains are indicated in bold. c Sequences with clear collection
date are highlighted in bold, sequences with collection date missed and replaced by GenBank
release date are shown in italic. d GW, Guinea-Bissau; CAR, Central African Republic; CGO,
Republic of the Congo; COD, Democratic Republic of the Congo.

with eighteen subtypes in our updated classification system supported by high

Bootstrap values, nucleotide identity and genetic distance. Of note, neither HDAg

gene fragments nor amino acid sequences can classify HDV strains into subtypes

faithfully (Figure S4), because many genotypic characteristics are located outside

of the HDAg gene [11,12].

Among these eight genotypes, genotype 1 is the most predominant with highest

divergence. This may be resulted from prolonged wide-spread transmission (Figure

3) [12]. Genotype 3 is located close to the root of phylogenetic tree, showing

distantly nucleotide similarity and genetic distance with other genotypes. Given

that genotype 3 was only found in South America (Figure 3), it is plausible whether

this genotype is an independent lineage or the early HDV progenitor. The exact

evolutional relationship between genotype 3 and other genotypes requires further

investigate. However, the current genetic data are still insufficient to address this
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question (Figure 3) [5, 7]. Importantly, based on our phylogenetic and genetic

results, we have proposed detailed criteria for identifying novel genotype or subtype.

Finally, we have compiled a complete set of reference genome sequences for HDV

subtypes. The main criteria were based on previous study of hepatitis E virus

reference genomes [31] and the unique features of HDV. We have proposed one

reference sequence for each subtype of genotypes 2-8. But five reference sequences

were proposed for the two subtypes of genotype 1, because of the huge divergent.

When generating these 21 reference sequences, we found that the majority HDV

full-length sequences have missing information, in particular the collection date.

Thus, we strongly recommend researchers to provide the essential information,

when submitting their sequence data to the online database.

In summary, we have systematically retrieved and analysed a large set of HDV

full-length genome sequences and identified novel recombinants. Based on phylo-

genetic and genetic analyses, we have established an updated classification system

for HDV when recombinants were excluded. Furthermore, we have mapped the

global distribution of different genotypes and subtypes. Finally, we have compiled

a complete set of reference genomes for each subtype and proposed criteria for

future identification of novel genotypes and subtypes. Of note, our global distribu-

tion map indicates that currently available HDV genetic data remain limited, and

thus, the proposed classification will likely evolve as future epidemiological data

will accumulate. Overall, these results shall facilitate the future research on the

diagnosis, screening, epidemiology, evolution, prevention and clinical management

of HDV infection.
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Bedia Dinç, Kubilay Cinar, Kendal Yalçin, Ramazan Idilman, Cihan Yurdaydin, and

A Mithat Bozdayi. Complete genome sequences and phylogenetic analysis of hepatitis

delta viruses isolated from nine Turkish patients. Archives of virology, 156:2215–20,

12 2011.

[19] B T Sy, H M Nguyen, N L Toan, L H Song, H V Tong, C Wolboldt, V Q Binh, P G

Kremsner, T P Velavan, and C-T Bock. Identification of a natural intergenotypic

recombinant hepatitis delta virus genotype 1 and 2 in Vietnamese HBsAg-positive

patients. Journal of viral hepatitis, 22:55–63, 1 2015.

[20] Chia-Chi Lin, Chi-Ching Lee, Siao-Han Lin, Po-Jung Huang, Hsin-Pai Li, Yu-Sun

Chang, Petrus Tang, and Mei Chao. RNA recombination in Hepatitis delta virus:

Identification of a novel naturally occurring recombinant. Journal of microbiology,

immunology, and infection = Wei mian yu gan ran za zhi, 50:771–780, 12 2017.

[21] Peter Simmonds, Jens Bukh, Christophe Combet, Gilbert Deléage, Nobuyuki
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Abstract

Conservation and variation Hepatitis E virus (HEV) is one of the major pathogens

causing acute viral hepatitis. The infectious particle consists of an RNA genome

and capsid proteins. The 7.2 kb genome encodes three open reading frames (ORF)

and ORF2 is translated into the capsid protein. The knowledge of structure and

function of the ORF2 protein is essential for understanding the evolution and life

cycle of HEV. However, biophysical research in this respect remains limited due

to technical challenges. We have carried out a series of computational analysis

on HEV ORF2. We have identified 144 conserved sites among the 660 amino acid

(AA) residues. 43 models based on the previously proposed reference sequences and

a cell culture adapted infectious clone were successfully built by 3D protein struc-

ture prediction and refinement. Structure alignment of domains revealed structural

conservation of the S and M domains, but to a lesser extent of the P domain. More-

over, molecular docking has predicted distinct binding affinities of a monoclonal

antibody towards ORF2 across different genotypes. Thus, we have expanded the

information on ORF2 at both sequence and structure levels. These findings may

help to better understand the evolution and life cycle of HEV, but also facilitate

the development of genetically engineered vaccines or antibodies.

Keywords: Bioinformatics; Conservation and variation; Hepatitis E virus; ORF2

capsid protein; Structure feature.
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4.1 Introduction

Hepatitis E virus (HEV) is one of the leading pathogens for causing acute hep-

atitis worldwide, with estimated 20 million infections every year [1]. It is responsible

for 3.3 million symptomatic cases and 60,000 fatalities yearly [2]. By spreading

via contaminated drinking water, it has caused large water-borne outbreaks in de-

veloping countries [3]. Severe complications can occur in pregnant women with

fulminant onset in the third trimester [4–6], or in immunocompromised individuals

with high risk of developing chronic infection [7]. Most of the pathogenic HEV

strains belong to the species A of Orthohepevirus genus in the Hepeviridae fam-

ily. According to the International Committee on Taxonomy of Virus (ICTV), the

classification of Orthopedevirus A has been updated to eight genotypes. Genotype

1 and 2 are restricted to human beings. Genotype 3 and 4 are zoonotic and re-

sponsible for sporadic and autochthonous infections [3]. New strains, classified as

genotype 5 and 6, have been dentified in wild boar. More recently, genotypes 7

and 8 have also been isolated from human patients and camels [8, 9].

Infectious HEV particles are 27–34 nm in diameter with an icosahedral mor-

phology. Each virion is hypothesized to be made up of 180 copies of the capsid

proteins and a positive-sense single-stranded RNA genome [10, 11]. Three open

reading frames (ORFs) have been identified in the 7.2 kb genome and ORF2 en-

codes the capsid protein [11]. As ORF2 determines viral capsid assembly, host

tropism, cell entry, and host immune recognition, the knowledge of the structure

and function of ORF2 is essential for understanding the evolution and life cycle of

HEV, as well as the development of vaccine and genetically engineered antibody.

In this study, we have carried out a series of analyses, with the aim to system-

atically characterize the structural properties of the ORF2 protein.

4.2 Materials and Methods

4.2.1 Conservation Analysis

ORF2 sequences were systematically retrieved from the protein database of

NCBI in August 2017. The searching term is “Hepatitis E virus[Organism]”. In-

clusion and exclusion criteria are: sequences with lengths between 630 and 690 were

included; redundant sequences were identified with BioPython script and excluded;

records with “partial” in “DEFINITION” were excluded; records with taxonomy

tags containing “Orthohepevirus A” were included; and sequences with multiple

“X” (more than one ambiguous residues) were excluded. Finally, a total of 293
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Figure 1: Conservation and variation of the HEV ORF2 protein sequence
(created by Matplotlib).
(A). Pie chart for the distribution of HEV ORF2 sequence length (n=293). (B). Conservation
scores of HEV ORF2 sequences. Conservation score increases with variation. Scatters represent
the conservation scores and vertical bars are corresponding confidence intervals.
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sequences were retrieved for conservation analysis.

Sequences were aligned with ClustalW [12]. Conservation analysis was con-

ducted with ConSurf server [13]. The query sequences were selected based on two

principles: the closest to the root of the phylogenetic tree; and the typical sequence

length. As the typical and the longest length of HEV capsid protein are 660 and

674, respectively, we performed this analysis twice. AAA45736 (Genbank Acces-

sion ID of ORF2) from the HEV genome of M73218 (Subtype 1A) and BAE02701

from the genome of AB197673 (Subtype 4A) are query sequences, respectively. The

calculation was implemented in Bayesian model with default settings [13].

To further investigate the correlation between ORF2 conservation and host

preference, we have also conducted conservation analysis with subsets of the se-

quences. Subsets were built by extraction of sequences with explicit host informa-

tion from the 293 records. Inclusion criteria are: records containing the information

of “/host=” in the section of “FEATURES” were included; records with host tags

containing “human” or “homo sapiens” were grouped into “human” subset (88

records); records with host tags containing “pig”, “swine”, “wild boar” or “Sus

scrofa” were grouped into “swine” subset (66 records). Query sequences for the

two groups were selected by building a phylogenetic tree with MEGACC (Version

7) [14, 15]. BAB63941 and AEA48882 are the query sequences for “human” and

“swine” subsets, respectively.

4.2.2 Structure Alignment of Domains

Due to the failure of alignment with the overall structures, we have performed

structure alignment for each domain. First, the exact location of each domain

across genotypes was confirmed by multiple sequence alignment with ClustalW.

Each domain of each refined model was extracted as an individual structure and

stored as PDB file. Then RMSDs and DeepScores were calculated. Results of

RMSDs were transformed into color scales and labeled on the representative struc-

tures (domains of subtype 1A) with PyMol [16]. Results of DeepScores were trans-

formed into color scales and visualized with heatmaps.

4.2.3 Docking of Antigen and Antibody

To investigate the antigenicity of ORF2 of the HEV reference sequences, we

performed antigen-antibody docking with ClusPro server [17]. The X-ray struc-

ture of 8G12 - a mouse monoclonal antibody (mAb) - was retrieved from PDB

database (4PLJ). The X-ray structure of 4PLJ contains perfectly symmetrical two
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Figure 2: Alignment of X-ray structures (created by Seaborn).
The heatmap represents DeepScores aligned by DeepAlign. 2ZZQ and 3GGQ are from genotype
1 (gt1), 2ZTN is from gt3, and 3RKC/D, 4PLJ/K are from gt4. 2ZTN, 2ZZQ, 3HAG, and 3IYO
are VLPs. Others are antigen dimers. 3GGQ (gt1) is structurally closer to gt4 than gt3.

pairs of antigen-antibody. Chain C and D were extracted as antibody structure

(Supplementary data, Fig. S1, page 1). Antigens of each virus strain were obtained

by extraction of P domain.

Residues Glu549, Lys554 and Gly591 are known as essential epitopes for neutral-

ization with antibody 8G12. Similar to verification of domains, epitope sites of the

reference sequences were verified with multiple sequence alignment by ClustalW.

The antigen-antibody interface was identified by the PyMol script. Both in anti-

gen and antibody, residues more than 10 Å distant from atoms within the interface

were masked in case of improper docking.

Docking was performed under “antibody mode” with antibody as “receptor”

and antigen as “ligand”. Models with the most cluster members were collected and

both the center and lowest of weighted energy scores were visualized as histogram

[17].

The document of Supplementary materials and methods contains additional

details of our methodology.
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4.3 Results

4.3.1 Conserved Sites in ORF2 and Correlation with Host Tropism

293 complete AA sequences of HEV ORF2 were obtained by systematic retrieval

from NCBI database. There are typical lengths of these sequences, 660, 674 and

644 AA account for 93.2% of this dataset (Fig. 1A). According to the latest version

of ICTV taxonomy, classification of Orthohepevirus genus has been updated into

four species. Each species shares sequence identity up to 60.57% (species A vs.

species C) with other species. Species A has been frequently studied and well

classified [18]. Species A is also responsible for human viral hepatitis while other

species are not transmitted to humans [19]. Therefore, only sequences of species

A have been included in conservation analysis. In this article, the terminology of

“HEV” only refers to Orthohepevirus A. Moreover, the AA sites are referred with

subtype 1A (ORF2 length = 660) as the reference (for more information on the

293 sequences, see the Supplementary data, Table S1, page 5–11).

In empirical Bayes mode, ConSurf builds up a phylogenetic tree with aligned

sequences, then calculates conservation score of each site with branch length of

the tree and occurrence of AAs. Conservation scores are proposed to represent

evolution rate, and a higher score suggests a higher mutation rate [20]. As shown

in Fig. 1B, the AA sequence of ORF2 highly varies in the 5’ region ( 110 residues)

and moderately in 3’ region ( 60 residues). The remaining segment is conserved with

several scattered high mutation sites. Among the 660 sites, 144 conservation scores

are less than -0.6, including 11 N (asparagine), 7 S (serine), 11 T (threonine), 1 K

(lysine), and 11 Y (tyrosine). Furthermore, with a more strict inclusion criterion

that only one type of AA is present at one site, 31 conserved motifs were identified

(Supplementary data, Tables S2–4, page 12–26).

We next performed conservation analysis between the strains derived from hu-

man and swine hosts. Distinct conserved patterns among the segments of AA

349–372, AA 426–440, AA 527–536 and AA 649–654 were found by alignment

of conservation scores. AA 426–440 are located in the middle of M domain. AA

349–372 are on the top of the M domain, meanwhile in the valley between antigens.

AA 527–536 are on the top of the antigen, and AA 649–654 are in the C-terminal

region (Supplementary data, Fig. S2, page 2, Table S5, page 27–31).

Three domains, AA118–314, AA315–453, and AA454–606, have been defined

as shell (S), middle (M) and protruding (P) domains [21]. We have followed this

nomenclature and referred to the remaining segments as the N- and C-terminal
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regions. Mean conservation scores of the five functional regions have been calcu-

lated. The mean score of S domain is the lowest, and the N-terminal region is the

highest.

4.3.2 Length Shrinkage and Structure Feature of ORF2 in Virus-like

Particles

Four VLPs have been retrieved from the PDB databank. The sequence lengths

in VLPs are 478 (2ZTN), 488 (2ZZQ, 3HAG) and 489 (3IYO), respectively [21–

23]. Due to the limited resources of X-ray structures, the sequence feature of the

cleavage sites is difficult to be precisely characterized.

3IYO was excluded in the calculation of VLP RMSD because of low resolution.

3DCOMB calculates RMSDs of all structures by superimposing them simultane-

ously [24]. The largest RMSD is 4, and most of the sites with RMSD higher

than zero are concentrated in P domain (Supplementary data, Fig. S3, page 3).

DeepScores of each pair were visualized with heatmap (Fig. 2).

4.3.3 Structure Modeling Reveals Five Structural Regions of ORF2

Protein

To further enrich the structural information of ORF2, we performed 3D pro-

tein structure prediction for the 43 HEV reference sequences, as well as those of

genotype 8a and the cell culture adapted P6 clone. Three of these sequences failed

in modeling due to incomplete sequence or containing “X”.

I-TASSER returns five models for each task and calculates C-score of every

model for quality assessment [25]. The X-ray structure of VLP (2ZTN) is present

among the top-ten templates of these predicted structures. We have chosen the

models whose carbon backbone folding is identical to 2ZTN. This folding pattern

has resulted in the leading C-score in 39 models except for CAA66937 (the 3rd),

BAF65210 (the 3rd) and AFD33684 (the 4th).

Besides the structures of the three domains, I-TASSER has also predicted the

N- and C-terminal regions as chain structures (Fig. 3A). After optimization by

ModRefiner, the original structure and the refined were aligned with DeepAlign.

Of the 43 model pairs, none of the residues in the three domains has an RMSD

higher than 1; while clear conformational alterations can be recognized in the

N- and C-terminal regions. As the algorithm will return a symbol of “-” when

RMSD is greater than 9, larger structural alterations of these two regions remain

difficult to be precisely quantified. The optimization of ModRefiner is based on the
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Figure 3: Predicted structural characteristics of HEV ORF2 (created by Py-
Mol).
(A) Five regions or domains of predicted models. S, M and P domains are colored with red, green
and blue respectively. (B). Alignment of structures before (green) and after (blue) refinement by
free energy minimization. Conformational changes of N- and C-terminal regions can be recognized
after model refinement; while no obvious diversity can be seen within three domains. (C). Ligand
prediction by COACH algorithm. Red labeled residues are the predicted nucleic acid binding
sites, which are located near the core region of the viral particle after assembly. (D). Structural
distribution of conservation. Color gradients are converted from conservation grade. S, M and P
domains are generally conserved, while more varied regions can be seen at the top of M domain and
a specific outer surface of P domain. Both of these two areas are exposed after virion assembly.
N- and C-terminal regions are generally varied but scattered conserved sites can be observed.
The representative structure in these figures is the predicted ORF2 protein model of subtype 1A
(M73218). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

principle of free energy minimization [26]. The morphological alterations of the N-

and C-terminal regions during optimization suggest a physical instability of these

structures (Fig. 3B).

In the process of modeling with I-TASSER, ligand candidates, enzymatic ac-

tivity and functional gene ontology are simultaneously predicted by COACH al-

gorithm [25]. Enrichment of predicted results highlights the most predominant

probability that 10 residues of S domain may form a nucleic acid binding domain

(Fig. 3C). With the predicted model of complete structure, results of conservation

analysis were visualized. Conservation grades (ranked by ConSurf) were converted

into color scales and labeled on the representative structure (subtype 1A). A ten-
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dency can be recognized that highly conserved residues are concentrated in the S,

M and P domains, as well as the linking strand between M and P domains (Fig.

3D).

4.3.4 Structural Conservation of S and M Domains and Variation of P

Domain

Many symbols of “-” (RMSD greater than 9) have been returned in alignment

of the full-length structures of ORF2, suggesting that overall structure comparison

is not feasible. Thus, each domain was aligned separately.

RMSDs of S domain range from 0 to 9. The N-terminus of S domain forms

a small tail, and residues with high RMSDs are concentrated in this region. The

highest RMSD in the remaining segment is 2. RMSDs of M domain range from 0

to 2, and those of P domain range from 0 to 5. The highest RMSDs of P domain

are concentrated in the fragment of AA 555–560, the outer surface of the anti-

gen. RMSDs have been converted into color scales and labeled with representative

structures (Subtype 1A, Fig. 4A, C, and E, Supplementary data, Fig. S4, page 4).

Calculation of DeepScores for each pair generates 43 times 43 triangular ma-

trices. The diagonal line in each heatmap represents DeepScores generated by

self-alignment, which can be a reference for maximum similarity.

Following ratio of each matrix has been calculated separately:

Mean score of all paris
Mean score of the diagonal line

(1)

The fraction values of matrices for S, M and P domains are 0.8447, 0.8471,

and 0.7197, respectively (Supplementary data, Table S6, page 32). They suggest

a similar conservation of S and M domain, but a certain degree of variation of P

domain. All DeepScores have been transformed into color scales and visualized

with heatmaps (Fig. 4B, D, and F).

4.3.5 Distinct Affinities in Antigen-antibody Neutralization

ClusPro returned various binding patterns for each docking pair of antigen-

antibody. Cluster number is the corresponding parameter for assessment of predic-

tion [17]. Models with the most cluster numbers were selected as final results. Fig.

5 simultaneously shows the center value and lowest energy and of each pair. The

center value and lowest energy are two parameters to evaluate the binding affinity.

Both of them are important to compare the intensiveness of the binding between
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Figure 4: Structure alignment of S, M and P domains.
(A), (C) and (E) are representative structures of S, M and P domain from subtype 1A (M73218)
(created by PyMol). Color gradients are corresponding to RMSDs by 3DCOMB, which aligns
all models once and calculates RMSD for each carbon atom on the backbone. In S domain,
the highest RMSDs are concentrated at the N- terminus. In P domain, the highest RMSDs
are concentrated at a special outer surface (AA 554–561). (B), (D) and (F) are heatmaps of
DeepScores (created by Seaborn). Each block in heatmap represents DeepScore by pairwise
domain alignment. P domain is more varied than S and M domain. M domain is conserved while
two strains (BAE02701, CAB83210) have lower scores. These are two gt4 strains isolated from
China. The laboratory-adapted strain P6 clone has obvious lower scores of both S and P domain.
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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different strains [17]. Predicted center values range from -158.5 to -255.4, and the

lowest energy values range from -187.4 to -322.4 (Supplementary data, Table S7,

page 33). Of the 43 docking pairs, the lower limit of center value is about 1.6 times

to the upper limits, and similarly 1.7 times to the lowest energy. Thus, the most

intensive pair has a binding energy 1.6–1.7 times larger than the least pair (Fig.

5).

4.4 Discussion

With mainstream bioinformatic tools, we have described a series of computa-

tional analysis on HEV ORF2. 144 conserved sites have been identified among

the 660 residues by conservation analysis. In analysis of sequences from human

and swine hosts, multiple segments of ORF2 show different conservation levels. 43

models were obtained by 3D protein structure prediction and refinement. System-

atic structure alignment of domains revealed that the S and M domains are highly

conserved, but to a lesser extent of the P domain. Furthermore, molecular dock-

ing of antigen-antibody has predicted different binding affinities of a monoclonal

antibody towards ORF2 across various genotypes.

The current structural information of ORF2 is from VLPs and antigen dimers

obtained by biophysical approach [27]. VLPs are empty particles assembled by 60

copies of truncated ORF2 protein in cell culture systems [21,22,27]. The S, M and

P domains have been defined through successful resolution of the VLP structure.

We have followed this nomenclature and referred to the remaining segments as N-

and C-terminal regions. Thus, the full-length ORF2 is composed of five functional

regions.

RMSD is the most fundamental parameter to evaluate the atomic distance (usu-

ally the backbone atoms) of superimposed proteins. DeepScore combines RMSD

and substitution matrices and provides alignments not only to geometric similarity

but also information to evolution and hydrogen-bonding [24]. Structure alignments

of the three domains revealed high conservation levels of S and M domains. These

two domains are the fundamental structural units in the mature viral particles [23].

This may suggest a conserved approach of viral assembly; whereas the variation of

P domain may represent the equilibrium at which HEV recognizes and enters host

cells or propagates among different species.

Protein structure prediction returned flexible chain structures of the N- and

C-terminal regions, and model refinement indicated their physical instability. Suc-

cessful reassembly of near-native viral particle has been reported with 180 copies of
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Figure 5: Weighted scores of antigen-antibody docking (created by Mat-
plotlib).
Antigens are extracted from models of the 41 reference sequences, and those of genotype 8a
(AOR52322) and the P6 clone (AFD33684). The center scores (deep-colored bars) range from
-158.5 to -255.4, and the lowest scores (light bars) range from -187.4 to -322.4. 8G12 is a mouse
monoclonal antibody, whose corresponding epitopes are AA 549, 554 and 591. Predicted weighted
energy scores suggest a certain degree of conservation of these three epitopes. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this
article.)

ORF2 from disassembled VLPs (53.5 kDa), the RNA genome, and accompanied by

the presence of N-terminal region in the core region of the final capsids [23]. Present

knowledge leaves the final cleavage form of ORF2 in infectious HEV particles as a

conundrum.

The infectious P6 clone is a recombinant strain originated from a natural isolate

of genotype 3. During cell culture adaptation, this clone has gained the human

S17 gene fragment and a series of mutations on ORF1/2/3, which are proposed to

be associated with the robust viral replication. In laboratory setting, this strain

confers a significant growth advantage in cultured cells [28]. In comparison of

ORF2 domains, the P6 clone has lower DeepScores of S and P domains (Fig. 4B

and F). We speculate that these unique features may be correlated to the difference

between laboratory-adapted strain and natural isolates.

Cleavage and glycosylation are the most frequently reported post-translation

modification of ORF2. The theoretical molecular weight (MW) of the 293 sequences

range from 68.55 kDa to 72.74 kDa (Supplementary data, Table S1, page 5–11),

but MW of ORF2 in successfully assembled VLPs is 53.5 kDa [21, 29]. While
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electrophoresis analysis suggests that MW of ORF2 in different forms ranges from

70 to 90 kDa [30]. The diversity of MW reflects multiple forms of post-translation

modification of ORF2.

Three conserved motifs, Asn-137-Leu-Ser (137NLS), Asn-310-Leu-Thr (310NLT),

and Asn-562-Thr-Thr (562NTT), have been reported to be the candidates of glyco-

sylation sites [31]. Two sites (AA 137, 310) are located in the interface with which

VLPs assemble, and one (AA 562) is on the top of the antigen (Supplementary

data, Fig. S2, page 2). Glycosylation can give rise to unassembled ORF2 proteins

which are incompetent in infection but take great advantage of abundancy than

those of infectious form [30, 32]. Mutation of glycosylation sequons leads to cease

of infection in macaques, and mutation of glycosylation motifs lethally impacts the

formation of viral particles in cell culture system [32, 33]. By analyzing this large

set of sequences, we have estimated the mean conservation scores of these three

glycosylation motifs. Those of 137NLS, 310NLT, and 562NTT are -0.545, -0.631

and -0.049, respectively, although the exact function of glycosylation remains to be

further investigated.

Protein docking technology can predict the intensity of interaction between

biomacromolecules. 8G12 is a murine mAb obtained by immunization with the

HEV vaccine p239. Its corresponding antigen (ORF2) is from a Chinese HEV

strain (D11092), a genotype 1 isolate which has caused an outbreak in Xinjiang

(1986–1988) [34]. As measured by the surface plasmon resonance technology [35],

the intensiveness of neutralization with 8G12 to four genotypes ranges from 2.53–3.45

nM. Antigen-antibody docking indicates a possibly larger amplitude when neutral-

izing with more genotypes. It suggests a certain degree of conservation of the HEV

antigen epitopes.

With a series of computational analysis, we have expanded the information

of conservation and variation of HEV ORF2 at both sequence and structure lev-

els. These findings will help to better understand the evolution and life cycle of

HEV, but also facilitate future development of genetically engineered vaccines or

antibodies.
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Summary

Hepatitis virus infections affect a large proportion of the global population. The

host responds rapidly to viral infection by orchestrating a variety of cellular ma-

chineries, in particular, the mitochondrial compartment. Mitochondria actively

regulate viral infections through modulation of the cellular innate immunity and

reprogramming of metabolism. In turn, hepatitis viruses are able to modulate

the morphodynamics and functions of mitochondria, but the mode of actions are

distinct with respect to different types of hepatitis viruses. The resulting mutual

interactions between viruses and mitochondria partially explain the clinical pre-

sentation of viral hepatitis, influence the response to antiviral treatment, and offer

rational avenues for novel therapy. In this review, we aim to consider in depth the

multifaceted interactions of mitochondria with hepatitis virus infections and em-

phasize the implications for understanding pathogenesis and advancing therapeutic

development.

Keywords: hepatitis virus, mitochondria, pathogenesis, treatment.
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5.1 Introduction

Hepatitis or liver inflammation is one of the most common liver diseases that

imposes a heavy global health burden [1,2]. Acute hepatitis is either self-resolving

or develops into chronic hepatitis and subsequently progresses to cirrhosis or hepa-

tocellular carcinoma (HCC) [3]. The main etiologies include infection, metabolism,

and autoimmune-related causes. Viral infections including hepatitis A, B, C, D,

and E viruses (HAV, HBV, HCV, HDV, and HEV, respectively) are the leading

causes (Table 1).

Host cells rapidly respond to viral infection by orchestrating a variety of cellu-

lar machineries. In particular, the mitochondrial compartment appears important

in this respect and responds in various ways, including by acting as scaffold on

which several key antiviral molecular machineries are converged [4]. Mitochondria

antiviral-signaling protein (MAVS) acts as an adaptor for transcription and pro-

duction of interferons (IFN), the most potent antiviral cytokines, in response to

viral infection. Interestingly, different hepatitis viruses differentially interact with

MAVS, resulting in enhancement or antagonism of host antiviral defense [5]. In

parallel, mitochondrial DNA (mtDNA) is able to elicit innate immune response

through Toll-like receptor 9 (TLR9) and stimulator of interferon genes (STING)

signaling [6]. Finally, the release of citric acid cycle intermediates from the mito-

chondrial matrix into the cytosol following viral infection also regulates host innate

immunity [7]. Together, these mechanisms likely impact on the infection course,

pathogenesis, and the clinical outcome of IFN-α treatment in hepatitis virus infec-

tions.

The liver is a metabolic powerhouse, and accordingly hepatocytes contain abun-

dant numbers of mitochondria to support the energy requirement associated with

high metabolic activity [8]. Viruses require energy and macromolecule building

blocks from the host to complete their life cycle but on the other hand can modu-

late the host metabolic machineries [9]. Hepatitis viruses are known to regulate the

number, quality, and dynamics of mitochondria, resulting in altered mitochondrial

morphology and function [10]. Accordingly, morphological and functional alter-

ations of mitochondria are commonly observed in liver tissues obtained from viral

hepatitis patients [11–13].

Intriguingly, accumulating evidences have suggest that mitochondrial products

serve as mediators of many cellular signaling pathways, including inflammatory

responses that are prominent features of viral hepatitis. Adenosine 5’-triphosphate

(ATP), the primary carrier of energy, plays pleiotropic roles in inflammation by
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acting as an extracellular signaling molecule [14, 15]. HCV replication actively

consumes intracellular ATP [16]. 5-Aminoimidazole-4-carboxamide ribonucleotide

(AICAR), an activator of ATP production, counteracts both HCV and HEV infec-

tion [17,18]. HBV infection decrease ATP levels in hepatocytes [19]. Several other

metabolites from mitochondria, in particular, citrate and succinate, are implicated

in the pathological processes of viral hepatitis and cirrhosis [20, 21]. Given the

complexity, whether it is a sequential or causal relationship between mitochondrial

alteration and hepatitis remains unclear.

5.2 Mitochondrial Dysfunction in Viral Hepatitis Patients

Mitochondrial dysfunction is associated with many common disorders [22]. It

is a prominent feature of liver cell injury and is often seen in patients with viral

hepatitis. HBV and HCV infections are frequently accompanied by mitochondrial

dysfunction. In patients, HCV infection results in morphological alteration of mito-

chondria, reduction in the copy number, and oxidative-damage–triggered mutations

in the genome of mtDNA [11–13,23]. Interestingly, mitochondrial abnormalities in

HCV patients vary in a genotype-dependent manner. Their frequency is higher in

genotype 1b than genotype 2a/c or 3a infection, suggesting a greater intrinsic cyto-

pathic effect of genotype 1b HCV [11,24]. The current direct-acting antivirals are

highly effective in inhibiting HCV infection. However, whether mitochondrial dys-

function persists in patients after HCV eradication remains an interesting question

to be investigated. In HBV patients, a lower level of serum mtDNA content is re-

lated to an increased risk of HCC development, indicating that circulating mtDNA

may be a potential noninvasive marker of HCC risk [25]. Extensive mitochondrial

gene dysregulation and global downregulation of mitochondrial function have been

observed in HBV-specific CD8 T cells from patients with chronic infection. Treat-

ment with mitochondria-targeted antioxidants restores antiviral activity of these

exhausted HBV-specific CD8 T cells [26]. Data regarding the mitochondrial status

in hepatitis A and E patients remain limited, identifying a need for future research.

5.3 The Mutual Interactions between Hepatitis Viruses and

Mitochondrial Components

5.3.1 Apoptosis in the Pathogenesis of Viral Hepatitis

Accumulating evidence supports the role of liver cell apoptosis in the patho-

genesis of viral hepatitis [27]. Although there are multiple modes of programmed
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Figure 1
The mutual interactions of the mitochondrial compartment with hepatitis viruses and the con-
sequences on the infections. Hepatitis viruses differentially modulate mitochondria antiviral-
signaling protein (MAVS) signaling. HAV and HCV cleave, while HEV induces MAVS aggrega-
tion. These interactions with MAVS result in enhancement or antagonism of innate immune
response. Hepatitis viruses either induce or block the mitochondrial permeability transition
pore (MPTP) opening, regulating the release of mitochondrial contents such as mitochondrial
DNA (mtDNA) fragment or adenosine 5’-triphosphate (ATP), which then lead to antiviral de-
fense. mtDNA that are not completely degraded are able to enter the endocytic pathway through
mitochondria-derived vesicles, which engage Toll-like receptor 9 (TLR9) in lysosomes and lead
to the activation of the NF-κB signaling and interferons (IFN) production. Sustained apoptosis
caused by hepatitis virus infection triggers damage of membrane integrity, resulting in the liber-
ation of mitochondrial contents into the extracellular milieu.
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cell death, pyroptosis and apoptosis cascades through the extrinsic and intrinsic

pathways are the predominant forms for viral hepatitis [28]. The extrinsic signaling

is activated via the cell surface death receptors including TNFR1, TRAIL-R1, and

Fas. The intrinsic pathway is mainly triggered by nonreceptor stimuli but charac-

terized by the permeabilization of the outer mitochondrial membrane. This leads

to the release of proapoptotic factors from the mitochondrial intermembrane space

into the cytosol [29]. A recent study demonstrates that the extrinsic and intrinsic

apoptotic pathways activate pannexin-1 to drive NLRP3 inflammasome assembly,

which is involved in the pathogenesis of viral hepatitis [30, 31].

The numbers of apoptotic hepatocytes in chronic hepatitis B and C patients

are small but higher than those in healthy individuals [32]. It is now generally

accepted that cytotoxic T lymphocytes mediate the immune clearance of hepatitis

virus-infected hepatocytes. Immune-mediated apoptosis plays an important role

in liver damage and pathogenesis [33]. However, hepatitis viruses may also have

direct effects on apoptosis. The role of the HBV X gene product (HBx) in hepato-

cyte apoptosis is multifaceted. Proapoptotic function of HBx has been reported in

hepatocytes of transgenic mice [34], whereas it also blocks Fas-induced apoptosis

in liver cells [35]. Similarly, HCV infection enhances susceptibility to Fas-mediated

apoptosis [36], whereas several HCV proteins (core, E1, E2, and NS proteins) in-

hibit TNF-α-mediated apoptosis [37]. Recently, HEV has been reported to induce

hepatocyte apoptosis via mitochondrial pathway in Mongolian gerbils [38]. How-

ever, the underlining interaction between apoptosis and HEV infection remains

largely obscure.

Cytochrome c, an essential component of the electron transport chain (ETC)

transferring electrons from complex III to complex IV, plays a key role in the

early events of mitochondria-mediated apoptosis. Serum cytochrome c has been

suggested as a potential new marker for fulminant hepatitis in patients [39]. During

apoptosis, cytochrome c is released from the mitochondrial intermembrane space

to induce caspase activation. HCV can induce [40], whereas HEV can block the

release of cytochrome c from mitochondria to cytosol (Figure 1) [41]. The possible

correlation between the amount of serum cytochrome c and the severity of hepatitis

should be further explored for potential diagnostic relevance. Besides cytochrome

c, mutual interactions between caspase activation and viral infection have also been

observed [42]. Several viruses express proteins that could be cleaved by the caspase

protease, resulting in inhibition of apoptosis [43, 44]. For example, the HCV viral

nonstructural protein 5A can be cleaved by activated caspase, which subsequently
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translocates to nucleus to enhance the transcription of several NF-κB target genes

to inhibit apoptosis [45]. The protein from HEV ORF2 has different forms and

could translocate to the cell nucleus [46]. However, whether ORF2 protein is cleaved

by the host protease and whether it regulates apoptotic pathway remain to be

further studied. Taken together, apoptosis is likely an important mechanism in

pathogenesis of viral hepatitis. Hepatitis viruses can modulate apoptotic pathways

at various levels. Thus, detection and quantification of particular apoptosis-related

molecules may be explored as potential biomarkers for disease diagnosis in viral

hepatitis patients.

5.3.2 MAVS and mtDNA-mediated Innate Immune Response

The early and non-specific detection of hepatitis viruses is generally through

the recognition by pathogen-associated molecular patterns (PAMP) as innate im-

munity sensors. This leads to the activation of downstream IFN signal pathway

and subsequent production of the ultimate antiviral effectors, interferon-stimulated

genes (ISG) [47,48]. MAVS, acting as an adaptor for transcription and production

of IFN, shows specific interactions with different hepatitis viruses. HAV and HCV

provoke a blockade in cell-autonomous IFN production by inducing proteolytic

release of a part of the extra-mitochondrial domain of MAVS. This is clinically

supported by the presence of cleaved MAVS in the liver biopsies of HCV—but

not HBV-infected patients [49–51]. The HCV protease NS3/4A cleaves MAVS off

the mitochondria [52], whereas HAV uses a stable, catalytically active polyprotein

processing intermediate to target MAVS for proteolysis [49]. Instead of directly

provoking MAVS proteolysis, HEV induces MAVS to form “prion-like” polymers,

producing a type III IFN response (Figure 1). The sequestering of MAVS in mor-

phologically altered mitochondria may explain the relatively poor response to IFN

treatment in the clinical management of HEV compared with that in HCV-infected

patients [4]. Thus, exploring drugs preventing aggregation of MAVS on the outer

membrane of mitochondria could be potentially used as a combination with IFN

to enhance the anti-HEV efficacy. HBV infection is another case altogether, and

investigation of liver biopsies from chronic HBV patients indicates the absence of

activated innate immune response [53]. Thus, HBV is likely invisible to pattern

recognition receptors, and the role of MAVS may not be prominent.

Because mtDNA contains remnants of bacterial nucleic acid sequences and is

methylated in a different way from nuclear DNA, it resembles non-self DNA and is

thus easily to be degraded after transferring to the cytosol, leading to the activa-
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tion of innate immune system [54]. mtDNA-mediated immune activation involves

TLR9 and cGAS-STING signaling pathways, which contribute to the clearance of

invading pathogens and provoke inflammasome activation, interleukin-1 produc-

tion, and pyroptosis [55, 56]. Because of bidirectional transcription, mtDNA is

capable of generating overlapped transcripts. These formed long double-stranded

RNA structures that engage in MDA5-mediated antiviral signaling to trigger a

type I IFN response [57]. Clinically, IFN treatment in HCV patients significantly

decreases the frequency of mtDNA mutations in hepatocytes and increases the

mtDNA copy numbers in peripheral leukocytes [12, 58]. Moreover, mtDNA was

reported to mediate IFN response [59]. Even though hepatocytes contain hun-

dreds of copies of mtDNA, it is possible that the combination of mtDNA deletions

and point mutations, together with mtDNA strand breaks by increased reactive

oxygen species (ROS), could reach a threshold sufficient to induce mitochondrial

dysfunction, contributing to the pathogenesis of viral hepatitis. Very recently, it

has been reported that new mtDNA synthesis can activate the NLRP3 inflamma-

some [60]. As described, activation of NLRP3 inflammasome is closely related to

the pathogenesis of chronic liver diseases, including viral hepatitis [31].

5.3.3 Mitochondrial Morphodynamics in Response to Hepatitis Virus

Infection

The mitochondrial life cycle entails frequent fusion (in which two mitochon-

dria form a single organelle) and fission (the division of one mitochondrion into

two daughter organelles) events [61]. These two opposing processes collabora-

tively control the number and size of mitochondria and maintain cell homeostasis.

Mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1) are the key

regulators of fusion, whereas dynamin-related protein 1 (Drp1) tightly modulates

fission (Figure 2A). A main reason for continual mitochondrial fission and/or fusion

is that it facilitates the degradation of damaged organelles by mitophagy, which is

regulated by Parkin and Pink proteins. It promotes mitochondrial turnover and

prevents accumulation of dysfunctional mitochondria. HCV and HBV infections

promote mitophagy [62,63]. The role of mitophagy in other hepatitis viruses needs

to be further studied.

Upon infection, hepatitis viruses rearrange the intracellular microenvironment,

including the mitochondrial compartment [64]. Mitochondrial fission has been fre-

quently observed in HBV and HCV infections [10, 65]. HCV promotes fission by

inducing Drp1 phosphorylation [66]. This correlates with oxidative stress, present-
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ing as excessive lipid peroxidation and deficiency of tissue hepatocellular antioxi-

dant stores, which in turn contributes to steatosis that is highly prevalent in HCV

infection [67, 68]. In contrast, HEV is able to trigger mitochondrial fusion to pro-

mote viral replication (Figure 2B) [69]. Because mitochondrial fission is the initial

step of mitophagy, the differential regulation of mitochondrial morphodynamics by

HEV compared with HCV may suggest a negative regulation of mitophagy during

its propagation.

The fission and fusion processes in hepatocytes are responsible for the exchange

and reallocation of mitochondrial contents including mtDNA. Inhibition of mito-

chondrial fusion is related to mtDNA depletion [70]. Importantly, the equilibrium

between fission and fusion is crucial for stabilizing mtDNA copy number and main-

taining healthy liver function [71]. Hence, modulation of mitochondrial morpho-

dynamics could potentially affect virus-induced liver dysfunction.

In addition, morphodynamics also regulates innate immunity by affecting the

distribution of MAVS on the mitochondrial outer membrane. As reorganization

of MAVS spatial distribution is a key event in IFN production in response to

viral infection, such spatial reorganization has important consequences. Mitochon-

drial fusion promotes, whereas fission inhibits, RIG-I-like receptor (RLR) signal-

ing. Fibroblasts lacking mitofusin proteins produce less IFN and pro-inflammatory

cytokines upon viral infection [72, 73]. Small molecules, such as mitochondrial di-

vision inhibitor 1 (Mdivi1) that inhibits Drp1 activity, have been developed [74].

Hence, the effects of these agents on different hepatitis viruses are interesting be

investigated.

5.3.4 The Role of the Mitochondrial Electron Transport Chain

Mitochondrial ETC consists of a series of complexes that transfer electrons from

donors to acceptors via redox coupled with the transfer of protons across a mem-

brane. It is the site for oxidative phosphorylation and generation of ATP. Mito-

chondrial morphodynamics can regulate the respiratory rate [75]. Fused mitochon-

dria enhance, whereas mitochondrial fission decrease, respiratory function. Thus,

changing the dynamics of mitochondrial fission and fusion influences mitochondrial

function and constitutes an evident target for viruses to corrupt mitochondria-

mediated innate immunity. Hepatitis viruses actively interact with the ETC; for

example, HBx protein down-regulates ETC activity [76]. HCV replication inhibits

ETC and so the production of ATP [77]. By profiling the role of different ETC

complexes, complex III was found to support HEV replication [18].
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Figure 2: Mitochondrial morphodynamics is differentially regulated by hep-
atitis viruses to modulate innate immune response.
A, The mitochondrial life cycle entails frequent fusion and fission events. Mitofusin-1 (Mfn1),
mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1) are the key regulators of fusion, whereas dynamin-
related protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1) modulate fission. HBV and
HCV induce fission, whereas HEV triggers fusion. B, Immunofluorescence staining of human liver
cells infected with HEV showing the induction of mitochondrial fusion. HEV capsid protein (red;
anti-ORF2), mitochondria (green; anti-HSP60), and 4’,6-diamidino-2-phenylindole DAPI (blue).
Cells were visualized with 63Ö oil immersion lens at identical settings.
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During cellular respiration, byproducts like ROS are produced under stressed

conditions [78]. Increased ROS production is associated with liver injury and the

pathogenesis of viral hepatitis [79]. Furthermore, ROS production is involved in

various cellular signaling pathways, including those mediating immune responses.

ROS can induce aggregation of MAVS on mitochondrial outer membrane to initiate

IFN response. Cells with reduced ETC activity are impaired with production of

IFNs and proinflammatory cytokines during viral infection [80]. In contrast, in-

creased ROS production counteracts HCV replication [81]. Thus, the ETC emerges

as a primary target for viral infection, although hepatitis viruses likely target its

functionality indirectly, for instance, by modifying mitochondrial morphodynamics.

5.3.5 Mitochondrial Permeability Transition Pore and Hepatitis Viruses

Mitochondria actively communicate with the cytosol and nuclear compart-

ments. The signals involved are mediated through proteins located on the mi-

tochondrial membrane, including the mitochondrial permeability transition pore

(MPTP). Mitochondrial contents can escape from the mitochondrial matrix dur-

ing MPTP opening [82, 83]. The products related to the action of ETC, such as

ATP and cytochrome c, are transferred through MPTP to cytosol to exert biologi-

cal functions. MPTP is composed of voltage-dependent anion channel (VDAC) in

the outer mitochondrial membrane, the adenine nucleotide translocator (ANT) in

the inner mitochondrial membrane, and cyclophilin D (CypD) as its regulator in

the matrix.

Hepatitis viruses have various interactions with MPTP. HBx protein has been

shown to colocalize with VDAC, leading to alteration of mitochondrial transmem-

brane potential. The 68-117 region of HBx interacts with mitochondria and is

necessary for membrane permeabilization [84]. HEV ORF3 protein sustains high

levels of oligomeric VDAC to preserve mitochondrial potential and membrane in-

tegrity, thereby protecting infected cells from mitochondrial depolarization and

death [41]. HBV and HCV core proteins provoke MPTP opening, whereas HEV

prevents such an event. In line with this, the MPTP inhibitor cyclosporine A

(CsA) inhibits HBV and HCV [85–87] but promotes HEV replication [18, 88]. As

highlighted, the importance of mtDNA in innate immunity, mtDNA fragments in

fact are also released through MPTP. Thus, targeting MPTP opening represents a

potential antiviral strategy.
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5.4 The Impact of Mitochondrial Metabolites

Metabolites produced from the mitochondrial tricarboxylic acid cycle, including

citrate, succinate, fumarate, and acetyl-CoA, are important regulators of signal-

ing transduction when released from the mitochondria [56, 89]. Citrate synthase

and succinate dehydrogenase are up-regulated in HBV-infected cells, leading to

elevation of the corresponding metabolites such as fumarate and succinate [90].

Succinate has been recognized as an emerging signal transducer to activate inflam-

matory pathways [7]. An example is the increase in antigen-presenting capacity

of dendritic cells if cytosolic succinate levels increase [91]. Thus, it is rational

to suggest that such molecules may modulate innate immunity in hepatocytes as

well [92]. HCV infection has been related to elevated level of acetyl-CoA, a metabo-

lite that participates in many biochemical reactions in protein, carbohydrate, and

lipid metabolism [93]. It has been widely recognized that acetyl-CoA contributes

to lysine acetylation by donating its acetyl group [94]. Lysine modification controls

many aspects of protein function and provides an obvious mechanism as to how

acetyl-CoA can influence cellular function. HBV replication is regulated by the

acetylation status of the cccDNA-bound H3/H4 histones [95, 96]. Acetylation of

retinoic acid-inducible gene I (RIG-I) regulates its antiviral functions [97], and RIG-

I is essential for sensing HAV [98], HBV [99], HCV [100], and HEV infections [101].

Importantly, adequate cytosolic acetyl-CoA level is required for interferon-γ (IFNγ)

production [102]. Other metabolites can inhibit inflammatory responses. For ex-

ample, lactate acts through the lactate receptor to reduce hepatitis in mouse mod-

els [103]. There is an increase in lactate production in HCV-infected cells, probably

because the corruption of mitochondrial function provokes increased dependency in

the hepatocyte on glycolysis to support its energy needs [104]. In apparent agree-

ment, targeting mitochondrial metabolism has been proposed to prevent chronic

neuroinflammation [105]. This may bear implications for treating neurologic dis-

eases caused by HEV infection [106].

5.4.1 Implications for Therapeutic Development

IFN-α has been used in the clinic for decades to treat chronic HBV and HCV

infections. The effects of IFN on viral replication have been linked to mitochon-

drial functions [107], but conversely, mitochondria regulate antiviral IFN responses

via MAVS or the production of ROS. The development of direct-acting antivi-

rals (DAA), in particular, the nucleoside/nucleotide analogues, constitutes a land-
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mark in advancing the treatment for viral hepatitis [108]. Nucleoside/nucleotide

analogues can efficiently inhibit viral replication by inhibition of viral polymerase

activity [109]. However, these drugs may exert off-target effects by inhibition of

mitochondrial DNA polymerase, resulting in a reduction of mtDNA copy num-

ber, although a minor reduction may not present a clinically apparent pheno-

type [110, 111]. Fialuridine, a nucleoside analogue investigated for treating HBV

infection, caused five deaths from liver failure associated with lactic acidosis and

two required liver transplantation [112]. The toxicity is primary due to damaging

mitochondria, particularly in nerves, liver, skeletal, and cardiac muscle, as these

tissues contain many mitochondria [113]. The degree of these side-effects limits

development of this class of drugs, even though the antiviral effect may be very

promising.

Despite the launch of many antiviral drugs, new therapeutics are still required

for eliminating viral hepatitis. Unlike HCV, the persistence of cccDNA prevents

cure but only inhibits viral replication in HBV patients [114]. For HEV, besides

supportive care and off-label treatment with ribavirin or IFN-α for some cases,

there is no proven antiviral medication available. Mitochondria represent a viable

target for new therapeutic development. As mitochondrial dysfunction is widely

present in HBV patients, treatment with mitochondria-targeted antioxidants mi-

toquinone (MitoQ) and the piperidine-nitroxide MitoTempo can restore the antivi-

ral activity of HBV-specific CD8 T cells [26]. MitoQ is based on the delivery of

a potent antioxidant with targeted lipophilic cations that leads to accumulation

up to several-hundred fold in mitochondria. It has been extensively studied and

demonstrated safety in humans [22, 115, 116]. Because increased oxidative stress

and subsequent mitochondrial damage are the key mechanisms causing pathogen-

esis in viral hepatitis, treatment with MitoQ can decrease liver damage in HCV

patients [115]. It has also been shown to attenuate liver fibrosis in mice [117].

The mitochondrial ETC complexes have long been recognized as an antiviral

target [118]. The complex I inhibitor, metformin, inhibits HBV and HCV infections

in experimental models [119, 120], although the effects in patients remain unclear.

Complex III sustains HEV replication and can be targeted by pharmacological

inhibitors to inhibit viral replication in experimental models but requires further

clinical validation [18].

Lastly, mitochondria-mediated apoptosis is essential in the pathogenesis of viral

hepatitis; however, no optimal drug has been identified to prevent or treat liver

injury. In this respect, mitochondria-targeted antioxidants or caspase inhibitors,
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Table 1. Features of hepatitis virus infections

Abbreviations: ds, double-stranded; FDA, Food and Drug Administration; N/A, not applicable;
nt, nucleotide; ss, single-stranded. a For HDV, no FDA approved medication is available. Peg-
IFN-α is the only recommended therapy, but the efficacy is unsatisfactory. For HEV, no FDA
approved medication is available. Ribavirin has been used as off-label treatment with good
efficacy.

look promising, but require further investigation.

5.5 Concluding Remarks

Liver cells are enriched in mitochondria that support the unique features of

hepatic metabolism but also orchestrate cell-autonomous antiviral immunity upon

viral infection. Mitochondrial dysfunction commonly occurs in viral hepatitis pa-

tients. This associates with disease progression from acute, chronic infection to

cancer development. Hepatitis viruses actively interact with the mitochondrial

compartment at various levels, including regulation of mitochondrial morphody-

namics, innate immune response, bioenergetics, and metabolism. The mode of

actions of these interactions may differ among the five major types of hepatitis

viruses but are essential for understanding the pathogenesis, clinical outcome, and

treatment response in viral hepatitis patients.

The prominent role of mitochondria in contributing to pathology has provided

opportunities for therapeutic development against viral hepatitis and prevention

of liver cancer development. Several mitochondrial-related or targeted agents have

been used in the clinic or tested in clinical trials, including the complex I inhibitor

metformin, the MPTP inhibitor CsA, the NAD+ precursor nicotinamide mononu-

cleotide, the mitochondria-targeted protective compounds MitoQ and Bendavia,

and the antioxidant coenzyme Q10. However, the development and application of

mitochondria-related therapies remain at their infancy. We propose to enhance
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the therapeutic development by identifying and repurposing the existing FDA-

approved medications with mitochondria-targeted properties. On the other hand,

dietary and herbal supplements [121] and other new approaches [122, 123] should

also be explored for their potential to modulate or restore mitochondrial function.
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Abstract

Hepatitis E virus (HEV) infection has emerged as a global health problem. How-

ever, no approved medication is available, and the infection biology remains largely

elusive. Electron transport chain (ETC), a key component of the mitochondria,

is the main site that produces ATP and reactive oxygen species (ROS). By profil-

ing the role of the different complexes of the mitochondrial ETC, we found that

pharmacological inhibition of complex III, a well-defined drug target for the treat-

ment of malaria and Pneumocystis pneumonia, potently restricts HEV replication.

This effect demonstrated in our HEV models is equivalent to the anti-HEV po-

tency of ribavirin, a widely used off-label treatment for patients with chronic HEV.

Mechanistically, we found that this effect is independent of ATP production, ROS

level, and pyridine depletion. By using pharmacological inhibitors and genetic

approaches, we found that mitochondrial permeability transition pore (MPTP),

a newly identified component of ETC, provides basal defense against HEV infec-

tion. HEV interferes with the opening of the MPTP. Furthermore, inhibition of

the MPTP attenuated the anti-HEV effect of complex III inhibitors, suggesting

that the MPTP mediates the antiviral effects of these inhibitors. These findings

reveal new insights on HEV–host interactions and provide viable anti-HEV targets

for therapeutic development.

Keywords: ETC; HEV; MPTP; virus-host interaction.
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6.1 Introduction

Hepatitis E virus (HEV) infection is the major cause of acute viral hepatitis

worldwide. Although the infection is asymptomatic and self-limiting in healthy

populations, it often causes high mortality in pregnant women and chronic hepatitis

in recipients of organ transplants [1]. More recently, extrahepatic manifestations

of HEV infection in particular neurologic disorders have been widely reported [2].

Although ribavirin is effective as an off-label treatment for some cases of chronic

hepatitis E, a substantial proportion of patients are not eligible for or do not

tolerate the treatment. Furthermore, development of resistance mutations may

result in failure of viral clearance [3,4]. Further study of HEV–host interactions is

essential for understanding the pathogenesis, revealing novel antiviral targets, and

developing new anti-HEV therapies [5].

Mitochondria are unique double-membraned organelles present in all eukaryotic

organisms. The number of mitochondria in a cell varies widely, but liver cells are

rich in these organelles, containing more than 2000 mitochondria per cell [6]. Dys-

functions of mitochondrial are implicated in various liver diseases—in particular,

viral hepatitis. Acting as a powerhouse to generate energy, it plays essential roles

in physiology to sustain life. Electron transport chain (ETC), a key component of

mitochondria, is the main site of production of ATP and reactive oxygen species

(ROS). The ETC is located in the inner mitochondrial membrane and consists

of 4 multisubunit enzyme complexes (complexes I–IV). Electrons harvested from

NADH through complex I or reduced flavin adenine dinucleotide-2 through com-

plex II are received by ubiquinol. Ubiquinol subsequently transfers the electrons to

cytochrome c through complex III and is oxidized to ubiquinone, which is required

for the de novo biosynthesis of pyrimidines by dihydro-orotate dehydrogenase [7].

Cytochrome c then passes the electrons to complex IV, which uses the electrons

and hydrogen ions to reduce molecular oxygen to H2O [8, 9]. During this process,

the high energy of the electron is converted to the electrochemical proton gradient

across the inner membrane, which drives the synthesis of ATP by ATP synthase.

Meanwhile, leakage of electrons from the ETC leads to the production of ROS.

Accumulating evidence has shown that mitochondria serves as a signaling hub

for the innate immune response and facilitate downstream signaling leading to IFN

synthesis. On the other hand, virus strategically alters mitochondrial function

to influence the energy production, metabolism, and immune signaling [10]. With

respect to defending pathogen invasion and maintaining homeostasis, mitochondria

constantly communicate with cytosol to initiate biologic events. Mitochondrial
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permeability transition pore (MPTP), a newly identified component of ETC [11,12],

is a nonselective channel that facilitates the exchange of molecules between the

mitochondrial matrix and cytoplasm. Most of the RNA viruses, including hepatitis

C virus (HCV) and HEV, develop solely in the cytoplasm. HCV has been shown

to trigger mitochondrial permeability transition to establish chronic liver disease

[13]. HEV has been shown to protect cells from mitochondria depolarization [14].

However, whether MPTP is involved in this process remains unknown. In this

study, we investigated the role of the mitochondrial ETC in HEV infection and

explored the potential of therapeutic targeting.

Figure 1: Mitochondrial complex III inhibitors specifically inhibit HEV repli-
cation.
(A–F) Analysis of HEV-related Gaussia luciferase activity in an Huh7.5-p6 luciferase model
treated with the indicated concentrations of different complex inhibitors for 24 h (A) and 48 h
(B) and in a U87-p6 luciferase model treated with indicated concentrations of different complex
inhibitors for 24 h (C) and 48 h (D). real-time qPCR analysis of HEV viral RNA level in Huh7.5
(E) and U87 (F) cell-based p6 infectious models treated with indicated concentrations of different
complex inhibitors for 48 h. G) Western-blot analysis of HEV ORF-2 expression in Huh7.5-p6
infectious model after treatment with indicated concentrations of different complex inhibitors for
48 h (Ctr, nontreatment control; 0.1 µM ROT, 100 µM TTFA, 0.1 µM AMA, 0.1 µM MYXO,
and 1000 µM KCN). H) Real-time qPCR analysis of HEV viral RNA level in Huh7.5 cell–based
p6 luciferase model treated with the indicated concentrations of ribavirin. I) Analysis of HEV-
related Gaussia luciferase activity in an Hep3B-p6 luciferase model treated with the indicated
concentrations of complex III inhibitors for 24 h. J) Analysis of genotype 1 HEV (Sar55/S17/luc)
viral replication-related Gaussia luciferase activity in Huh7.5-Sar/S17/luc model treated with the
indicated concentrations of complex III inhibitors for 48 h. The data are means ± sd of 4
independent experiments normalized to GAPDH. *P<0.05, **P<0.01, ***P<0.001 vs. DMSO
CTR (set as 1).
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6.2 Materials and Methods

6.2.1 Reagents and Antibodies

Rotenone (ROT), 2-thenoyltrifluoroacetone (TTFA), antimycin A (AMA),my-

xothiazol (MYXO), potassium cyanide, oligomycin A (OLM), ribavirin, vitamin

E acetate (VE), ethidium bromide (EB), 5-aminoimidazole-4-carboxamide ribonu-

cleotide (AICAR), uridine, cytidine, cyclosporin A (CsA), bongkrekic acid (BKA),

and H2O2 were purchased fromMilliporeSigma (Burlington, MA, USA). The mouse

mAb against cyclophilin D (CypD) was purchased from Santa Cruz Biotechnology

(Dallas, TX, USA). The HEV-specific antibody against open reading frame (ORF)-

2 was purchased from MilliporeSigma.

6.2.2 Cell Culture and Establishment of ETC-deficient Cell Culture

Model

The human hepatoma (Huh7.5) cell line, Hep3B cell line, and human glioblas-

toma U87 cell line were kindly provided by the Department of Viroscience (Erasmus

Medical Center). Huh7.5, Hep3B, and U87 cells were cultured in DMEM (Lonza

Biowhittaker, Verviers, Belgium) supplemented with 10% (v/v) heat-inactivated

fetal calf serum (Thermo Fisher Scientific), 100 IU/ml penicillin, and 100 µg/ml

streptomycin. An ETC-deficient cell culture model was established as follows: cells

harboring the p6 infectious clone were cultured in the presence of medium EB (50

ng/ml), pyruvate (100 µg/ml), and uridine (50 µg/ml) for 96 h, as described in

refs. [15] and [16].

6.2.3 HEV Cell Culture Models

A plasmid construct containing subgenomic HEV sequence coupled with a

Gaussia luciferase reporter gene (p6-Luc) and a construct containing the full-length

HEV genome (Kernow-C1 p6 clone, GenBank: JQ679013; National Center for

Biotechnology Information, Bethesda, MD, USA; https://www.ncbi.nlm.nih.gov/

genbank/) was used to generate HEV genomic RNA by using the mMessage mMa-

chine In Vitro RNA Transcription Kit (Thermo Fisher Scientific, Waltham, MA,

USA) [17, 18]. Cells were electroporated with p6-Luc subgenomic HEV RNA and

p6 full-length HEV RNA to generate replication luciferase and infection models,

respectively [2]. For the HEV genotype, a replicon model or viral RNA was gen-

erated from a Sar55/S17/luc-encoding plasmid. Huh7.5 cells were electroporated

with Sar55/S17/luc HEV RNA to generate a genotype 1 replicon model [19].
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6.2.4 ATP Production Measurement

The ATP content in cultured cells was measured with the ATP Bioluminescence

Assay Kit HS II according to the manufacturer’s instructions (Roche Life Science,

Penzberg, Germany). In brief, cells were harvested and suspended in dilution buffer

at a concentration of 105 per milliliter. The same volume of cell lysis reagent was

added to the above cell suspension and incubated at 15°C for 5 min and for an extra

2 min at 100°C. Then, it was centrifuged at 10,000 g for 60 s, and the supernatant

was transferred to a fresh tube. Fifty microliters of the supernatant was mixed with

luciferase reagent and subjected to luciferase measurement with LumiStar Optima

Luminescence Counter (BMG Labtech, Offenburg, Germany). The supernatant

was kept on ice until measurement.

6.2.5 Flow Cytometry

Intracellular ROS was measured by using a general oxidative stress indicator ac-

cording to the manufacturer’s instructions (chloromethyl-H2-2’,7’-dichlorodihydro-

fluorescein diacetate; Thermo Fisher Scientific). In brief, cells were seeded into a

12-well plate at 5000 cells per well. After treatment with the appropriate reagents,

the cells were harvested and resuspended in prewarmed PBS containing 10 µM

chloromethyl-H2-2’,7’-dichlorodihydrofluorescein diacetate and incubated at 37°C

for 20 min. After incubation, the cells were resuspended and returned to prewarmed

growth medium. Then, the cells were subjected to flow cytometry analysis with

excitation of 488 nm and emission of 530 nm.

An MPTP assay was performed according to the manufacturer’s instructions

(BioVision, Milpitas, CA, USA). In brief, cells were harvested and resuspended in

prewarmed MPTP wash buffer at a final concentration of 106 cells per milliliter.

The cell suspension was then incubated with the appropriate reagents at 37°C

for 15 min and centrifuged at 1000 g for 5 min to pellet cells and remove excess

staining and quenching reagents. Cells were then resuspended in 1 ml of MPTP

wash buffer and were subjected to flow cytometry with a 488 nm excitation filter.

The cell suspension was kept on ice and analyzed within 1 h.

6.2.6 Western Blot Assay

Whole-cell lysates were heated at 95°C for 8 min, followed by loading onto a

15% SDS- polyacrylamide gel and separating by electrophoresis. After separation

on a 12% SDS-PAGE gel, the proteins were transferred onto a PVDF membrane
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Figure 2: ETC deficiency reverses the anti-HEV effects of complex III in-
hibitors.
A) U87-p6 infectious cells were treated with EB to establish an ETC-deficient cell model and were
maintained in a medium supplemented with uridine and pyruvate to complement the metabolic
deficiency connected with the defective ETC. B) mRNA levels of COX I, II, and IV and CYTB
in the EB-treated or untreated group were measured by real-time qPCR. Data are means ± sd
of 4 independent experiments, normalized to GAPDH. *P<0.05, **P<0.01, ***P<0.001 vs. EB-
untreated group. C) U87-p6 infectious cells were treated with EB for the indicated time before
measurement of HEV RNA. D,E) EB-treated and -untreated groups were incubated with 0.1 µM
AMA for 2 d before measurement of HEV luciferase activity (D) and HEV RNA (E). F,G) The
EB-treated or -untreated group was incubated with 0.1 µM MYXO for 2 d before measurement
of HEV luciferase activity (F) and HEV RNA (G). Data in the EB-treated group are presented
relative to EB-treated CTR (set as 1). The data are means ± sd of 4 independent experiments,
normalized to GAPDH. *P<0.05, **P<0.01, ***P<0.001 vs. EB-untreated CTR (set as 1).

(Thermo Fisher Scientific). Subsequently, the membrane was blocked for 1 h at

room temperature followed by incubation with mouse anti-CypD (1:500) antibody

overnight at 4°C. The membrane was washed 3 times followed by incubation for

1.5 h with an anti-mouse peroxidase–conjugated secondary antibody (1:10,000).

After the membrane was washed 3 times, the protein bands were detected with the

Odyssey 3.0 Infrared Imaging System (Li-Cor, Lincoln, NE, USA).

6.2.7 Quantification of HEV Replication

For the HEV luciferase model (p6-Luc), the activity of secreted Gaussia lu-

ciferase in the cell culture medium was measured with the BioLux Luciferase Flex

Assay Kit (New England Biolabs, Ipswich, MA, USA), to quantify viral replication.

Luciferase activity was quantified with a LumiStar Optima Luminescence Counter.

All presented HEV luciferase values were normalized by MTT assay to exclude the

effect of cell toxicity on HEV replication (Supplemental Fig. 1). For the p6 infec-

tious model, SYBR-green–based real-time quantitative PCR (qPCR) was used to

quantify genomic RNA. All the other RNA levels in this study were also quantified

by real-time qPCR assay, with the primer sequences provided as follows:

HEV:
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Figure 3: Inhibition of HEV by complex III inhibitors is independent of ATP
level reduction.
A) Energetic cost of each step of HEV life cycle. Cell entry (1; ATP<103); intracellular trans-
portation (2; ATP<103); uncoating of capsid (3); translation (from parental genome (4); tran-
scription (5; ATP<3Ö105); translation (6; ATP≈1.1Ö107); and budding (7; ATP≈3.9Ö106).
B,C) Oxygen consumption rate of Huh7.5 cells in the absence and presence of 0.1 µM AMA (B)
and 0.1 µM MYXO (C) at the indicated time points. D) Huh7.5 cells were treated with 200 µM
AICAR, 0.1 µM AMA, or 0.1 µM MYXO, alone or in combination for 3 h. After treatment, the
cell lysates were subjected to ATP assay. E) The Huh7.5-p6 infectious model was treated with
200 µM AICAR, 0.1 µM AMA, or 0.1 µM MYXO, alone or in combination for 48 h before being
subjected to real-time qPCR analysis of HEV RNA. F) Huh7.5 cells were treated with 0.1 µM
OLM for 3 h. After treatment, the cell lysates were subjected to ATP assay. G) The Huh7.5-p6
infectious model was treated with 0.1 µM OLM for 48 h before real-time qPCR analysis of HEV
RNA. Data are means ± sd of results in 4 independent experiments, normalized to GAPDH.
**P<0.01, ***P<0.001 vs. DMSO nontreated control group (Ctr) (set as 1).
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5’-ATCGGCCAGAAGTTGGTTTTTAC-3’ (sense) and

5’-CCGTGGCTATAACTGTGGTCT-3’ (antisense);

GAPDH

5’-GTCTCCTCTGACTTCAACAGCG-3’ (sense) and

5’-ACCACCCTGTTGCTGTAGCCAA-3’ (antisense);

CYTB:

5’-CCCTAACAAACTAGGAGGCG-3’ (sense) and

5’-TCTGCGGCTAGGAGTCAATA-3’ (antisense);

COX I:

5’-CCTGACTGGCATTGTATTAG-3’ (sense) and

5’-GATAGGATGTTTCATGTGGTG-3’ (antisense);

COX II:

5’-CATCCCTACGCATCCTTTAC-3’ (sense) and

5’-GGTTTGCTCCACAGATTTCAG-3’ (antisense);

COX IV:

5’-CAGAAGGCACTGAAGGAGAAG-3’ (sense) and

5’-TCATGTCCAGCATCCTCTTG-3’ (antisense);

and CypD:

5’-CGACTTCACCAACCACAATGGC-3’ (sense) and

5’-GGTGTTAGGACCAGCATTAGCC-3’ (antisense).

6.2.8 MTT assay

Ten millimolar MTT (MilliporeSigma) was added to the cells seeded in a 96-

well plate, and cells were maintained at 37°C with 5% CO2 for 3 h. The medium

was removed and 100 µl DMSO was added to each well. The absorbance of each

well was read on the microplate absorbance reader (Bio-Rad, Hercules, CA, USA)

at a wavelength of 490 nm. All measurements were performed in triplicate.
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6.2.9 Gene Knockdown by Lentiviral Vectors

The pLKO.1-based short hairpin RNA (shRNA) lentiviral vectors (Erasmus

Center for Biomics) targeting CypD (shCypD) was used to knockdown CypD gene

expression and scrambled control vector (shSCR) was used as the control. Lentivi-

ral pseudoparticles were generated as described by Wang et al. [18]. After the pilot

study, the shRNA vectors exerting optimal gene knockdown were selected. To ob-

tain a stable gene knockdown cell line, cells were transduced with shRNA lentiviral

particles for 3 d and selected by puromycin (MilliporeSigma) at a concentration of

2.5 µg/ml. The shRNA sequence was:

CypD,

5’-CCGGGCTCTAAGAGTGGGAGGACATCTCGAGATGTCCTCCCACTCT-

TAGAGCTTTTTG-3’.

6.2.10 Oxygen Consumption Rate Measurement

Mitochondrial respiration was measured with the High Resolution Oxygraph

(Oxygraph-2k; Oroboros Instruments, Innsbruck, Austria). Respiration was mea-

sured at 37°C in 2 ml chambers, and the cells were suspended in 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid–Tris buffer (HT). HT buffer contained 4.2 mMKCl,

132 mM NaCl, 10 mM 4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid, 1.2 mM

MgCl2, and 1 mM CaCl2 and was adjusted to pH = 7.4 with Tris. Equilibration

with the ambient air was achieved when the oxygen concentration in each chamber

reached a constant level. After calibrating the chambers for volume, cells were

introduced to each chamber to measure the mitochondrial basal respiration. Af-

ter 10 min stabilization of the oxygen flux, the basal respiration was measured

for 10 min. The corresponding average oxygen consumption was calculated with

Dat-Lab5 software (Oroboros Instruments).

6.2.11 Statistical Analysis

Statistical analysis was performed with the nonpaired, nonparametric test with

the Mann-Whitney U test and 1-way ANOVA with Bonferroni post hoc test (Prism

v.5.01; GraphPad Software, La Jolla, CA, USA). Values of P<0.05 were considered

statistically significant.
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Figure 4: Inhibition of HEV by complex III inhibitors is independent of ROS
production.
A–C) Flow cytometry of ROS level in Huh7.5 cells treated as indicated for 3 h. VE (100 mM) was
added 1 h before treatment with 100 µM H2O2 (A), 0.1 µM AMA (B), or 0.1 µM MYXO (C).
Ctr, nontreated control group. D,E) Coincubation of 100 µM VE with 0.1 µM AMA or 0.1 µM
MYXO for 48 h before measurement of HEV luciferase activity (D) or HEV RNA (E). F,G) The
Huh7.5-p6 luciferase model was treated with 0.1 µM MYXO, 0.1 µM AMA, and uridine (20 or 200
µM; F) or cytidine (20 or 200 µM; G), alone or in combination for 48 h before measurement of
HEV luciferase activity. H,I) The Huh7.5-p6 infectious model was treated with 0.1 µM MYXO,
0.1 µM AMA, and uridine (20 or 200 µM; H) or cytidine (20 or 200 µM; I), alone or in combination
for 48 h before measurement of HEV RNA by real-time qPCR assay. The data are means ± sd of
results in 4 independent experiments, normalized to GAPDH. **P<0.01, ***P<0.001, vs. DMSO
Ctr (set as 1).
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6.3 Results

6.3.1 Profiling ETC Inhibitors Identifies an Essential Role of Complex

III in Sustaining HEV Replication

To study the potential role of ETC in HEV infection, we profiled the effects of

targeting different complexes of ETC by pharmacological inhibitors. The Huh7.5

liver cell line and the U87 neuronal cell line were used to model HEV infection [2].

We transfected Huh7.5 and U87 cells with an HEV subgenomic replicon (p6 lu-

ciferase model) and treated the cells with various inhibitors targeting complex I,

II, III or IV. In the Huh7.5-p6 luciferase model, 24-h treatment with complex III

inhibitors AMA and MYXO significantly inhibited HEV replication (Fig. 1A) and

these effects were further enhanced after 48 h of treatment (Fig. 1B). Similar re-

sults were observed in U87 cells harboring the HEV subgenomic replicon (Fig. 1D).

We next evaluated this effect in both cell lines harboring the full-length infectious

HEV genome (the p6 infectious model). Consistently, 48-h treatment resulted in

significant inhibition of viral RNA determined by real-time qPCR (Mitochondrial

electron transport chain complex III sustains hepatitis E virus replication and rep-

resents an antiviral target Fig. 1E, F). The anti-HEV effect was further confirmed

by Western blot analysis at the viral protein level (Fig. 1G). Of note, the complex

II inhibitor TTFA exerted a significant inhibitory effect with high concentrations

after 48-h treatment in the Huh7.5 HEV subgenomic replicon cells (Fig. 1B). How-

ever, this effect was not seen in other models. We found that the complex III

inhibitors at 0.1 µM showed a comparable inhibitory effect on HEV replication

compared with ribavirin at 100 µM (Fig. 1H). Besides, complex III inhibitors also

showed strong inhibition of HEV in the Hep3B cell model (Fig. 1I) and effectively

restricted genotype 1 HEV-related luciferase activity in the Huh7.5-based genotype

1 replicon model, Sar55/S17/luc (Fig. 1J). Taken together, complex III is essential

in supporting HEV replication and can be targeted by pharmacological inhibitors

to inhibit viral replication.

6.3.2 The Anti-HEV Effects of Complex III Inhibition Require the

Integrity of ETC

To further validate the specificity, we depleted ETC by using EB and then tested

the HEV RNA level (Fig. 2A). EB is widely used to establish an ETC-deficient

cell model by depleting mitochondrial DNA [15,20]. Cytochrome c oxidase (COX)

I, cytochrome c oxidase (COX) II, and cytochrome b (CYTB) are encoded by
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Figure 5: Inhibition of HEV by complex III inhibitors is independent of ROS
production.
A–E) Flow cytometry analysis of MPTP opening in Huh7.5 cells (A–D) and in Huh7.5-p6 infec-
tious cells (E) by measuring retained fluorescence after treatment with the indicated molecules
for 15 min. F) Mean retained fluorescence ± sem, from 4 independent experiments. **P<0.01
vs. PBS control. G) Western-blot analysis of CypD expression in Huh7.5- and U87-based p6
infectious cells transduced with lentiviral shRNA vector targeting CypD (shCypD) or scrambled
control (shSCR). H–K) The CypD expression level (H,I) and HEV viral RNA level (J,K) were
analyzed by real-time qPCR in stable CypD knockdown or SCR control cells. The data are means
± sem, of results in 4 independent experiments, normalized to GAPDH. **P<0.01, ***P<0.001
vs. shSCR (set as 1).

mitochondrial DNA [21]. Cytochrome c oxidase IV (COX IV) is encoded by nuclear

gene and was used as a control [22]. We found that, compared with Huh7 cells, U87

cells were more sensitive to EB treatment and showed less toxicity when treated

with complex inhibitors (Supplemental Fig. 1I–K). Thus, U87 cells were used to

establish an ETC-deficient cell model. After 4 d treatment, the mRNA level of

COX I, COX II, and CYTB showed remarkable reduction with unchanged mRNA

level of COX IV (Fig. 2B). These data demonstrate the successful establishment

of an ETC-deficient cell model. EB treatment had no effect on the HEV RNA

level (Fig. 2C). We then tested the anti-HEV effect of AMA and MYXO in this

model. Lack of ETC strongly attenuated the anti-HEV effect of AMA and MYXO,

as determined by real-time qPCR (Fig. 2D–G). These data suggest that ETC is
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necessary for complex III inhibitors to restrict HEV replication.

6.3.3 The Anti-HEV Effect of Complex III Inhibition is Independent

of ATP and ROS Production or Pyrimidine Depletion

Up to 90% of ATP is produced in ETC. AMA and MYXO are well-known

complex III inhibitors that specifically block the transportation of electrons from

cytochrome b to c, resulting in loss of intracellular ATP [15, 23, 24]. We further

calculated the energy cost for each step of the HEV life cycle (Fig. 3A; see details

in Supporting Information), using the method described for influenza virus [25].

The energy consumption of HEV was lower than influenza virus; whereas influenza

virus consumed only 1% of the cell energy budget. This suggests that HEV may

not be sensitive to the change in intracellular ATP abundance.

The dramatic reduction of the oxygen consumption rate was observed in Huh7.5

cell treated with AMA and MYXO (Fig. 3B, C). To investigate whether ATP

production is involved in the anti-HEV effect, we coincubated AMA or MYXO

with AICAR, a 5′-AMPK activator that is capable of accumulating ATP. AICAR

effectively increased the ATP level and significantly reversed the reduction of ATP

caused by AMA and MYXO in Huh7.5 cells (Fig. 3D). However, AICAR neither

increased the HEV RNA level nor attenuated the anti-HEV effects of AMA or

MYXO (Fig. 3E). To further confirm this, we treated the Huh7.5 cells with OLM,

which binds to ATP synthase and inhibits ATP production. OLM showed inhibition

of ATP production comparable to AMA and MYXO, but not on the HEV RNA

level (Fig. 3F, G). The complex III is also the major site to produce ROS. ROS

has been implicated in the innate immune response against pathogen infections

[26]. Inhibition of complex III has been shown to increase the cellular ROS level.

Both AMA and MYXO increased ROS production. H2O2 induced marked ROS

production serving as a positive control (Fig. 4A–C). To investigate the potential

role of ROS in the anti-HEV activity of AMA and MYXO, vitamin E was added

to scavenge ROS (Fig. 4A–C). However, the anti-HEV effects of AMA and MYXO

were not affected by supplementation of vitamin E (Fig. 4D, E). Thus, the anti-

HEV effects of AMA and MYXO are most likely independent of ATP and ROS

production.

Strong inhibition of pyrimidine biosynthesis has been observed after treatment

with AMA or MYXO [20, 27]. We have shown that inhibition of the pyrimidine

pathway exerts a potent anti-HEV effect [7]. Besides, 2’-C-methylcytidine, a cy-

tidine nucleotide analog, also has a strong anti-HEV effect [28]. However, supple-
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mentation of uridine or cytidine did not reverse the anti-HEV effects of AMA or

MYXO, excluding pyrimidine depletion, as a principal mechanism of their anti-

HEV effects (Fig. 4F–I). HEV blocks MPTP opening and genetic silencing of the

MPTP regulator enhances viral replication

MPTP, a newly identified component of ETC, is a nonselective channel through

which mitochondria constantly exchange metabolites with the cytoplasm [11, 12].

Opening of MPTP may lead to leakage of ETC respiratory substrates to cyto-

plasm [29]. We investigated whether HEV interacts with the pore opening. The

CoCl2 quenching assay has been widely used to assess the opening of MPTP [30–32].

In Huh7.5 cells, in the absence of CoCl2 and ionomycin, MPTP dye is present in

the cytosol as well as in the mitochondria (Fig. 5B), resulting in a bright signal

compared to the negative control without treatment of MPTP dye (Fig. 5A). In

the presence of CoCl2 alone, MPTP dye in the mitochondria emits fluorescence,

but the cytosolic fluorescence is reduced by CoCl2 quenching (Fig. 5C). Opening

of MPTP induced by ionomycin leads to further reduction of mitochondrial fluo-

rescence signal in comparison to the cells treated with CoCl2 only (Fig. 5D). In the

p6 infectious model, ionomycin-induced reduction of fluorescence was significantly

reversed (Fig. 5E, F), indicating that HEV blocks the MPTP opening.

Genetic ablation of CypD in hepatocytes and neurons has been shown to reduce

MPTP opening and to be effective in correcting pathologic conditions that are

involved in mitochondrial dysfunction, oxidative stress, and cell necrosis [29, 32].

To test this effect on HEV, we silenced CypD expression in Huh7.5- and U87-based

p6 infectious models, which is confirmed by real-time qPCR and Western-blot

assays (Fig. 5G–I). This silencing resulted in a mean 2.0 ± 0.27- and 2.9 ± 0.14-

fold increase of HEV RNA levels, respectively (Fig. 5J, K). These data indicate a

basal defense role of MPTP against HEV infection.

6.3.4 MPTP Mediates the Anti-HEV Action of the Complex III In-

hibitors

We next examined whether the anti-HEV effect of inhibition of complex III is

dependent on MPTP. CsA potently prevents MPTP opening through binding and

inhibiting CypD [11]. CsA alone significantly increased the HEV RNA level (Fig.

6A), which is consistent with our previous findings [18]. Adding CsA significantly

reversed the anti-HEV effects of AMA and MYXO (Fig. 6B, C). This result was

further confirmed by adding another MPTP inhibitor, BKA, which favors the closed

conformation of adenine nucleotide translocase (Fig. 6A). Thus, the anti-HEV
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Figure 6: AMA and MYXO inhibit HEV through MPTP.
A) Huh7.5-p6 infectious model was treated with MPTP inhibitors (5 µg/ml CsA and 50 µM
BKA). HEV RNA was analyzed by real-time qPCR assay. The data are means ± sd of 4 indepen-
dent experiments, normalized to GAPDH. ***P<0.001 vs. DMSO control. B,C) Coincubation of
0.1 µM AMA (B), 0.1 µM MYXO (C), 5 µg/ml CsA, and 50 µM BKA, alone or in combination
for 48 h. HEV RNA was analyzed by real-time qPCR assay. The data are means ± sd of 4
independent experiments. Data in AMA- or MYXO-treated groups were presented relative to the
nontreated group (set as 1). Data in combination group of AMA with CsA or BKA are presented
relative to the CsA- or BK-treated group, respectively (set as 1). Data in combination group of
MYXO with CsA or BKA are presented relative to CsA- or BKA-treated groups, respectively
(both groups set as 1). Data were normalized to GAPDH. *P<0.05, **P<0.01, ***P<0.001.
D) Summary diagram. HEV, BKA, and CsA inhibit MPTP opening to block the release of
metabolites from mitochondrial matrix to cytosol. CypD is located in mitochondrial matrix and
specifically targeted by CsA. Inhibition of complex III by AMA and MYXO leads to an increase
in ROS level, a decrease in ATP level, and inhibition of pyrimidine synthesis. UQ, ubiquinone;
UQH2, ubiquinol.

effects of complex III inhibitors require MPTP opening.

6.4 Discussion

The liver is a metabolically active organ and contains abundant mitochondria.

Mitochondria are the major energy source for the cell and act as a central hub

for multiple signal transduction, including dictating the immune response [33].

Metabolites from mitochondria, such as succinate and citrate, are engaged in the

process related to immunity and inflammation, which is essential to maintaining

liver homeostasis and preventing pathogen invasion [34, 35]. Alteration in mito-

chondrial metabolic states has been associated with various liver diseases, including

chronic hepatitis C [36]. However, the interactions of mitochondrial metabolism
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and HEV remain largely unexplored.

Viruses rely highly on their host for energy production, reproduction, and sur-

vival. Meanwhile, the virus strategically interferes with the host metabolism to

establish persistent infection. Hepatitis B virus infection has been shown to affect

hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid, and

vitamin metabolism [37]. HCV leads to increased expression of many glycolytic en-

zymes and change of intracellular ATP level during replication [38,39]. In turn, the

host has developed various ways to combat viral infection. In this study, we roughly

calculated ATP consumption of the HEV life cycle, and the total energy cost is

lower than that of influenza virus. Of note, influenza viral infection costs only 1% of

the total energetic budget of a eukaryotic cell [25], suggesting that HEV consumes

an extremely low percentage of the host energy budget, which may explain why

the reduction of intracellular ATP is not responsible for the anti-HEV effect of the

complex III inhibitors. Release of mitochondrial ROS into the cytoplasm leads to

activation of transcription factors, specifically NF-κB and hypoxia-inducible factor-

1α, which coordinate the function of cells during virus infection [33]. ROS has

been shown to be involved in oligomerization of mitochondrial antiviral-signaling

protein, an adaptor for transcription and production of IFN, by remodeling the

mitochondrial outer membrane property [40]. HEV has recently been shown to

induce mitochondrial antiviral-signaling protein oligomerization, suggesting a po-

tential role of mitochondrial signaling in HEV infection [41]. Most of the ATP

and ROS are produced from the ETC, which is closely linked to the mitochondrial

metabolic state. The ETC consists of series of enzyme complexes (I, II, III, and IV).

The important role of mitochondrial ETC in viral infection has been demonstrated

by using ETC inhibitors and uncouplers [42]. The hepatitis B virus-X protein

has been shown to down-regulate ETC complex activity. Expression of the HCV

polyprotein inhibited complex I activity [43,44]. These findings suggest the specific

role of different complexes in the setting of particular viral infection. Complex III

has diverse biologic functions [15, 20]. For example, CD4+ T cells with a deficient

ETC complex III fail to induce the translocation of nuclear factor to the nucleus,

leading to decreased transcription of IL-2 mRNA. Loss of mitochondrial complex

III results in impaired antigen-driven T-cell responses in vivo [33]. Targeting com-

plex III is the mode of action of a currently used antimalarial drug [45]. In this

study, we found that inhibition of complex III inhibits HEV replication. One of the

features that differentiates complex III from other ETC complexes is the Q cycle

by which complex III moves protons and transfers electrons to cytochrome c [46].
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Inhibition of the Qi site by MYXO showed comparable inhibitory effect on HEV

with inhibition of the Q0 site by AMA at the same concentration. We also found

that deficiency of ETC abolished the anti-HEV effect of these inhibitors. However,

the anti-HEV effect is independent of ATP production, ROS level, and pyridine

depletion.

HEV completes its life cycle solely in cytosol, which is separated from ETC by

the mitochondrial inner membrane. MPTP is a nonselective channel that allows

the communication of molecules between the mitochondrial matrix to the cytosol to

convey their signals. Most recently, MPTP has been identified as a vital component

of ETC [11, 12]. Inhibition of CypD, an MPTP channel regulator, decreases the

channel opening [47]. HCV has been reported to open the MPTP to facilitate its

replication [29]. In this study, silencing of CypD promoted HEV replication. This

effect was further demonstrated by adding the MPTP inhibitors CsA and BKA.

Consistent with our previous study [18], both inhibitors increase HEV replication.

In contrast, CsA inhibited HCV replication. Whether these opposing effects are

attributed to the specific role of MPTP on these 2 viruses remains an intriguing

question to be further investigated.

Recent evidence showed that the HEV ORF-3 protein could form an ion channel

in the plasma membrane to facilitate viral replication [48]. Moreover, it has been

shown that ORF-3 prevents the release of cytochrome c [14]. In line with these

findings, we demonstrated that HEV robustly blocked the MPTP opening. The

MPTP is involved in several neurologic diseases and is a potential therapeutic tar-

get for neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s

disease [49]. HEV has recently been associated with several types of neurologic dis-

eases. Thus, it would be interesting to examine whether HEV-associated neurologic

diseases are related to its effect on MPTP.

In summary, we have identified mitochondrial ETC complex III in sustaining

HEV infection through the MPTP. Pharmacological inhibition of complex III ef-

fectively inhibits HEV replication. Because therapeutic targeting of complex III

has been widely explored for treating different diseases, repurposing or optimizing

these existing U.S. Food and Drug Administration–approved or upcoming drugs

represents a viable option for therapeutic development against HEV infection.
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Moradpour, Nazzareno Capitanio, and Claudia Piccoli. The cyclophilin inhibitor al-

isporivir prevents hepatitis C virus-mediated mitochondrial dysfunction. Hepatology,

55(5):1333–1343, mar 2012.

[30] Angelina V. Vaseva, Natalie D. Marchenko, Kyungmin Ji, Stella E. Tsirka, Sonja

Holzmann, and Ute M. Moll. p53 Opens the Mitochondrial Permeability Transition

Pore to Trigger Necrosis. Cell, 149(7):1536–1548, jun 2012.

[31] Elena De Marchi, Massimo Bonora, Carlotta Giorgi, and Paolo Pinton. The mi-

tochondrial permeability transition pore is a dispensable element for mitochondrial

calcium efflux. Cell Calcium, 56(1):1–13, jul 2014.

[32] Takashi Nakagawa, Shigeomi Shimizu, Tetsuya Watanabe, Osamu Yamaguchi, Kinya

Otsu, Hirotaka Yamagata, Hidenori Inohara, Takeshi Kubo, and Yoshihide Tsuji-

moto. Cyclophilin D-dependent mitochondrial permeability transition regulates some

necrotic but not apoptotic cell death. Nature, 434(7033):652–658, mar 2005.

[33] Manan M. Mehta, Samuel E. Weinberg, and Navdeep S. Chandel. Mitochondrial

control of immunity: beyond ATP. Nature Reviews Immunology, 17(10):608–620, jul

2017.

[34] Ting Wang and Steven A. Weinman. Interactions Between Hepatitis C Virus and

Mitochondria: Impact on Pathogenesis and Innate Immunity. Current Pathobiology

Reports, 1(3):179–187, jul 2013.

[35] Evanna L Mills, Beth Kelly, and Luke A J O'Neill. Mitochondria are the powerhouses

of immunity. Nature Immunology, 18(5):488–498, may 2017.

[36] Mohsin Khan, Gulam Hussain Syed, Seong-Jun Kim, and Aleem Siddiqui. Mitochon-

drial dynamics and viral infections: A close nexus. Biochimica et Biophysica Acta

(BBA) - Molecular Cell Research, 1853(10):2822–2833, oct 2015.

[37] Yi-Xian Shi, Chen-Jie Huang, and Zheng-Gang Yang. Impact of hepatitis B virus

infection on hepatic metabolic signaling pathway. World Journal of Gastroenterology,

22(36):8161, 2016.

[38] Erica L. Sanchez and Michael Lagunoff. Viral activation of cellular metabolism.

Virology, 479-480:609–618, may 2015.

[39] Tomomi Ando, Hiromi Imamura, Ryosuke Suzuki, Hideki Aizaki, Toshiki Watanabe,

Takaji Wakita, and Tetsuro Suzuki. Visualization and Measurement of ATP Lev-

els in Living Cells Replicating Hepatitis C Virus Genome RNA. PLoS Pathogens,

8(3):e1002561, mar 2012.

123



[40] Luis Nobre, Daniel Wise, David Ron, and Romain Volmer. Modulation of Innate Im-

mune Signalling by Lipid-Mediated MAVS Transmembrane Domain Oligomerization.

PLOS ONE, 10(8):e0136883, aug 2015.

[41] Xin Yin, Xinlei Li, Charuta Ambardekar, Zhimin Hu, Sébastien Lhomme, and Zongdi
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Abstract

Cancer stem cells (CSCs) or tumor-initiating cells (TICs) are thought to be

the main drivers for disease progression and treatment resistance across various

cancer types. Identifying and targeting these rare cancer cells, however, remains

challenging with respect to therapeutic benefit. Here, we report the enrichment of

LGR5 expressing cells, a well-recognized stem cell marker, in mouse liver tumors,

and the upregulation of LGR5 expression in human hepatocellular carcinoma. Iso-

lated LGR5 expressing cells from mouse liver tumors are superior in initiating

organoids and forming tumors upon engraftment, featuring candidate TICs. These

cells are resistant to conventional treatment including sorafenib and 5-FU. Impor-

tantly, LGR5 lineage ablation significantly inhibits organoid initiation and tumor

growth. The combination of LGR5 ablation with 5-FU, but not sorafenib, further

augments the therapeutic efficacy in vivo. Thus, we have identified the LGR5+

compartment as an important TIC population, representing a viable therapeutic

target for combating liver cancer.

Subject terms: Cancer stem cells, Targeted therapies, Liver cancer
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7.1 Introduction

The key concept underlying the cancer stem cell (CSC) or tumor-initiating cell

(TIC) theory is that tumors are maintained through a hierarchical structure, in

which different cell populations have different functionalities in pathophysiology

[1]. The bulk of a tumor is thought to consist of CSCs/TICs as well as rapidly

proliferating cells. CSCs/TICs are responsible for tumor initiation, resistance to

conventional treatment, and distant metastasis. Rapidly proliferating cancer cells,

thought to be derived from the tumor stem cell pool, are responsible for volume

increment of the tumor [2]. A prediction based on this model is that ablation of the

relatively small CSC compartment would ultimately result in cessation of tumor

growth and metastasis, and provoke sensitization of the tumor to conventional

treatment as well.

Within the framework of this theory, CSCs/TICs would be characterized by

a large capacity for self-renewal, a potential for differentiation into different cell

types that constitute the tumor, and a resistance to conventional treatment [1].

These key features largely overlap with those of normal stem cells, making it ex-

tremely difficult to specifically identify CSCs/TICs, but on the other hand would

allow techniques traditionally used for identifying normal stem cells also to be ap-

plied for CSCs/TICs [3]. LGR5 (leucine-rich repeat-containing G protein-coupled

receptor 5) evokes special interest as a potential marker for the CSC/TIC com-

partment in this respect. LGR5 is a well-characterized stem cell marker in several

tissues/organs, including the small intestine, colon, and liver [4–6]. In the colon

and intestine, the LGR5 stem cell pool constantly proliferates and differentiates

into mature cell types to compensate for the loss of functional epithelial cells. In-

terestingly, these LGR5 stem cells also participate in the process of oncogenesis,

acting as the cells-of-origin of intestinal cancer [7]. Importantly, LGR5 marks CSCs

in colon cancer [8–10], intestinal cancer [11], and basal cell carcinoma [12]. In in-

testinal adenoma as well as malignant carcinoma, LGR5 cells account consistently

for a ratio of 5–10% of tumor cells and fuel tumor growth [8,13]. Proof-of-concept

showing that specific elimination of LGR5 cells delays tumor growth in colon can-

cer has been provided [9]. Given the essential role of CSCs/TICs, these cells are

attractive targets for anticancer treatment, whereas their resistance to conventional

therapies impedes the therapeutic development.

In contrast to the colon and intestine, LGR5 stem cells are absent in the home-

ostatic liver, but emerge upon tissue injury [4, 14]. These liver LGR5 cells are

likely to be an intermediate stem/progenitor cell population that responds to in-
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Figure 1: Primary murine liver tumors are enriched with LGR5-expressing
cells.

a. Principle of Lgr5–DTR–GFP transgenic mouse strategy used in this study. b. Principle of
the experimental strategy used to induce primary murine tumors in the context of this study.
c. The percentage of LGR5+ cells, as determined by flow cytometry, is significantly higher
in liver tumors from DEN-treated (7.29± 1.76%, n=55) as compared with livers from untreated
animals (0± 0%, n=8) or injured livers from CCl4-treated animals (0.11± 0.022%, n=17) (Welch
test, P=0.0001). d. The percentage of LGR5–GFP+ cells is significantly increased in liver
tumors (7.29± 1.76%, n=55) as compared with the tumor-surrounding tissues (2.93± 1.15%,
n=34) of the same mice (Welch test, P=0.0407). e. Liver tumor-derived LGR5–GFP+ cells
showed increased fluorescence intensity when compared with LGR5–GFP+ cells derived from
CCl4-injured livers. f. Representative images showing LGR5–GFP+ cells as present in liver
tumors. Yellow arrow: LGR5–GFP+ cell. DAPI: blue. Upper panels: scale bar= 50µm; lower
panels: scale bar= 20µm. g,h. Representative confocal images showing the expression of the
cholangiocyte marker (g, CK19, yellow) and the hepatocyte-specific marker (h, HNF4α, red)
in LGR5–GFP-expressing cells, Scale bar= 50µm. Mean± SEM. Source data are provided as a
Source Data file.
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jury, but they may have a limited contribution to tissue repair [14]. Whether

an LGR5+ compartment exists in liver cancer remains obscure, and the possible

importance of such a compartment in this disease is unexplored. Nevertheless,

research into this possibility is urgently needed as liver cancer is one of the most

common forms of malignancy worldwide, with nearly 800,000 cases reported yearly,

and it is characterized by a depressing lack of treatment options [15]. Hepatocel-

lular carcinoma (HCC) and cholangiocarcinoma (CC) are the two main types of

primary liver cancer. Currently, surgery remains the only potentially curative ther-

apeutic strategy available, but is well-known for its high recurrence rate following

tumor resection. Chemotherapy and targeted treatment are generally ineffective,

with sorafenib providing some extension of life expectancy to HCC patients. The

unusual treatment resistance of liver cancer is thought to be associated with the

presence of CSCs/TICs, but this notion remains largely unproven [16]. Thus, we

aimed to investigate whether LGR5 marks CSCs/TICs in liver cancer, and to ex-

plore the potential for therapeutic targeting of these cells. Our results show that

in liver cancer, an LGR5+ compartment exists that is superior in tumor initia-

tion and mediates therapy resistance. Targeting this compartment constitutes a

rational avenue for combating this disease.

7.2 Results

7.2.1 Enrichment of LGR5-expressing Cells in Primary Liver Tumors

Homeostatic livers are reported to be devoid of LGR5+ cells, but injury does

induce such cells [14]. Whether LGR5+ cells are present in liver cancer is largely

unknown. By adopting Lgr5–DTR–GFP knock-in mice (Fig. 1a), we first inves-

tigated the presence of LGR5+ cells (GFP-co-expressing cells) in the healthy and

injured liver, and during carcinogenesis. Carbon tetrachloride (CCl4) was used to

trigger liver injury. Diethylnitrosamine (DEN) was used to induce primary liver

tumor formation (Fig. 1b; Supplementary Fig. 1). Although LGR5 cells are

absent in the homeostatic liver (Fig. 1c), either a single course or repeated ad-

ministration of DEN can rapidly trigger the emergence of LGR5–GFP+ cells (post

DEN induction day 7; relative size of the LGR5–GFP+ compartment following

1 Ö DEN: 0.025± 0.05%, n=3 [mean± SEM]; Supplementary Fig. 2a, b). An-

imals were monitored for liver tumor formation from 4 to 14 months post DEN

induction (Supplementary Data 1). Analysis of the resulting hepatic neoplasms

revealed the stable presence of an LGR5+ compartment in these liver tumors (Fig.
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Figure 2: The expression of LGR5 is upregulated in human HCC tissues.

a Upregulation of LGR5 expression in HCC tissues (n=74) compared with tumor-free liver tis-
sues (TFL, n=75) from the Erasmus MC cohort (paired T test, P=0.0066). GUSB (beta-
glucuronidases), HPRT1 (hypoxanthine phosphoribosyltransferase 1), and PMM1 (phosphoman-
nomutase 1) were used as reference genes for normalization. b The expression of LGR5 in HCC
tissues compared with TFL stratified based on the etiologies of HCC (paired T test). FHCC
fibrolamellar carcinoma, HBV hepatitis B virus, HCV hepatitis C virus, NASH nonalcoholic
steatohepatitis, Alc alcohol. Patient number: alcohol (n=16); FHCC (n=3); HBV (n=9);
HCV (n=5); HCV+alcohol (n=6); NASH (n=8); unknown (n=21); HBV+Alc/NASH/HCV
(n=5). c Kaplan–Meier curve of HCC patient survival with high (n=37) and low (n=37) LGR5
expression (cutoff value based on median value—0.047). Mean±SEM. Source data are provided
as a Source Data file.
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1c). The relative abundance of LGR5 cells in the tumors (Supplementary Data

1, Supplementary Fig. 2c, d) is significantly higher as compared with those in

the tumor-surrounding tissues (Fig. 1d) or as detected in CCl4-injured livers (Fig.

1c). The LGR5 expression levels in the tumor cells show substantial variation, but

are substantially and significantly higher compared with that in injured liver (Fig.

1e). Immunohistochemistry (IHC) and immunofluorescence (IF) staining of GFP

expression further confirms the presence of an LGR5+ compartment and enables

detailed analysis of spatial distribution of LGR5–GFP+ cells in the liver (IF: Fig.

1f; IHC: Supplementary Fig. 2e, f). Co-staining with hepatocyte marker (HNF4α)

or cholangiocyte marker (CK19) revealed that a proportion of LGR5 cells in the

tumor express HNF4α or CK19 (Fig. 1g, h), suggesting that LGR5+ cells may

give rise to both a HCC-like and a CC-like phenotype, the two main types of pri-

mary liver cancer. Thus, these data have demonstrated the presence of an LGR5+

compartment in primary murine liver cancer.

To examine the clinical relevance, we investigated LGR5 expression in hu-

man HCC tumors from our patient cohort (Erasmus MC cohort). We found that

LGR5 expression is significantly elevated in tumor tissues compared with the paired

tumor-free liver tissues (Fig. 2a), and also in some subpopulations of patients with

specific etiologies of HCC (Fig. 2b). Survival analysis by predicting Kaplan–Meier

curves revealed a tendency toward worse clinical outcome in patients with higher

LGR5 expression (Fig. 2c). Further analysis of online publically available datasets

confirmed the upregulation of LGR5 expression in HCC (Supplementary Fig. 3a),

and possible association with clinical outcome, especially in subpopulations of spe-

cific patients (Supplementary Fig. 3b). Interestingly, with data from the TCGA

database and International Cancer Genome Consortium-France (LICA-FR) and

International Cancer Genome Consortium-Japan (LIRI-JP), we found that the up-

regulation of LGR5 expression is more pronounced in HCC tumors with β-catenin

mutation (Supplementary Fig. 4). This is in line with LGR5 being a β-catenin

target gene both in the intestine and liver [5, 17]. Taken together, LGR5 cells

are enriched in both mouse and human liver tumors, and bear substantial clinical

relevance.

7.2.2 Preservation of LGR5 Cells in Organoid and Allograft Tumors

3D organoid cultures are robust model systems for studying the properties of

(cancer) stem cells [18–20]. We have successfully established routine procedures [21]

for creating organoid cultures from primary liver tumors of DEN-induced mice
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(Supplementary Fig. 1). In total, 89 tissues were obtained from 41 individual

murine livers (Supplementary Data 1). In all, 63 out of 89 (70.8%) tumor/tumor-

surrounding tissues successfully initiated organoids (8 out of 34 tumor-surrounding

tissues did not initiate organoids, 23.5%; 18 out of 55 tumor tissues did not initiate

organoids, 32.7%). These organoids can be maintained and propagated in 3D cul-

ture for at least 5 months. Staining for CK19 and HNF4α demonstrates that these

organoids display either a CC or HCC-like phenotype (Fig. 3a, b). Importantly,

these cultured organoids maintain a population of LGR5-positive cells (Fig. 3c).

To investigate whether these murine organoid lines are malignant, we trans-

planted all the 63 strains into immunodeficient NOG mice (Fig. 3d). One to 6

months after allografting, 11 out of 63 organoid strains formed palpable tumors in

the immune-deficient mice (17.5%). All contained an LGR5–GFP+ compartment

as determined by FACS analysis of the tumors (Fig. 3e).

Following re-culture of cells obtained from these allograft tumors as organoids,

we observed substantial diversity of the morphology (Supplementary Fig. 5a–c)

and CK19/HNF4α expression in the corresponding allograft tumors (Fig. 3f; Sup-

plementary Data 2). A population of LGR5-expressing cells were again observed in

these organoid cultures (Supplementary Fig. 5d), in line with the existence of such

a compartment in the allograft tumors from which these organoid cultures origi-

nated (IF: Supplementary Fig. 5e; IHC: Supplementary Fig. 5f and Supplementary

Data 2). In addition, genome-wide transcriptomic analysis revealed a distinct gene

expression signature between LGR5+ and LGR5− cells, including TATA-box bind-

ing protein-associated factor 7 like (Taf7l), sialophorin (Spn), SRY-box 2 (Sox2),

nidogen-1 (Nid1), paralemmin 3 (Palm3), alpha-1-microglobulin/bikunin precursor

(Ambp), membrane-bound O-acyltransferase domain containing 4 (Mboat4), and

chymase 1 (Cma1), which had higher expression levels in LGR5+ compared with

LGR5− population. Kaplan–Meier curve analysis revealed that all these genes

are associated with the survival of liver cancer patients (Supplementary Fig. 6,

Supplementary Data 3–4). Especially, Sox2 as a transcription factor is essential

for maintaining self-renewal or pluripotency of undifferentiated embryonic stem

cells, and has been reported as a marker for cancer stem cells in breast cancer and

squamous-cell carcinoma [22]. Gene enrichment analysis of the 196 differentially

expressed genes further revealed the involvement of metabolism-related pathways,

including “Oxidation by Cytochrome P450”, “Calcium Regulation”, “Metapath-

way biotransformation”, and “Purine metabolism”. There are also differentially

expressed genes involved in immune regulation, including “Macrophage markers
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Figure 3: Maintenance of LGR5-expressing cells in liver tumor organoids and
allograft tumors.

a,b Representative pictures showing organoid lines that predominately express the hepatocyte
marker HNF4α (a) or the cholangiocyte marker CK19 (b) (upper panels: IF staining; lower pan-
els: bright-field microscopic pictures, scale bar= 50 µm). c Representative pictures showing the
presence of LGR5- expressing cells in organoids. LGR5-driven GFP: green. Scale bar= 50 µm. d
An outline of the experimental strategy used to transplant tumor organoid lines into immunodefi-
cient mice. e The percentages of LGR5-expressing cells in allograft tumors and the corresponding
primary tumors (primary vs. allograft: 2.8± 0.8% vs. 6.8± 5.6%, n=11, P=0.3577). f,g Repre-
sentative pictures of allograft tumors that mainly express either the hepatocyte marker HNF4α
(f) or the cholangiocyte marker CK19 (g). Scale bar= 50µm. Mean±SEM. Source data are
provided as a Source Data file.
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pathway”, “Kit Receptor Signaling Pathway”, and “IL-6 signaling Pathway”. Fur-

thermore, LGR5+ cells had significantly differentially expressed genes involved in

cell proliferation/migration, including “Chemokine signaling pathway”, “Matrix

Metalloproteinases”, and “PPAR signaling pathway”. Interestingly, there are dif-

ferentially expressed genes enriched in “Wnt Signaling Pathway” and “G Protein

Signaling Pathways”. Subsequent experiments were initiated to assess the exact

functionality of LGR5− expressing cells.

7.2.3 LGR5+ Cells Are Superior in Organoid and Tumor Initiation

For functional comparison of LGR5+ and LGR5− liver cancer cells, we first

assessed their relative clonogenic ability using an organoid initiation assay. Em-

ploying FACS (the sorting strategy: Supplementary Fig. 7a), LGR5–GFP+ and

LGR5–GFP− cells were collected from 71 individual primary murine liver tis-

sues, and cultured in 3D matrigel (Fig. 4a; Supplementary Data 5). After 2–3

weeks, we observed organoid formation from single cells (Fig. 4b–d). Impor-

tantly, LGR5–GFP+ cells have stronger organoid formation ability compared with

LGR5–GFP− cells (2.13± 0.67% vs. 0.07± 0.02%, n=30) (Supplementary Data 5:

detailed organoid initiation efficiency). In addition, we also observed that the initi-

ation ability of LGR5+ cells showed close correlation to collected cell number. The

average numbers of LGR5+ cells collected from tissues that did initiate organoid

(1906± 442, n=25) were significantly higher compared with the number that did

not (171± 47, n=46). This was not the case for LGR5− cells (28350± 8914, n=60

vs. 13860± 3654, n=11) (Supplementary Fig. 7b–d). This indicates that a suffi-

cient cell number (>1000) is essential for successful organoid initiation of LGR5-

expressing cells from liver tumors.

We next performed organoid initiation for cells derived from the allograft tu-

mors (Fig. 4e). Similar as observed with primary tumors, LGR5+ cells of allograft

tumors initiate more organoids as compared with LGR5− cells (40.5± 10.2% vs.

9.8± 3.9%, n=10) (Fig. 4f). Compared with cells isolated from primary tissues,

allograft tumor cells are more potent with respect to their potential for organoid

initiation (Supplementary Fig. 7e–g). Interestingly, organoids formed from a single

LGR5–GFP+ or LGR5–GFP− cell produce both LGR5-positive and -negative off-

spring, suggesting possible self-formation of a hierarchical organization sustaining

organoid growth and differentiation (Supplementary Fig. 7h).

The ultimate measure of potential functionality of LGR5+ cells in pathophysi-

ology is their capacity to form allograft tumors in vivo (Fig. 4g). Hence, identical
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Figure 4: Single LGR5+ cells from liver tumors are superior in organoid and
tumor initiation.

a An outline of the experimental strategy for studying ex vivo organoid initiation of cells derived
from primary murine liver tumors. b A representative picture of organoids derived from single
LGR5+ cells. Scale bar= 50µm. c Representative confocal micrograph of a single LGR5+ cell-
initiated organoid dominated by LGR5-expressing cells. LGR5-driven GFP: green. Scale bar =
20 µm. d Organoid initiation efficiency of LGR5–GFP+ and LGR5–GFP− cells, isolated from
primary tumors (LGR5+ cells: 25 out of 71 tissues, 35.2%; LGR5− cells: 11 out of 71 tissues,
15.5%) (paired T test, 2.13± 0.67% vs. 0.065± 0.023%, n=30, P=0.0048). e An outline of the
strategy used to study ex vivo organoid initiation of allograft tumor-derived cells. f Efficiency of
organoid initiation by allograft liver tumor-derived LGR5–GFP+ and LGR5–GFP− cells (paired
T test, 40.46± 10.19% vs. 9.84± 3.93%, n=10, P=0.0187). g Outline of the experimental strat-
egy used to assess in vivo tumor initiation of cells isolated from primary murine liver tumors.
h Weight of tumors initiated by LGR5+ and LGR5− cells (LGR5+ vs. LGR5−: 0.46± 0.046 g
vs. 0.10± 0.10 g, n=3) (formed tumor number: LGR5+ cells—3 out of 9; LGR5− cells—1 out
of 9). i LGR5 expression in single LGR5+ cell-derived allograft tumors and the corresponding
primary tumors (17.42± 15.29% vs. 2.47± 1.27%, n=3). j–n Representative pictures showing
that LGR5–GFP+ and LGR5–GFP− cells (k) were isolated from DEN-induced primary liver
tumors (j). Then, LGR5–GFP+ cells (green arrow) initiated allograft tumors in immunodefi-
cient mouse (l–n). The initiated allograft tumors sustained LGR5 expression (n). o An outline
of the experimental strategy for in vivo tumor initiation assay of cells isolated from allograft
murine liver tumors. p, q Tumor weight (p) and macroscopic aspect (q) of allografts initiated
by LGR5–GFP+ cells and LGR5–GFP− cells (isolated from allograft tumors) (0.64± 0.19 g vs.
0.27± 0.08 g, n=11, P=0.0418). Mean± SEM. Source data are provided as a Source Data file.
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numbers of FACS-sorted LGR5–GFP+ and LGR5–GFP− cells derived from pri-

mary liver tumors were subcutaneously engrafted into NOG mice, and tumor for-

mation was monitored (Supplementary Data 6). As expected, LGR5+ cells display

a stronger capacity for tumor initiation as compared with LGR5− cells (LGR5+ vs.

LGR5−: 33.3% vs. 11.1%) (Fig. 4h; Supplementary Data 6). Moreover, tumors

initiated from LGR5+ cells contain both LGR5-positive and -negative populations

(Fig. 4i–n). In addition, we have performed a tumor formation assay for the cells

that were derived from the allograft tumors (Fig. 4o). Again, the LGR5+ com-

partment proved markedly more potent in this respect relative to the LGR5–GFP−

compartment (Fig. 4p, q; Supplementary Table 1). Collectively, our results are

best interpreted that liver tumor-derived LGR5+ cells constitute a bona fide TIC

compartment.

7.2.4 Anticancer Treatment Enriches LGR5-expressing Cells

CSCs or TICs are presumed to be relatively resistant to conventional anticancer

treatment. A prediction would thus be that in liver cancer, the LGR5+ cells would

be more resistant to anticancer treatment as compared with the LGR5− cells.

Hence, we challenged tumor organoids with sorafenib, the FDA-approved drug for

treating advanced HCC, and compared the relative potential of LGR5–GFP+ and

LGR5–GFP− cells to withstand such treatment (Fig. 5a). Treatment of tumor

organoids with sorafenib significantly increased the percentage of LGR5-positive

cells in the population (Fig. 5b–d). This effect became even more profound when

the organoids were treated with the chemotherapeutic agent, 5-fluorouracil (5-FU)

(Fig. 5a–d).

Subsequently, the relative size of the LGR5+ compartment following in vivo

treatment with these therapeutic agents was assessed (Fig. 5e). Treatment with

either sorafenib or 5-FU to mice-bearing allograft tumors, formed by engrafting

tumor organoids, substantially increased the fraction of the LGR5–GFP+ cells in

the tumors (Fig. 5f). Also when LGR5–GFP+ and LGR5–GFP− cells were iso-

lated from tumor organoids and used for organoid re-initiation, while subsequently

being treated with 5-FU, the resulting cultures were dominated by LGR5–GFP+-

expressing cells, independent from whether LGR5–GFP+ or LGR5–GFP− were

used as starting material (Fig. 5g). Of note, LGR5+ cells isolated from 5-FU-

treated tumors retained the ability of organoid and tumor initiation (Supplemen-

tary Fig. 8). Interestingly, 5-FU treatment effectively rewired the transcriptome

of LGR5+ cells (Fig. 5h; Supplementary Figs. 6 and 9). Gene enrichment analy-
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sis of the 1464 differentially expressed genes between 5-FU treated compared with

untreated LGR5+ cells revealed the involvement of stem cell-related pathways, in-

cluding “Wnt Signaling”, “Notch Signaling Pathway”, “ErbB signaling pathway”,

“Hedgehog Signaling Pathway”, and “BMP Signaling Pathway” (Fig. 5i; Supple-

mentary Data 3). These pathways are commonly activated in many types of solid

tumors, associated with cancer initiation, progression, and metastasis [23]. Inter-

estingly, there are several pathways, including “TGF Beta Signaling Pathway”,

“EGFR1 Signaling Pathway”, “PPAR signaling pathway”, “G1 to S cell cycle con-

trol”, “Mismatch repair”, “p53 signaling”, and “Apoptosis Modulation/Apoptosis

pathway”, which are known to be implicated in anticancer treatment response and

DNA damage response [24]. These results may partially explain the enrichment

of LGR5-expressing cells upon 5-FU treatment. In conclusion, besides resistance,

conventional anticancer treatment also triggers the generation and propagation of

LGR5-expressing cells.

7.2.5 LGR5 Lineage Ablation Inhibits Organoid and Tumor Growth

From the results described above, we inferred that ablation of the LGR5+

compartment should impair liver cancer growth. To experimentally test this no-

tion, we exploited the co-expression of the diphtheria toxin receptor (DTR) in the

Lgr5–DTR–GFPmice. This would allow us to specifically deplete the Lgr5–DTR–GFP+

compartment through diphtheria toxin (DT) administration (Fig. 1a). We have

optimized the concentrations of DT treatment (1–10 ng/ml) for LGR5 depletion,

with organoids derived from healthy Lgr5–DTR–GFP mice[14]. Accordingly, we

evaluated the effects on organoid initiation and proliferation (Fig. 6a, b), and so-

rafenib treatment served as a positive control. DT treatment inhibited the growth

of tumor organoids in an effect that showed close correlation as to the effects on

the numbers of LGR5–GFP+ cells (Fig. 6c–e). DT treatment did not influence the

growth of tumor organoids of genetically wild-type (Fig. 6c: left panel).

We further assessed therapeutic targeting of LGR5 liver cancer cells in vivo.

We first evaluated the effect of DT treatment after formation of visible tumors,

following transplantation of tumor organoids into immunodeficient mice (Supple-

mentary Fig. 10a). 5-FU and sorafenib served as the positive controls. The effects

of LGR5 cell depletion on the growth of formed tumors was minor (Supplementary

Fig. 10c: right panel and 10d: right panel). In contrast, administration of DT

immediately after transplantation of tumor organoids (Fig. 6f) efficiently delayed

tumor initiation and inhibited their growth (Fig. 6h; Supplementary Fig. 10c: left
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Figure 5: Anticancer treatment selects for LGR5+ cells.
a Outline of the ex vivo experimental strategy used to assess the effects of drug treatment on the
size of the LGR5+ compartment. b The fraction of LGR5–GFP+ cells is significantly increased
upon treatment with sorafenib or 5-FU (vehicle control vs. 10µM sorafenib vs. 10µM 5-FU:
2.6± 0.5% vs. 4.6± 0.4% vs. 21.3± 1.9%). c,d Representative FACS plots (c) and confocal
pictures (d) demonstrating that the fraction of LGR5–GFP+ cells is increased upon treatment
with sorafenib or 5-FU, scale bar= 50µm. e An outline of the experimental strategy used for
testing the effects of drug administration in vivo. f The percentages of LGR5–GFP+ cells is
increased upon administration of sorafenib or 5-FU to allografted animals (vehicle control vs.
sorafenib vs. 5-FU: 0.13± 0.04%, n=6 vs. 0.42± 0.13 %, n=8 vs. 0.66± 0.17 %, n=7). g
Representative confocal pictures showing that both single LGR5–GFP+ and LGR5–GFP− cell-
initiated organoids contain LGR5-expressing cells, and the relative fraction of LGR5-expressing
cells is increased in treatment-resistant organoids. LGR5-driven GFP: green, scale bar= 50µm.
h A volcano plot showing the most significantly differentially expressed genes between 5-FU
treated/untreated LGR5+ cells. i Gene enrichment analysis (with the library of Wiki2019) within
the differentially expressed genes. Mean±SEM. Source data are provided as a Source Data file.
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panel and 10d: left panel). Further analysis of the tumors confirmed the depletion

of the LGR5–GFP+ compartment in the DT-treated animals (Fig. 6g). Using

absolute tumor size as a measure, DT-mediated depletion of the LGR5+ compart-

ment impaired tumor growth (Fig. 6i). The enrichment of stem cell markers also

differed in control and DT-treated LGR5+/− cells (Supplementary Fig. 11). In-

terestingly, there was an inverse correlation between tumor and the relative size

of the LGR5–GFP+ compartment at the end of the experiment (Supplementary

Fig. 10e, f), indicating that LGR5-expressing cells are probably more active in the

tumor initiation period. As control, DT treatment did not influence initiation and

growth of tumors formed from the wild-type tumor organoids (Supplementary Fig.

12a, b). Thus, LGR5 lineage ablation impedes organoid and tumor initiation and

further growth.

7.2.6 Combination Therapy Enhances the Anticancer Efficacy

As LGR5+ cells appear to mediate resistance against conventional anticancer

treatment, it is rational to evaluate the combination of LGR5+ lineage ablation

with conventional anticancer treatment.

To experimentally test this notion, we first combined DT with sorafenib treat-

ment. However, with different strategies of combination therapy, no enhanced

antitumor activity was observed on allografted tumors (Fig. 7). We next tested

the combination of 5-FU and DT. Allograft tumor-bearing mice were first subjected

to 5-FU (which increases the relative size of the LGR5+ compartment) followed

by cessation of 5-FU therapy and start of DT treatment as to kill the LGR5+

cells (Fig. 8a; Supplementary Fig. 13a–c). Indeed, this approach is effective in

combating allograft tumor formation (Fig. 8b) and is substantially superior to

monotherapy with 5-FU, stand-alone DT treatment (Fig. 8c, d; Supplementary

Fig. 14a) or initial treatment with DT followed by 5-FU therapy (Supplementary

Fig. 13d–h). Simultaneous administration of 5-FU and DT (Fig. 8e) also resulted

in anticancer effects (Fig. 8f–h; Supplementary Fig. 14b). Thus, targeting the

LGR5+ compartment markedly enhances the efficacy of conventional treatment

aimed at combating liver cancer.

7.3 Discussion

This study has demonstrated that liver cancer contains an LGR5+ compart-

ment that has various hallmarks of TICs/CSCs, including an increased capacity
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for tumor organoid formation in culture and allograft formation in mice, as well as

resistance against conventional anticancer therapy. Functionally, these cells seem

more important in tumor initiation, whereas the LGR5− compartment appears

to bear the proliferative burden. Simultaneously targeting both compartments as

demonstrated in this study by 5-FU treatment in combination with DT-mediated

ablation of the LGR5+ compartment was effective in combating liver cancer in

experimental models. Although our study primarily focused on mouse models, the

relevance of the LGR5+ compartment deserves to be further investigated in human

liver cancer. Conceivably, the role of these cells could be more prominent for a sub-

set of patients with high levels of LGR5 expression, such as CTNNB1-mutated or

alcohol-related HCC patients [25,26]. Although LGR5+-targeting therapies are still

largely in their infancy, the analogy with neuroendocrine tumors, which are suc-

cessfully combated by radioactive somatostatin analogs (e.g., 177Lu-Dotatate) that

target receptors with homology to LGR5 [27], suggests that radioactive drugs (e.g.,

R-spondin) may be explored for developing CSC-targeted therapeutics against liver

cancer [28]. Our results, however, indicate that such therapy may require combi-

nation with particular conventional anticancer therapies to enhance the efficacy.

Overexpression of LGR5 has been previously reported in patient HCC [17], and

we confirmed that this is more pronounced in β-catenin-mutated liver tumors. Al-

though the elevation of LGR5 expression and potential association with clinical

outcome have been observed in HCC patients, whether it can serve as an inde-

pendent prognostic biomarker remains to be further investigated in specifically

designed tumor marker prognostic studies in patients [29].

Of note, these early observations are based on mRNA expression, due to the

lack of a reliable anti-LGR5 antibody. We now used transgenic mice in which

LGR5-expressing cells co-express GFP, and we can conditionally ablate these cells

with the DT-DTR system [30]. This model allows for the identification and direct

visualization of LGR5-expressing cells based on GFP expression, as well as isolation

of LGR5–GFP+ cells for further functional analyses and detailed characterization.

In intestinal adenomas, LGR5 marks 5–10% of the cells, which keep fueling

the growth of established mouse adenomas [13]. We found that the percentages of

LGR5–GFP+ cells in murine liver tumors vary from 0.1% up to 55% (7.3± 1.8%,

n=55). Over 32% of the primary liver tumors harbor relatively high percentages

(over 5%) (Supplementary Fig. 2c). In colon cancer, the percentage of LGR5-

expressing cells has been reported to be associated with different background of

the tumors, especially the accumulation of certain oncogenic mutations8. Thus, we

140



Figure 6: LGR5 lineage ablation inhibits organoid and tumor growth.

a,b The outlines of the ex vivo experimental strategy to assess the effects of anticancer drug
treatment on organoid initiation, and delineate its temporal aspect (a) or during organoid expan-
sion (b). c The response of wild-type tumor organoids (left) and Lgr5–DTR–GFP mice-derived
tumor organoids, with relatively high LGR5 expression (the percentage of LGR5 expression is
greater than 1%) (middle) or low LGR5 expression (the percentage of LGR5 expression is lesser
than 1%) (right) during regular expansion to DT/sorafenib treatment. -/+: drug treatment dur-
ing the expansion period; +/+: drug treatment since the initial culture day (unpaired T test).
d,e Representative FACS plots showing that LGR5–GFP+ cells are depleted by DT treatment,
for high LGR5 expression organoid strains (d) and low LGR5 expression organoid strains (e). f
Outlines of the experimental strategy used to assess the efficacy of DT/sorafenib/5-FU admin-
istration on allograft tumors in mice. g Representative FACS plots from experiments validating
the strategy to deplete LGR5+ cells. h A representative growth curve showing the volumes of
tumors derived from the vehicle control group and the DT-administered group (n=8, two-way
ANOVA). i The weight of tumors from vehicle control, DT, 5-FU, or sorafenib-treated groups,
on the day of mice sacrifice (control vs. sorafenib vs. 5-FU vs. DT: 0.34± 0.078 g, n=18 vs.
0.18± 0.047 g, n=15 vs. 0.19± 0.033 g, n=15 vs. 0.15± 0.027 g, n=19). Mean±SEM. Source
data are provided as a Source Data file.
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speculate that the large variation of the abundance of LGR5 cells in murine liver

tumors may also be related to different types of oncogenic mutations, although this

hypothesis requires further investigation. Of note, DEN was used to induce primary

liver cancer in this study, and this compound is associated with the accumulation

of liver β-catenin mutations [31]. Therefore, it is possible that our results are

mainly relevant to liver cancers with deregulated Wnt/β-catenin signaling, and

their importance requires further investigation in other mutational backgrounds

(e.g., deregulated TSC/mTOR signaling) [32] as well.

Through a series of functional assays, in particular in vitro organoid initiation

and in vivo tumor formation, we have demonstrated the importance of these LGR5

TICs in liver cancer. To define the potential for therapeutic targeting, we have

performed LGR5 lineage ablation in organoids in vitro and in the tumor-bearing

mouse model. Of note, the presence of LGR5 cells in tumors is likely dynamic. We

observed large variations of their percentages among different primary murine liver

tumors, and allograft tumors generally contain lower numbers of LGR5 cells (less

than 1%). In colorectal cancer, advanced stages compared with the early stages

contain less LGR5 cells [33]. A speculative explanation could be that the tumors

are derived from LGR5-positive stem cells, yet these cells are suppressed thereafter

during tumor progression [33]. The dynamics could be essential for determining

at which stage to target LGR5 TICs. When we performed LGR5 cell ablation

in established tumors, we only observed a minor effect, probably due to a low

percentage of LGR5 cells as well as their dispensable function at that stage, while

depletion at the early stage yielded optimal antitumor effects. This result is in

line with previous findings showing that LGR5 cells play distinct roles in primary

and metastatic colon cancer [8]. In addition, the percentage of LGR5-expressing

cells in primary murine tumors seems not strictly correlated with the ability of

initiating allograft (Fig. 3e). Because primary tumors were first cultured into

tumor organoids, these organoids were engrafted into mice to initiate the allograft.

Thus, this indirect assay may not fully recapitulate the initial status of the primary

tumor.

Although we have demonstrated the feasibility and value of targeting LGR5

TICs in murine liver cancer, therapeutic ablation of these cells remains challenging.

Resistance to conventional therapy is a common feature of CSCs [2]. We found that

treatment with sorafenib or 5-FU enriches LGR5 cells, consistent with the findings

in gastric [34] and colorectal cancer [35]. Different mechanisms may contribute to

treatment resistance. Although LGR5 stem cells are generally fast-cycling in the
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Figure 7: Combination of LGR5 lineage ablation with sorafenib does not
enhance the efficacy.

a Outline of the experimental strategy to assess the combinatory effect of LGR5 lineage abla-
tion with sorafenib. Sorafenib and DT were administered every other day for in total 10 days
since visualization of tumor formation after organoid engraftment. b Representative growth
curves showing tumor volumes in the vehicle control (CTR), sorafenib, DT, and sorafenib+DT-
treated groups. Black arrow: onset of administration. c Tumor masses from these four groups
(CTR vs. sorafenib vs. DT. vs. sorafenib + DT: 0.45± 0.09 g, n=8 vs. 0.25± 0.06 g, n=8 vs.
0.28± 0.043 g, n=8 vs. 0.29± 0.09, n=8). d Images showing tumors from these four groups. e
Outlines of the experimental strategy for assessing the effects of combining LGR5 lineage ablation
and sorafenib treatment. Sorafenib, DT, or the combination were administered immediately since
transplantation of the organoids every other day, for in total 10 days. f Representative growth
curves showing tumor volumes of the four groups. Black arrow: onset of administration. g The
tumor masses of these four groups (CTR vs. sorafenib vs. DT vs. sorafenib+DT: 0.21± 0.03 g,
n=8 vs. 0.16± 0.03 g, n=8 vs. 0.09± 0.02 g, n=8 vs. 0.12± 0.03 g, n=8). h Images showing
the tumors from the different groups. Mean± SEM. Source data are provided as a Source Data
file.
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intestine [36], the existence of quiescent LGR5 cells has been reported in basal cell

carcinoma, which mediates relapse after treatment [12]. Cell plasticity could be one

of the potential mechanisms of treatment resistance. The loss of LGR5 stem cells

in the intestine can be compensated by transdifferentiation from other stem cell

pools [30], or through plasticity of their enterocyte-lineage daughters [37]. Cancer

cell plasticity, shifting dynamically between a differentiated and a stemness state,

has also been proposed as an important feature contributing to tumor progression,

metastasis, and therapeutic response [38]. We have now observed the induction of

LGR5+ from LGR5− liver cancer cells. This may implicate cell plasticity of LGR5

CSCs, but there could also be other mechanisms regulating the origin and expansion

of LGR5 cells, as for example, changes in the culture environment. Eventually,

these LGR5 liver cancer cells may partially contribute to treatment resistance.

Currently, several innovative scenarios are being explored to therapeutically

target CSCs, including antibody–drug conjugates [9], targeting quiescent CSCs

[39], and inhibiting CSC-related pathways [2]. However, as discussed, different

mechanisms could lead to treatment resistance [8]. Thus, combined therapies are

likely necessary in this respect. With the intention to fully expand the stem cell

pool, cetuximab has been used to first trigger the LGR5 population, followed by

the ablation of these CSCs. This combined therapy has resulted in potent efficacy

against colorectal cancer [10]. Similarly, we have observed that the combination of

LGR5 lineage ablation with 5-FU chemotherapy can also lead to enhanced anti-

liver cancer activity in mouse organoid. However, a combination of LGR5 lineage

ablation with sorafenib did not yield enhanced antitumor activity. This is probably

related to the mild effect of sorafenib in triggering the LGR5 CSC pool.

Last, a potential concern of such strategies is the possible harmful effects on

normal LGR5 stem cells. In the intestine, colon, and skin, although LGR5 stem

cells essentially contribute to tissue renewal at a daily basis [5,6], their loss can be

compensated by transdifferentiation from other reserve stem cell pools [30, 40] or

through plasticity of their daughter cells [37]. Importantly, antibody-conjugated

drug targeting LGR5 CSCs in colon cancer has no major impact on the function

of normal LGR5 stem cells [9]. In the liver, LGR5 stem cells are absent during

homeostasis, but only transiently activated upon injury likely without major con-

tribution toward tissue repair [4, 14]. Thus, we envision that our identification

of targetable LGR5 TICs in murine liver cancer bears important implications for

future therapeutic development.
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7.4 Methods

7.4.1 Primary Liver Tumor Model

Lgr5–DTR–GFP transgenic mice (kindly provided by Genentech) specifically

co-express the diphtheria toxin (DT) receptor (DTR) and green florescent protein

(GFP) under the control of the Lgr5 promotor [30]. Thus, LGR5+ cells can be

identified by GFP expression, and LGR5–GFP+ cells can be specifically depleted

by DT administration. Lgr5–DTR–GFP transgenic mice (3–4 weeks) were admin-

istered with diethylnitrosamine (DEN) by intraperitoneal injection (Sigma-Aldrich,

i.p., 100mg/kg) weekly for 6–17 weeks [41]. DEN is used to induce liver tumor

in Lgr5–DTR–GFP transgenic and wild-type mice, which could cause liver disease

from basophilic foci, hyperplasic nodules, hepatocellular adenoma, and finally lead

to HCC [31, 42, 43]. Mice were killed 3–16 months after the last DEN injection,

and livers/tumors were collected for further experiments (Supplementary Data 1:

in total, 41 mice were monitored; 80.5%, 33 out of 41, mice formed liver tumors;

the expression of LGR5 in each tumor/tumor-surrounding tissues was also listed;

Supplementary Fig. 2g, h). For each liver, biopsies were taken from the tumor

and tumor- surrounding tissue. If livers contain more than one tumor, individ-

ual tumors were collected and analyzed separately. For CCl4-induced liver injury,

Lgr5–DTR–GFP transgenic mice were weekly repeated administered with (6 or 17

weeks) intraperitoneal CCl4 injection (10 µl/20 g body weight of 10% CCl4 solution

in corn oil or corn oil as control). All animal experiments were approved by the

Committee on the Ethics of Animal Experiments of the Erasmus Medical Center.

7.4.2 HCC Specimens and Patient Information

HCC specimens (paired tumor tissue and adjacent tumor-free liver tissue) were

collected from HCC patients undergoing tumor resection at the Erasmus Medical

Center, The Netherlands. Samples were stored at -80 °C and then used for RNA

extraction. In total, 74 specimens were obtained from HCC patients, and the

corresponding clinicopathological data are summarized in Supplementary Table 2.

HCC-specific survival was assessed in all patients and they were stratified according

to relative LGR5 expression (below and above median –0.047). The Kaplan–Meier

method was used to estimate survival outcome curves, and the log-rank test was

used to compare the survival between the two groups. The hazard ratio (HR) for

HCC-specific survival was estimated using the Cox proportional hazard regression

model. The study was approved by the medical ethical committee of Erasmus
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Figure 8: Combination of LGR5 lineage ablation with 5-FU results in en-
hanced anticancer efficacy.

a Outline of the experimental strategy to assess the combinatory effect of LGR5 lineage ablation
with 5-FU. Following tumor organoid allografting, 5-FU was administered for the first half of the
experiment (every other day, for in total 6 days). DT was administered for the second half of the
experiment (every other day, for in total 6 days). b Representative growth curves showing tumor
volumes in the vehicle control group (CTR), the 5-FU monotherapy group, the DT administration-
only group, and the hybrid 5-FU/DT group. Black arrow: onset of DT administration. c Tumor
masses from these four groups (control vs. 5-FU vs. DT vs. 5-FU-DT: 0.33± 0.076 g, n=12
vs. 0.25± 0.066 g, n=8 vs. 0.29± 0.052 g, n=8 vs. 0.13± 0.020 g, n=8). d Representative
images showing tumors from these four groups. e Outlines of the experimental strategy for
assessing the effects of combined LGR5 lineage ablation and 5-FU treatment. 5-FU, DT, or the
combination were administered since organoid engraftment every other day, for in total 12 days.
f Representative growth curves showing tumor volumes of the four groups. Black arrow: onset of
administration (two-way ANOVA). g The tumor masses of these four groups (control vs. 5-FU
vs. DT vs. 5-FU+DT: 0.24± 0.056, n=11 vs. 0.21± 0.048 g, n=8 vs. 0.16± 0.027 g, n=11 vs.
0.069± 0.007 g, n=8). h Representative images showing the tumors from the different groups.
Mean±SEM. Source data are provided as a Source Data file.
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Medical Center, and all the patients signed the informed consent before tissue

donation. In addition, the study protocol conforms to the ethical guidelines of the

1975 Declaration of Helsinki.

7.4.3 Online Database

For analysis of LGR5 mRNA expression, data were retrieved from three in-

dependent HCC cohorts, including The Cancer Genome Atlas (TCGA), Wurm-

bach [44], and Roessler [45]. For survival analysis based on LGR5 mRNA expres-

sion, the TCGA cohort was used. For analysis of the relationship between gene

mutation and LGR5 expression, three independent cohorts were investigated, in-

cluding TCGA, International Cancer Genome Consortium-France (LICA-FR), and

International Cancer Genome Consortium-Japan (LIRI-JP).

7.4.4 Tumor Organoid Culture

Digestion solution II (37 °C, 30min, 500 µg/ml of collagenase type XI, 200µg/ml

of Dnase-1, 1% FBS in DMEM medium) (collagenase type XI: Sigma-Aldrich;

Dnase-1: Sigma-Aldrich) was used to digest liver or tumor tissues into single-

cell suspension. Single-cell suspension was directly mixed with matrigel (Corning

BV) and then used for culturing, or sorted for further experiments. Sorted cells

were also mixed with matrigel and seeded for organoid initiation. Cells were cul-

tured in organoid culture medium, which was based on advanced DMEM/F12

(Invitrogen), supplemented with 1% (vol/vol) of N2 (Invitrogen), 2% (vol/vol)

of B27, 1.25 µM N-acetylcysteine (Sigma-Aldrich, antioxidant agent), 10 nM gas-

trin (Sigma-Aldrich), 50 ng/ml EGF (Peprotech, epidermal growth factor), 10%

(vol/vol) of R-spondin-1 (conditioned medium produced by 293T-H-RspoI-Fc cell

line, WNT/β-catenin signaling pathway activator), 100 ng/ml FGF10 (Peprotech,

fibroblast growth factor 10), 10mM nicotinamide (Sigma-Aldrich), and 50 ng/ml

HGF (Peprotech, hepatocyte growth factor). For the first 8–12 days, organoids

were supplemented with 10µM Y-27632 (Sigma-Aldrich), Noggin, and Wnt3a-

conditioned medium. The medium was refreshed every 2 days, and passage was

performed in split ratios of 1:2–1:15 weekly. The proposed tumor organoid phe-

notypes are based on the expression of EpCAM/CK19 positive for CC-like and

HNF4α/AFP positive for HCC-like phenotype.
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7.4.5 Histology, Immunohistochemistry, and Immunofluorescence

The liver or tumor was fixed in 4% paraformaldehyde (PFA) overnight at

4 °C. For immunofluorescence, samples were further dehydrated with 30% sucrose

(Sigma-Aldrich, 4 °C, overnight), stored at -80 °C, and then sectioned at 8µm for

further analysis. Images were acquired with a Zeiss LSM510META confocal micro-

scope. For histology and immunohistochemistry, materials were dehydrated with

70% ethanol, embedded with paraffin, and sectioned at 4µm for staining. Images

were acquired with a Zeiss Axioskop 20 microscope. All antibodies are listed in

Supplementary Table 3.

7.4.6 Organoid-based Allograft Tumor Model

Cold advanced DMEM/F12 medium was used to collect the organoids. After

centrifuging, the supernatant was discarded and organoid pellets (organoid frag-

mentation size: range from 5 to 150µm) were mixed directly with matrigel in a

ratio of 1:1 with a total volume of 200µl. In total, 4–6-week-old female NOD.Cg-

PrkdcSCIDIl2rgtm1Wjl/SzJ (NSG) mice, NOG/JicTac (CIEA NOD.Cg-Prkdc-

scid Il2rg-tm1Sug) mice, or nude mice (NMRI:BomTac-Nude) were purchased from

Taconic, and subcutaneously injected with the collected tumor organoids. The

characterization of phenotypes for murine allograft tumor is based on the expres-

sion of EpCAM/CK19 for CC-like and HNF4α/AFP for HCC-like phenotype (Sup-

plementary Data 2). Tumor dimensions were measured using calipers, and tumor

volume was calculated as 0.523Ö lengthÖwidthÖwidth [9]. Tumor formation was

monitored every other day, and mice were killed to harvest tumors after the tumor

diameter reached 2 cm. Tumor tissues were stored or cultured as described above.

7.4.7 Cell Ablation by DT and Treatment of 5-FU/Sorafenib

To ablate LGR5+ cells in organoids, DT (Calbiochem, 1–10 ng/ml) was added

to organoid expansion/initiation medium, followed by further analysis [14]. For in

vivo ablation, DT was administered via intraperitoneal injection every other day

(50µg per kg body weight). If mice suffering from weight loss ≤ 10%, compared

with the previous injection, the injection was omitted. 5-FU/sorafenib were also

administered via intraperitoneal injection every other day (5-FU/sorafenib: 30mg

per kg body weight) (sorafenib: Bio-Connect BV; 5-FU: Sigma-Aldrich).
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7.4.8 qRT-PCR

For freshly FACS-sorted cells and HCC specimens, RNeasy Micro Kit (QIA-

GEN) was used to isolate RNA. For organoids, Machery-NucleoSpin RNA II kit

(Bioké) was used. Quantification was measured with Nanodrop ND-1000 (Wilming-

ton). RNA was then converted to cDNA by using a cDNA Synthesis kit (TAKARA

BIO INC.). Real-time PCR reactions were performed with SYBRGreen-based real-

time PCR (Applied Biosystems®) and amplified in a thermal cycler (GeneAmp

PCR System 9700). For cells collected from murine tissues, glyceraldehyde 3-

phosphate dehydrogenase (Gapdh) gene was used as reference. For quantifica-

tion of LGR5 mRNA in human tumors and tumor-free liver tissues, Gusb (beta-

glucuronidases), Hprt1 (hypoxanthine phosphoribosyltransferase 1), and Pmm1

(phosphomannomutase 1) were used as reference genes. All primers are listed in

Supplementary Table 4.

7.4.9 RNA Sequencing

The total RNA was isolated using RNeasy Micro Kit (QIAGEN). The quantity

of RNA was measured by a NanoDrop 2000. The collected RNA was further am-

plified by using SMARTer kit. Then, RNA sequencing was performed by Novogene

with the paired-end 150-bp (PE 150) sequencing strategy. Gene expression was an-

alyzed. The identification of differentially expressed genes is based on P< 0.05 and

absolute values of logFc> 1.5. GSEA with the library of Wiki2019 was performed

to reveal the alteration of signaling pathways.

7.4.10 FACS Analysis

For FACS analysis, single cells derived from liver tumors/tumor-surrounding

tissues or organoids were suspended in DMEM plus 2% FBS. Cell suspensions were

analyzed using a BD FACSCalibur or BD FACSAriaTM II. For FACS sorting, a

BD FACSAriaTM II cell sorter was used to isolate the target cell population.

Propidium iodide (PI) staining was performed to exclude dead cells, and CD45

staining was adopted for excluding leucocytes.

7.4.11 Metabolic Activity Analysis of Organoids

Different organoid lines were seeded separately in a 24-/48-well plate. Sorafenib

(10 µM) or 5-FU (10µM) was added to the organoid culture since the initial day

or post initiation day 3, respectively. Drugs were refreshed every other day. At
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days 6–7, organoids were incubated with Alamar Blue (Invitrogen, 1:20 in DMEM)

for 4 h (37 °C), and then the medium was collected for analysis of the metabolic

activity of the cells. Absorbance was determined by using fluorescence plate reader

(CytoFluor® Series 4000, Perseptive Biosystems) at the excitation of 530/25 nm

and emission of 590/35. Each treatment condition was repeated four times and

matrigel with medium only was used as a blank control.

7.4.12 Statistical Analysis

Prism software (GraphPad Software) was used for all statistical analyses. For

statistical significance of the differences between the means of groups, we used

Mann–Whitney U test; for statistical significance of the differences between groups

with inequivalent sample sizes, we used Welch test; for statistical significance of the

differences between paired samples, we used paired T test; for statistical significance

of the differences between multiple independent groups, we used two-way ANOVA

(except for Mann–Whitney U test, the use of other statistical methods is indicated

in the legends). Differences were considered significant at a P value less than 0.05.
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Simple Summary

ScRNA-seq is a powerful tool for investigating the cancer microenvironment,

but the cost of analysing every scientific scenario is prohibitive. Fortunately, de-

convolution of bulk RNA-seq data with scRNA-seq cell atlas reference datasets

provides a cheaper strategy. In this study, we validated the feasibility of decipher-

ing the microenvironment of liver cancer through the estimation of cell fractions

with Cibersortx and scRNA-seq atlas reference datasets. Five cell types are asso-

ciated with patient outcomes, showing that deconvolution is a useful method for

characterising the tumour microenvironment.

Abstract

Liver cancers give rise to a heavy burden on healthcare worldwide. Understand-

ing the tumour microenvironment (TME) underpins the development of precision

therapy. Single-cell RNA sequencing (scRNA-seq) technology has generated high-

quality cell atlases of the TME, but its wider application faces enormous costs

for various clinical circumstances. Fortunately, a variety of deconvolution algo-

rithms can instead repurpose bulk RNA-seq data, alleviating the need for generat-

ing scRNA-seq datasets. In this study, we reviewed major public omics databases

for relevance in this study and utilised eight RNA-seqs and one microarray dataset

from clinical studies. To decipher the TME of liver cancer, we estimated the frac-

tions of liver cell components by deconvoluting the samples with Cibersortx using

three reference scRNA-seq atlases. We also confirmed that Cibersortx can accu-

rately deconvolute cell types/subtypes of interest. Compared with non-tumorous

liver, liver cancers showed multiple decreased cell types forming normal liver mi-

croarchitecture, as well as elevated cell types involved in fibrogenesis, abnormal

angiogenesis, and disturbed immune responses. Survival analysis shows that the

fractions of five cell types/subtypes significantly correlated with patient outcomes,

indicating potential therapeutic targets. Therefore, deconvolution of bulk RNA-seq

data with scRNA-seq atlas references can be a useful tool to help understand the

TME.

Keywords: liver cancer; tumour microenvironment; deconvolution.
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8.1 Introduction

Liver cancer is one of the leading causes of cancer-related mortality worldwide,

making up 4.7% of newly diagnosed cases but 8.2% of deaths [1]. Hepatocellular

carcinoma (HCC) and cholangiocarcinoma (CCA), which are frequently tallied to-

gether, constitute the major burden of liver cancer [2]. With a 5-year survival of

18%, liver cancer ranks as the second most lethal cancer [3]. The poor prognosis

of liver cancer is partially due to the insufficiency of effective therapies. Surgical

interventions yield the best outcomes but are limited by high recurrence rates or

easy loss of operative windows. Liver transplantation achieves better long-term

survival but is hampered by an inadequate supply of donor organs [4, 5]. Sys-

tematic non-specific chemotherapy resulted in disappointing results for both HCC

and CCA [5, 6]. Innovative agents targeting angiogenesis [7, 8], fibrogenesis [9],

and regulation of immune responses [10, 11] have shown the potential to improve

outcomes. Such advances suggest that a shift from a cancer-centric to a tumour

microenvironment (TME)-centric perspective is required in the future development

of precision therapy [12,13].

Single-cell sequencing (scRNA-seq) technology delivers in-depth interrogation

of the TME. The analysis of complex cancer tissues at a single cell level through

scRNA-seq has brought insights into the heterogeneity and progression of cancer, as

well as escape from immune surveillance, drug resistance and intercellular commu-

nication [14]. However, scRNA-seq technology is expensive, requires specific tissue

collection methods, and can be difficult to implement. The cheaper and more com-

mon bulk RNA-seq studies make up the largest body of work in this area, filling

public repositories, including flagship projects such as The Cancer Genome Atlas

(TCGA) and its resulting resource the Pan-Cancer Atlas [15]. To make the most

out of these available datasets, numerous algorithms have been proposed that en-

hance the informativeness of bulk transcriptome analysis using reference scRNA-seq

data. Machine learning is the major approach of such methodologies. For example,

stemness indices within the Pan-Cancer Atlas were estimated with the Progenitor

Cell Biology Consortium datasets and one-class logistic regression [16]. Support

vector regression was also used to estimate the abundance of a specific component

in bulk RNA-seq samples [17, 18]. Another group of deconvolution algorithms,

such as MuSiC [19] and Cibersortx [20], focus on profiling cell fractions of the

bulk transcriptomic data. Meanwhile, emerging scRNA-seq atlases (e.g., Human

Cell Atlas) provide high-quality references, allowing accurate deconvolution of bulk

RNA-seq data in increasingly wider contexts (e.g., profiling of TME for head and
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neck cancers [21]).

In this study, we reviewed major omics databases and selected ten studies that

compared transcriptomes between HCC/CCA and normal liver. The cell frac-

tions of tumour and non-tumour tissues were estimated with Cibersortx and three

scRNA-seq reference atlases. The included studies contain two cohort studies of

HCC, allowing us to investigate the clinical implications of TME abnormalities

through survival analysis and gene set enrichment analysis (GSEA) [22]. We de-

termined that the TMEs of liver cancer lack multiple cell types (e.g., hepatocytes)

that form normal liver microarchitectures, and instead are enriched with compo-

nents involved in fibrogenesis, abnormal angiogenesis and irregular immune ac-

tivities. Among all the cell types/subtypes in the HCC TME, hepatocytes and

mature B cells are positively correlated with patient outcomes, while cholangio-

cytes, bi-potent stem cells, plasma B cells and regulatory T (Treg) cells correlate

with negative outcomes.

8.2 Materials and Methods

8.2.1 Data Obtainment

We searched three public omics databases – the Gene Expression Omnibus

(GEO), The Cancer Genome Atlas (TCGA), and the International Cancer Genome

Consortium (ICGC) – for studies engaging on liver cancers. Inclusion criteria were:

(1) histologically identified sample series from human tissues in clinical studies

(including cohort studies and case review series); (2) Whole transcriptomes by

microarray or RNA-seq; (3) with non-tumorous or normal liver tissues as controls

(for comparison) or follow-up information (for interrogation of clinical outcomes);

(4) studies covering two major liver cancers (HCC and CCA) were included and

all other studies were excluded, i.e., metastatic liver cancers and non-malignant

hyperplasia (e.g., hemangioma). Finally, nine curated datasets (eight RNA-seq

and one microarray) were selected for this study (Table S1).

8.2.2 Preprocessing of Microarray Data

Microarray studies with raw data (.CEL files) in GEO database were obtained

via R package SCAN.UPC [23] which provides one-step preprocessing through em-

pirical correction of major bias (GC content-related). This normalisation method

for microarray datasets proves reliable for downstream analysis [24]. All gene names
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Figure 1: Study workflow and In Silico Validation of Cibersortx.
A. A general workflow of deciphering tumour microenvironment. Cibersortx estimates the cell
fraction with scRNA-seq atlas and bulk RNA-seq/microarray data. Three expression matrices
of scRNA-seq study were used as reference atlases. Through estimation of the fractions of more
20 cell types/subtypes, biological events could be inferred. B-D. Performances of Cibersortx
deconvolution in intra-study validation experiments. E. Performances of Cibersortx deconvolution
in cross-study validation experiments. The title of each panel indicates which reference atlas has
been used in the deconvolution, two ticks on the bottom indicate which dataset has been used to
generate the pseudobulk samples.
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were translated into HGNC symbol with R package BioMart [25]. Duplication of

features in expression matrices were collapsed by MaxMean strategy [26].

8.2.3 Preprocessing of RNA-seq Data

TCGA-LIHC was obtained via UCSCXenaTools [27] and datasets in ICGC

were obtained via the official web portal [28]. Expression matrices of other stud-

ies from the GEO database were retrieved according to the authors’ instructions.

All datasets recruited in this study have been listed in Supporting Information.

All gene names were translated to HGNC symbols with R package BioMart [25].

Feature duplications in expression matrices were removed with the summation

method [26].

8.2.4 Deconvolution of Cell Types with Cibersortx and Three Atlases

Three single-cell RNA-seq datasets were used in this study: (1) GSE115469

(Normal Liver), (2) GSE146409 (TME-Stroma), and (3) GSE156337 (TME-Immune).

GSE115469 is a liver subset of the Human Cell Atlas [28]. GSE146409 contains the

TME of liver cancer (HCC and CCA), including malignant cells [29]. GSE156337

contains the HCC microenvironment, without malignant cells [30]. This dataset

identified high-quality immune cells.

All expression matrices were normalised to 10,000 counts/cell and packed into

an H5AD file with authors’ annotation as metadata for subsequent estimations.

Both the signature matrix of scRNA-seq datasets and the expression matrix of

bulk RNA-seq datasets were transformed into tab-delimited tables. The signa-

ture matrices of reference scRNA-seq were built with the Cibersortx protocol for

“scRNA-seq” (“S”). Deconvolution was performed with the “Impute Cell Frac-

tions” module. In validation experiments, batch correction was disabled in within-

study validation and activated in “S” mode (with single-cell expression matrix as

reference) in cross-study validation (two groups of validation experiments will be

described below). In the estimation of real clinical data, batch correction was en-

abled in “S” mode for RNA-seq datasets and “B” mode (with single-cell expression

matrix collapsed into bulk matrix before used as reference) for microarray datasets.

All other Cibersortx parameters were the default configurations [20].

Cibersortx fails when the cell type tree of the reference atlas is complicated

(e.g., > 10 cell types). In this situation, collapsing some branches of the cell

type tree would complete the calculation [20]. In our study, for example, when

we used the Normal Liver atlas, the cell type tree was divided into two groups
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Figure 2: Deconvolution output – hepatocytes, cholangiocytes, and fibrogen-
esis.
A-B. A comparison of hepatocytes estimation by Cibersortx with two different atlases. Subtle
differences of cell fractions can be seen between two experiments, but they arrived at the same
conclusion that hepatocytes decrease in cancerous tissue. In CCAs, this phenomenon is more
prominent. C. Estimation of cholangiocytes. Elevation of cholangiocytes can be widely seen
in cancerous tissues. D-F. Estimation of hepatic stellate cells (HSCs), pericytes and cancer-
associated fibroblasts (CAFs). These three cell types are key components participating the fi-
brogenesis of liver cancer. HSCs are liver-specific pericytes, and often activated in liver cancer.
Pericytes (broad sense) can be hardly detected in normal liver but widely present in liver cancer.
CAFs are uniquely characterized fibroblasts in cancer. They can be hardly detected in normal
liver but common in cancerous tissues.
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(immune and non-immune groups). Similarly, the TME-Stroma atlas was divided

into three groups (mesenchymal, vasculature and immune groups), and the TME-

Immune was divided into two groups (immune and non-immune groups) (All cell

type trees are shown in File S2). To evaluate the influence of adjusting cell type

tree, we performed a group of validation experiments in which cell subtypes in the

Normal Liver atlas were collapsed (for example, let macrophage = inflammatory

macrophage + non-inflammatory macrophage, T cell = alpha-beta T cell + gamma-

delta T cell, B cell = mature B cell + plasma B cell, and LSEC = periportal LSEC

+ central venous LSEC). To increase the matching in cross-study experiments

(described below), the cell-type trees of the other two atlases were also adjusted

(for TME-Stroma atlas, let macrophage = scar-associated macrophage + Kupffer

cell + tissue macrophage, and for TME-Immune atlas, let T cell = CD4+ T cell +

CD8+ T cell + Treg cell).

8.2.5 Accuracy and Robustness of Cell Fraction Estimation

The accuracy and robustness of deconvolution with Cibersortx were tested in

two groups of experiments: intra-study validation and cross-study validation. In

intra-study validation experiments, the signature matrix of scRNA-seq and the

pseudobulk for testing were generated from the same scRNA-seq atlas. The ad-

vantage of this method is full coverage of all cell types/subtypes. In cross-study

validation experiments, the signature matrix of scRNA-seq and the pseudobulk

dataset were generated from different atlases.

Pseudobulk datasets were generated using the random module of NumPy in the

following procedure: the expression of the scRNA-seq atlas was separated into two

groups, cell type of interest and all the remaining cell type/subtypes collapsed into

a single group labelled as “others”; 10% of cells in each group were selected using

Choice function of NumPy, then two representative expression vectors (V ) were

generated by calculating the mean value of each gene; a random number f (between

0 and 100) was generated by Uniform function of NumPy; finally, the expression

vector of the pseudobulk sample was generated by Vcelltype×f+Vothers×(100−f).

f was used as benchmarking target.

Two parameters were used to evaluate the accuracy of Cibersortx estimation,

(1) Pearson correlation coefficient (PCC) between predefined proportions (f) and

estimated fractions (f ′); (2) mean absolute error (MAE =1/n
∑n

i=1 |f ′
i − fi|, i =

1, ..., n) and direction (overestimation or underestimation).

163



Figure 3: Deconvolution output - vasculature.
Estimation of liver sinusoidal endothelial cells (LSECs), vascular smooth muscle cells (vSMCs),
liver vascular endothelial cells (LVECs) and tumour LVECs (LVECts). These four cell
types/subtypes are key components of blood vessels in both normal and cancerous livers. De-
creases of normal structural blocks (LSECs, vSMCs) and abnormal angiogenesis (LVECts) can be
seen in liver cancers. Not all the differences are statistically significant. Those pairs with P<0.05
have been labeled.
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8.2.6 Survival analysis, Statistics and Data Visualization

To demonstrate the added value of our deconvolution analysis, we investigated

the survival impact of estimated cell fractions on two HCC cohorts (TCGA-LIHC,

GSE14520). The patient cohort was first ordered based on descending order of

estimated cell fractions and then separated into high- and low-level groups. All

separation possibilities (from 1:n-1 to n-1:1) have been tested with log-rank tests.

The one with the lowest P-value in log-rank tests was selected as the optimised

separation. If all the P-values were above 0.05, the cohort was equally separated

into two groups (median-point separation).

Survival lengths were transformed into months and observed events (labelled

as “1”) were transformed into ‘True’ (Boolean value, according to the requirement

of Scikit-Survival [31]). Kaplan-Meier (K-M) curves were then fitted with Scikit-

Survival [31] and plotted with the Step function of Matplotlib. The log-rank test

was calculated with Lifelines [32]. All boxplots of this study were generated with

MatPlotLib.

Pathway activities were estimated by PROGENy [33]. GSEA was performed

with GSEApy. The input gene list for GSEA was the marker genes selected by

Cibersortx for the cell types. Our study shows a demonstration with “WikiPathway

2021 – Human” as the reference. GSEApy allows dozens of different libraries, and

we provide scripts in our GitHub repository.

For better reproducibility, all the analysis scripts including preprocessing have

been shared with GitHub

(https://github.com/ErasmusMC-Bioinformatics/OIO Shaoshi).

The supplements and preprocessed datasets were shared with Zenodo

(https://doi.org/10.5281/zenodo.7467268).

8.3 Results

8.3.1 Cibersortx Estimation of Cell Fraction

In this study, we aim to decipher the TME of liver cancer by estimating the

cell fractions in transcriptomes. This requires an accurate and robust model with

well-annotated single-cell atlases. We adopted a state-of-the-art deconvolution al-

gorithm (Cibersortx) and three scRNA-seq atlases (Normal Liver, TME-Stroma

and TME-Immune). These atlases describe more than 20 cell types or subtypes.

Figure 1A outlines the workflow of this study, and the cell-type trees of the three

atlases are outlined in File S2.
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Figure 4: Deconvolution output – T cells.
A-E. Estimation of T cells. Alpha-beta (αβ) T cells and gamma-delta (γδ) T cells are from
Normal Liver atlas. CD4+/CD8+ T cells and regulatory T (Treg) cells are from TME-Immune
atlas. Overlap of cell type trees may exist between the two atlases. Obvious elevations of αβT cells
and obscure changes of γδT cells can be seen in liver cancers. CD4+ T cells rise prominently in
CCAs and CD8+ T cells moderately in HCCs. F. Estimation of overall T cells. Higher activities
of T cells can be seen in liver cancers.
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We first performed intra-study validation experiments to test whether all iden-

tified cell types from each atlas can be accurately deconvoluted with Cibersortx.

In this group of experiments, pseudobulk datasets were generated by the same at-

las (Figure 1). In this validation mode, most cells achieved ideal PCCs (File S4).

The PCCs compare the relationship between predefined cell fractions in generated

pseudobulk samples and estimated values by Cibersortx. However, MAEs vary

between different cell types (File S4). To evaluate the effect of merging some cell

types, we did a group of tests by combining the major subtypes in Normal Liver

atlas (File S4). Both panels in Figure 1B show the result of intra-study validation

with Normal Liver atlas. Although both experiments show high levels of PCCs,

subtle differences in accuracy exist. For example, after merging eight cell sub-

types into four major cell types, the PCC of hepatocyte increases (0.979 vs. 0.992,

File S4, the same the following), cholangiocyte decreases (0.9915 vs. 0.9844), and

hepatic stellate cell (HSC) decreases (0.9901 vs. 0.986).

Although Cibersortx allows “partial deconvolution”, in which the samples may

contain cell type/subtypes not present in the reference atlas, we performed a group

of cross-study validation experiments to assess this impact. The results of these

experiments demonstrate that the PCC between presets and prediction remain high

(Figure 1E, File S4. Page 19.) whilst the MAEs vary significantly between cell

types (File S4. Page 19.). Our study suggests that Cibersortx normally guarantees

high levels of PCCs but MAEs vary when using partial deconvolution method.

Thus, we adopted a protocol in all subsequent analysis such that if a cell type (e.g.,

hepatocytes) is present in multiple atlases, the one with the best performances in

both intra-study and cross-study validation experiments was chosen as the reference

for clinical data.

8.3.2 Difference of Cell Fraction between Tumour and Non-Tumor Liver

Tissue

To determine the difference in cell fraction between tumour and non-tumour tis-

sues, we compared seven RNA-seq datasets which provide paired tissues collected

from HCC/CCA cohort studies or case review studies. LIRI-JP is an RNA-seq

study which includes primary liver cancers, and secondary liver cancers from stom-

ach, colon, and prostate, etc., with adjacent non-tumorous liver tissues as controls.

GSE119336 is an RNA-seq study comparing CCA and non-tumour liver. The other

five RNA-seq studies compare HCC and non-tumour liver tissues. Three of these

studies included cases with HBV infection as the risk factor.
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The three atlases provide more than 20 cell types, allowing a panoramic view

of TMEs. All of these cell types can be largely divided into three groups: (1)

cell types underpinning the fundamental physiology of livers, e.g., hepatocytes,

cholangiocytes; (2) cell types participating in the pathological evolution of cancer

formation, e.g., HSCs, LVECts; (3) immune cells. Results of related cell types are

described in the following groups.

Hepatocytes and Cholangiocytes

These two cell types constitute the major functional units of livers – liver lobule

and bile ducts [28]. As both the Normal Liver and TME-Immune atlases have

hepatocytes, we made a comparison of results by deconvolution with two different

atlases for the same dataset. Figure 2A-B show the results of deconvolution for

the same datasets with different atlases. Compared with the results determined

with the TME-immune atlas, deconvolution with the Normal atlas returned higher

levels of hepatocytes for some datasets (such as GSE119336) and lower levels for

others (such as GSE94660). However, both experiments arrived at the same result

whereby the decrease of hepatocytes and elevation of cholangiocytes are common

in liver cancer. Similarly, File S3. Page 1-3. generated by deconvolution with

TME-Stroma resulted in the same conclusion. Compared with HCC, the decrease

of hepatocytes in CCA is more significant (Figure 2A-B).

Fibrogenesis

HSCs are tissue-specific equivalents of pericytes, and pericytes can be rarely

detected in normal livers [29,34]. Fibroblasts proliferate following the activation of

HSCs. Compared with non-tumorous tissues, a decrease in HSCs and an elevation

of pericytes can be seen in liver cancers. CAFs are rarely detected in normal liver

and are more often seen in liver cancers. The opposite alterations between HSCs

and pericytes/CAFs suggest active fibrogenesis in tumours (Figure 2D-F).

Vasculature

Liver sinusoidal endothelial cells (LSECs) form the wall of hepatic sinusoids and

participate in immune responses. Vascular smooth muscle cells (vSMCs) are also

key components of blood vessels. Tumour liver vascular endothelial cells (LVECts)

are variants of normal LVECs [29]. Decreased LSECs, vSMCs, and LVECs can be

seen in cancerous tissues, while the elevation of LVECt can be observed in liver

cancers (Figure 3A-D). These results suggest the emergence of abnormal angiogen-

esis.
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Figure 5: Deconvolution output – B cells, monocyte-macrophages.
A-B. Estimation of B cells. Plasma B cells can be rarely detected in normal livers but common
in liver cancers.C-F. Estimation of macrophages. The Normal Liver atlas separates macrophages
into the inflammatory and non-inflammatory subtypes. The TME-Stroma atlas identified Kupffer
cells, scar-associated macrophages (SAMs) and tissue macropahges (TMs, Figure S6E). Overlap
of cell type trees may exist between the two atlases. Increase of inflammatory macrophages can
be seen in liver cancers. SAMs are a pathological variant of macrophages and participate in the
process of liver fibrosis. Their elevation can be seen in liver cancers.
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Immune Cells

T cells. In the three atlases, five subsets of T cells were identified: T cells with

alpha-beta (αβ) TCR chains or gamma-delta (γδ) chains (Normal Liver atlas) [28];

CD4+ (helper), CD8+ (cytotoxic) T cells, and Treg cells (TME-Immune atlas) [30].

We observed obvious elevations of αβ T cells but no clear alterations of γδ T

cells in liver cancers. CD4+ T cells rise sharply in CCA while CD8+ T cells

elevate moderately in HCC. Finally, Treg cells are rarely detected in normal livers

whereas elevations are common in liver cancers. Treg cells have been recognised as

a suppressor of tumour immune responses. Liver cancers also show high levels of

overall T cells (CD4++CD8++Treg cells). (Figure 4A-F).

B cells. The Normal Liver atlas identified two subtypes of B cells, mature B

cells (antigen inexperienced) and plasma B cells (antigen secreting) [28]. Variation

of mature B cells doesn’t show a direct association with liver cancers. Plasma B

cells were rarely detected in normal liver, but were widely detected in liver cancers

(Figure 5A-B).

Macrophages. The Normal Liver atlas contained inflammatory and non-

inflammatory macro-phages [28]. The TME-Stroma atlas separated Kupffer cells,

tissue monocytes (TMs), and scar-associated macrophages (SAMs) [29]. SAMs are

often recruited in the process of liver fibrosis [29, 35]. We observed elevations of

inflammatory macrophages and SAMs in liver cancers. No obvious differences in

Kupffer cells, TMs and non-inflammatory macrophages were seen (Figure 5C-F).

Dendritic cells. As the quintessential antigen-presenting cell, the dendritic

cell (DC) is another hot research interest for the potential of immunotherapy. The

TME-Stroma atlas was used to estimate conventional DC1 and DC2 (cDC1 and

cDC2) cell types [29, 36]. Deconvolution suggests that cDC1 cells are elevated in

liver cancers while cDC2 cells are not (Figure 6A-B).

In summary, liver cancers show higher levels of overall immune cells, involving

both the innate (monocyte-macrophages) and adaptive branches (T, B cells), as

well as auxiliary components (dendritic cells). Meanwhile, suppressive components

such as Treg cells can also be observed, suggesting the disordered responses in

tumours.

Bi-potent Stem Cells and Proliferative Cells

This group involves two cell types which can proliferate and differentiate. Bi-

potent stem cells (from TME-Immune atlas) were named for their potential to

differentiate into both hepatocytes and cholangiocytes [30]. Proliferating cells were
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identified in TME-Stroma atlas and elevation of these two cell types (HCC and

CCA) was common in tumours [28]. Bi-potent cells were rare in normal livers and

their elevation in CCA is prominent (Figure 6C-D).

Other Cell Types

These three atlases also identified some immune cell types which exist in the

liver with a relatively low abundance. TME-Immune identified a cluster of natural

killer (NK) cells (a key component of the innate immune branch) and a cluster of

myeloid cells (the liver-resident precursors of monocytes-macrophages) [30]. The

Normal Liver atlas isolated a cluster of NK-like cells, which may be an ambiguous

mixture of natural killer T (NKT) cells and NK cells [28]. Different atlases may

have some cell types/subtypes with the same labels. However, calculated signature

matrices suggest that they have different scopes, e.g., HSCs in Normal Liver atlas,

Figure 2D, vs. HSCs in TME-Stroma atlas, File 3. Page 1.).

8.3.3 Cell Fraction of HCC TME Correlates with Clinical Outcome

Finally, we investigated whether cellular alteration affects clinical outcome of

HCC through survival analysis. In public repositories, TCGA-LIHC is the highest-

cited cohort of a liver cancer study, with well-annotated follow-up information and

substantial sample size (370 HCC patients). TCGA-LIHC is a pooled study of five

cohorts with mixed risk factors. Available survival analyses include overall survival

(OS) and disease-free survival (DFS) [37].

The distributions of estimated cell fractions show two typical shapes, “Sigmoid”

or “Exponential” (Supple S5). Using an optimisation strategy (lowest log-rank test

p-value), the patient cohort was typically separated at inflection points, although

this separation may fail in cases of negative results or meaningless grouping (e.g.,

separating 1 case into a group). In these circumstances, we used the median-point

strategy to finish complete K-M curves (Figure 7, File S5-6).

Among all the estimated cell types, hepatocytes and bi-potent cells show sub-

stantial impacts on patients’ outcomes. The estimated fractions of hepatocytes

show a sigmoid-shaped distribution. The optimisation strategy (lowest log-rank

test p-value) separates the cohort at a close-to-median point in OS analysis, and

at an inflection point for DFS analysis (Figure 7C). High fractions of hepatocytes

are associated with longer OS and DFS (Figure 7A-B). Estimated fractions of Bi-

potent cells show exponential distribution. The optimisation strategy isolated a

subset with the cell fractions close to zero (Figure 7F). Those with high fractions
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Figure 6: Deconvolution output – Dendritic cells, stem/progenitor cells, and
others.
A-B. Estimation of conventional dendritic cells (cDCs). Elevations of cDC1s can be seen in liver
cancers. C-D. Estimation of two types of proliferative cells. Bi-potent stem cells are a group
of late-stage pluripotent cells with potential to differentiate into hepatocytes and cholangiocytes.
The TME-Stroma atlas did not clarify the exact characteristics of proliferating cells. Its signature
genes suggest its pluripotent origin. Elevations of these two cell types can be seen in liver cancers.
E-F. Estimation of natural killer (NK) cells and myeloid cells. NK cells belong to innate immune
branch and myeloid cells are the hematopoiesis-originated immune branch. Deconvolution of these
two cell types shows altered activities in liver cancers but no direct association can be drawn.
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of bi-potent cells show lower OS and DFS (Figure 7D-E). TCGA also included

serum alpha-feto protein (AFP) at patient admission. Although the differences of

OS and DFS between patients with high- or low-level AFP reach statistical signif-

icance, crossings of KM curves exist. In contrast, deconvoluted hepatocytes and

bi-potent cells show better discrimination (Figure 7).

GSE14520 is a study which recruited more than 200 HBV-related HCC cases

and provides both OS and DFS information [38, 39]. Its transcriptomic tests are

based on microarray platforms, which may provide less accuracy than RNA-seq. In

our study, rare cell types were not often detected in the deconvolution of microar-

ray data. However, given the subtle difference of study protocol, it still provided

alternative evidence about the impact of cell fractions on patients’ outcomes. A

compilation of the survival analyses for GSE14520 is available in File S6, with a

summary in Table S2. Consistent and significant results for both OS and DFS in

the two cohorts include: hepatocyte (positive), cholangiocyte (negative), bi-potent

stem cell (negative), Mature B cell (positive), Plasma B cell (negative), and Treg

cell (negative).

Pathway analysis provides useful information for the identification of therapeu-

tic targets. Figure 8 shows the estimation of pathway activities by PROGENy [33].

Only a small cell population show high activities of specific pathways. For example,

LVECt, proliferating cells, bi-potent cells, and mast cells are EGFR active. GSEA

is another useful method. File S7 shows the examples using the signatures from

the three atlases generated by Cibersortx with the library “WikiPathway 2021 –

Human” as the source of pathway definitions.

8.3.4 Cell Abundance Estimation by Support Vector Regression

We also did a parallel series of analyses by support vector regression. Support-

ing Information describes the detailed methodology. Both methods achieved the

same conclusions for most cell types. Of note, a subtle difference exists between

the prediction by SVR and Cibersortx deconvolution. SVR estimates abundance

between samples while the summation of deconvoluted fractions is equal to one.

A substantial alteration of mass cell types (most often hepatocytes in liver) may

significantly impact trace components in deconvolution.

All Signature matrices and scripts have been shared online (see GitHub/Zenodo

address).
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Figure 7: Impact of cell fractions on patients’ survivals.
A-B. Impact of hepatocyte fraction. High-level hepatocytes show both longer OS and DFS
lengths. D-E. Impact of bi-potent cell fraction. High-level bi-potent cells show lower OS and
DFS lengths. C, F. Cutting thresholds of overall survival (OS) and disease-free survival (DFS)
analysis after optimization. The fraction of hepatocytes and bi-potent cells show two typical
types of distribution. Hepatocyte fractions have a sigmoid-shaped curve and the cutting points
are at an inflection point of the curve. Bi-potent cell fractions show an exponential distribution
(Y-axis has been log-transformed for better visualization) and cutting points extract one group
with estimated fractions close to zero.
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8.4 Discussion

Deconvolution algorithms draw high interest in estimating cell fractions with

scRNA-seq atlases. Cibersortx and MuSiC are two state-of-the-art algorithms in

benchmarking studies [40, 41]. We adopted Cibersortx for better reproducibility

while implementation with MuSiC involves R scripting and manual selection of

markers. In our study, in silico experiments determined that Cibersortx can accu-

rately predict the fractions of cell types. We also did a parallel series of analyses

with SVR to reassure the conclusions by Cibersortx.

Cibersortx estimates cell fractions by quantifying the abundance of signature

genes, which warrants careful consideration when interpreting the results. Cell

fractions can be defined in diverse ways. In conventional histological studies, cell

proportion calculates by volume, cell number, mass, etc [42]. The prediction of

Cibersortx seems to be close to the definition of “fraction by cell number”. How-

ever, the expression of signature genes varies between cells, tissues, individuals,

and the different disease states, leading to an ambiguity in the concept of “frac-

tion”. This gap becomes prominent when the biomedical conditions of the reference

scRNA-seq atlases and the bulk RNA-seq samples differ (necessitating “partial de-

convolution”). In addition, cell clusters between atlases with the same label may

not be identical. In our study, we preserved all the signature matrices generated by

Cibersortx for better comparison. Therefore, we recommend taking into account all

of these factors when interpreting the biomedical implications of the deconvoluted

results [20].

Three scRNA-seq atlases help portray biological events in liver cancers, includ-

ing angiogenesis, fibrogenesis, immunity and stem cell transformation. Agents tar-

geting angiogenesis made the first breakthrough in liver cancer chemotherapy [43].

Cancer growth ignifies abnormal blood supply in the TME, with simultaneous

pseudo-hypoxia and neo-vasculature. The TME-Stroma atlas demonstrated the

involvement of pericytes and LVECt in tumour angiogenesis [29]. As vessel com-

ponents and immune barriers, LSECs lose their position in tumour tissues. The

retreat of LSECs gives way to metastasis [44]. Our study shows that these alter-

ations are common in liver cancers.

Liver carcinogenesis has close ties to chronic inflammations, either viral hep-

atitis or steatohepatitis. Normal liver resides liver-specific pericytes (also termed

hepatic stellate cells), which can be inflammation-activated. Protracted inflamma-

tion leads to stellate cell transformation and fibroblast proliferation [45]. The

latter interacts with malignant cells and helps a tumour-favourable microenvi-
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Figure 8: Pathway activities of cell types in the three atlases (estimated by PROGENy).
A-C. EGFR activities. Central venous LSECs, inflammatory macrophages, LVECt, bi-potent
cells, mast cells, etc., are EGFR active, suggesting the involvement in angiogenesis, immune
responses and proliferation. D-F. WNT activities. Periportal LSECs, inflammatory and non-
inflammatory macrophages, gamma-delta T cells, hepatocytes (TME-Strom), carcinoma cells
(TME-Stroma), myeloid cells, etc., are WNT active, suggesting the involvement in immune ac-
tivities.
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ronment. Cancer-associated fibroblasts (CAFs) provide an immune-evading and

chemotherapy-resistant barrier. They also secret multiple cytokines promoting tu-

mour growth and angiogenesis [46]. Experimental evidence shows that CAF remod-

elling of extracellular matrix (ECM) helps the metastasis-promoting TME [47,48].

Thus, therapeutic strategies targeting CAFs are in development, such as nanocar-

riers [9]. Our study shows the universal attendance of CAFs in liver cancers,

indicating the potential of CAF-targeting therapies.

Liver cancer evolves with the cross-talk between malignant cells and the immune

system. In the early phase of cancer initiation, immune cells actively move towards

and fight against transformed cells. Long-term engagement finally resulted in the

exhaustion of anti-tumour immunity. Some of the immune cells serve the malig-

nant transformation. Such components include well-established tumour-associated

macrophages [49,50], exhaustive and immunosuppressive T cells [51,52], and grad-

ually recognised tumour-infiltrating B cells [53]. Our study provides a helicopter

view of the broad attendance of immune cells in tumour tissues and the appear-

ance of unfavourable components such as Treg cells. Treg cells function through

PD-1/PD-L1 pathway, leading to tumour tolerance. A blockade of this communi-

cation results in the resurrection of immune responses in a minor group of patients.

Further studies show that the therapeutic efficiency of a PD1 inhibitor depends on

the interaction between the TME and other immune components (e.g., CD8+ T

cells) [10,54].

The cancer stem cell (CSC) hypothesis proposed that a small cell population

harbouring embryonic characteristics fuel tumour growth. It is difficult to iden-

tify CSCs except by tracing their descendants bearing specific features. Reported

biomarkers of liver CSCs include CD133, CD90, epithelial cell adhesion molecule

(EpCAM), etc [55]. EpCAM+ cells were proposed as a tumour-initiating compo-

nent in HCC development [56]. EpCAM expresses in fetal livers, hepatic progenitor

cells, carcinoma cells, etc., but not in mature hepatocytes [57]. In our study, Ep-

CAM was selected by Cibersortx as a signature gene for cholangiocytes (Normal

Liver atlas), proliferating cells (TME-Stroma), and bi-potent stem cells (TME-

Immune), indicating the close relationship between these cell components and liver

CSCs. Wnt-beta-catenin signalling activates EpCAM expression, which stands as-

sociated with AFP elevation and foreshadows negative outcomes [58,59]. Pathway

analysis by PRGOGENy suggests that hepatocytes and carcinoma cells are WNT

active in the TME-Stroma atlas. PROGENy suggests high EGFR activities of bi-

potent stem cells (TME-Immune) and proliferating cells (TME-Stroma). EGFR is
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responsible for the maintenance of multiple CSC phenotypes [60]. Survival analysis

suggests the negative impacts of bi-potent stem cells on patient outcomes, providing

alternative clinical evidence for the tumour-initiating hypothesis of EpCAM+ cells.

Although the interpretation of these findings warrants careful consideration, our

study demonstrates that deconvolution can also help understand the mechanism of

cancer formation.

8.5 Conclusions

In this study, we decipher the TME of liver cancer by estimating the cell

fractions of a sample given a transcriptome. By estimating more than 20 cell

types/subtypes within bulk RNA-seq data using three atlases and Cibersortx, we

found disruption of normal liver architecture, abnormal fibrogenesis and angiogen-

esis, as well as disturbed immune responses in HCC and CCA. Survival analysis

demonstrated that five cell types/subtypes highly correlated with patient outcomes.

Deconvolution algorithm and emerging scRNA-seq atlases allow the decompo-

sition of bulk RNA-seq data into cell-type fractions. By linking the cell fractions

of samples and clinical follow-up information, we provide an innovative approach

for the discovery of potential therapeutic targets. In the future, with the advent

of more high-quality scRNA-seq atlases, deconvolution could be a powerful data

mining tool to uncover the intricate nature of the TME of liver cancer, and reveal

valuable information in the vast amount of available transcriptomic data.
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Poisson, John N Weinstein, Bożena Kamińska, Joerg Huelsken, Larsson Omberg,

Olivier Gevaert, Antonio Colaprico, Patrycja Czerwińska, Sylwia Mazurek, Lopa
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8.6 Supporting Information

8.6.1 Estimation of Cell Abundance through Support Vector Regres-

sion

We first tested the performance of ε-support vector regression(ε-SVR). E-

SVR was constructed with the Scikit-Learn toolkit and trained with pseudobulk

datasets. Pseudobulk generation was in the same principle in the main text. Train-

ing data, testing data, and expression matrix for prediction were merged and nor-

malised by the Trimmed Mean of M-values (TMM) method with library sizes as 1

Ö 106 [1,2]. Then, features were filtered by marker genes. Finally, features were

divided by the max value of each gene and re-scaled into values between 0 and 1.

In the test of hyperparameters, three parameters of ε-SVR were tuned by in

silico experiments. Among the four available kernel functions (linear, polynomial,

radial basis function and sigmoid), the radial basis function performs the best. The

experiments were with a gradient (e.g., 1, 0.9, 0.8, 0.5) of hyperparameter c (regu-

larisation). We did not observe any improvement by adjusting hyperparameter c.

Then c=1 was used in subsequent calculations. After testing a gradient (0, 0.02,

0.05, 0.1, 0.2) of hyperparameter ε (penalty), we found the model performs best

with 0, thus guiding the subsequent experiments.

Feature selection based on marker gene calculation by Seurat and optimisa-

tion experiments. Differential gene expression (DGE) for each cell type was first

calculated by Seurat [3]. The best feature number varies between cell types. Seu-

rat returned two parameters to evaluate marker genes – average logarithm of fold

change (avg log2fc) and percentage of occurrence (pct). We defined the pct ra-

tio as pct.1/pct.2. Through tests with a gradient (1, 1.5, 2, 3, 5, 10, 20, 30, 50)

of pct ratios, we selected the cutting point with which ε-SVR showed the best

performance.

Using the ε-SVR model with the best configuration, we predicted cell abundance

for liver cancer samples. Pseudobulk was generated with scRNA-seq atlases and

used as training data for ε-SVR. The training data and expression matrices of bulk

RNA-seq were merged and normalised with the TMM method. Then the features

were filtered with optimised marker genes and rescaled into values between 0 and

1. The visualisation of results is identical to those in the main text.
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8.6.2 Comparison of Results by Cibersortx and Support Vector Re-

gression

The estimated results by Cibersortx and ε-SVR achieved the same conclusions

for most cell types with some exceptions.

Normal Atlas, Hepatocytes, consistent.

TME-Immune Atlas, Hepatocytes, consistent.

Normal Atlas, Cholangiocytes, consistent.

TME-Stroma Atlas, HSCs, consistent with some marginal exceptions.

TME-Stroma Atlas, Pericytes, consistent.

TME-Stroma Atlas, CAFs, consistent.

TME-Stroma Atlas, LSECs, consistent.

TME-Stroma Atlas, vSMCs, inconsistent. Cibersortx predicted significantly

lower fractions in tumours but no conclusion from SVR estimation.

TME-Stroma Atlas, LVECs, consistent.

TME-Stroma Atlas, LVECts, consistent with some marginal exceptions.

Normal Atlas, alpha-beta T cells, consistent with some marginal exceptions.

Normal Atlas, gamma-delta T cells, inconsistent. No conclusion from Ciber-

sortx prediction but SVR predicted significantly higher fractions in tumours.

TME-Immune Atlas, CD4+ cells, partially consistent. Both predicted signifi-

cantly higher fractions in CCA and broad marginal elevations in HCC. Inconsis-

tency exists in two datasets.

TME-Immune Atlas, CD8+ cells, inconsistent. Cibersortx predicted broad

moderate elevations but no conclusion can be drawn from SVR estimation.

TME-Immune Atlas, Regulatory T cells, consistent with some marginal excep-

tions.

Normal Atlas, Mature B cells. No conclusion from both predictions. Normal

Atlas, Plasma cells, consistent.

Normal Atlas, Inflammatory macrophages, consistent.

Normal Atlas, Non-inflammatory macrophages, inconsistent. No conclusion

can be drawn from Cibersortx estimation but SVR predicted significance higher

fractions in tumours.

TME-Stroma Atlas, Kupffer cells, partially consistent. Both predicted signifi-

cantly lower fractions in tumours. Inconsistency exists in three datasets.

TME-Stroma Atlas, SAMs, partially consistent. Both predicted significantly

higher fractions in tumours. Inconsistency exists in predictions of two datasets.

TME-Stroma Atlas, cDC1, consistent.
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TME-Stroma Atlas, cDC2. No conclusion from both predictions.

TME-Immune Atlas, Bi-potent cells, inconsistent. Cibersortx predicted promi-

nently higher fractions in CCA but SVR predicted broad moderate lower fractions

in tumours.

TME-Immune Atlas, NK cells, consistent with some marginal exceptions.

TME-Immune Atlas, Myeloid cells. No conclusion from both predictions.
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Abstract

Liver cancer poses substantial challenges to health care worldwide. Cancer

stem cell (CSC) theory proposes that a small cell population fuels cancer growth,

indicating potentially powerful anticancer therapies. CSCs are difficult to identify

except by tracing their descendants bearing specific traits. EpCAM is a biomarker

to track liver cancer-associated stem cells. In this study, we estimated the abun-

dance of EpCAM-positive cells in the pathogenesis of liver cancer with machine

learning. In silico experiments determined that support vector regression (SVR)

can accurately estimate the abundance of EpCAM-positive cells in bulk RNA-seq

samples. With the established model, we found that EpCAM-positive cells elevate

in liver cancers and some premalignant alterations such as non-alcoholic fatty liv-

ers. Survival analysis suggests that high levels of EpCAM-positive cells indicate

negative patient outcomes. Pathway analysis suggests that EpCAM-positive cells

have high activities of androgen, Trail, TGFb, p53, MAPK, and JAK-STAT path-

ways. Our study provides a machine learning based approach to track CSC cell

lines in the huge deposit of RNA-seq studies.

Keywords: liver cancer; EpCAM-positive cells; machine learning.

189



9.1 Introduction

Liver cancer ranks as the second most lethal cancer with an estimated 90 mil-

lion diagnosed cases each year (WHO estimation). The poor prognosis of liver

cancer is partially due to the difficulty of early diagnosis and limited options for

effective therapies. Surgical resection provides the best outcomes but confronts

high recurrence rates or easy loss of operative windows. Liver transplantation

achieved better long-term survival but is hampered by and inadequate supply of

donors’ livers [1]. Several recent clinical trials repudiated systemic non-specific

chemotherapies [2, 3]. Meanwhile, innovative agents targeting angiogenesis [4, 5],

fibrogenesis [6], and anti-tumour immunity [7, 8] show the potential to improve

outcomes. These advancements promote the development of anti-cancer therapies

targeting critical components in the tumour microenvironment (TME).

Liver cancer stem cells (CSCs) came into the spotlight of precision therapy. The

CSC hypothesis proposed that cancer growth is fueled by a small population of cells

harbouring embryonic characteristics. However, CSCs are a minority group in the

bulk tumour tissues. They are difficult to track except by tracing their descendants

bearing specific traits [9]. Reported biomarkers for liver CSCs include epithelial

cell adhesion molecule (EpCAM), CD133, CD90, CD44, CD24, and CD13 [10].

EpCAM-positive cells were first proposed as a dictator of the growth and invasive-

ness of hepatocellular carcinomas (HCCs) [11]. EpCAM-positive cells show epithe-

lial cell morphology. Its expression is associated with high serum alpha-fetoprotein

(AFP) in clinicopathological analyses. The presence of CD90-positive cells en-

hanced the mobility of EpCAM-positive cell, indicating metastatic potentials [12].

Thus, EpCAM-positive cells were proposed as a therapeutic target against liver

cancer [13].

The development of therapies targeting EpCAM-positive cells faces multiple

challenges. The exact impact of EpCAM-positive cells on patient survival lacks

substantial evidence. The generalisation of EpCAM-positive cell initiation of HCC

remains to be proved in a wider population. On the other hand, the development

of agents targeting EpCAM-positive cells requires further understanding of their

biological essence and interaction with other TME components. In our previous

study, we demonstrated the potential of deconvolution and machine learning as a

data mining approach to excavate critical components in TME [14]. With similar

approaches in this study, we further evaluated the role of EpCAM-positive cells

with public data. We also performed extensive bioinformatic analyses to disclose

important clues for innovative therapies.
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Figure 1: SVR estimation of EpCAM-positive cells.
A. Estimated EpCAM-positive cells in tumour and non-tumour tissues of liver cancers. Elevated
EpCAM-positive cells can be observed in all studies. B. Estimated EpCAM-positive cells in a
consecutive case series. EpCAM-positive cells do not show significant alteration in pre-malignant
stages while significant elevation can be seen from early HCC. C. Estimated EpCAM-positive
cells in non-alcoholic fatty livers. Elevation of EpCAM-positive cells can be observed in NAFLD
group.
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9.2 Materials and Methods

9.2.1 Data Obtainment

Single-cell atlas with EpCAM-positive cells were retrieved from GSE124395.

Datasets included for the comparison between tumour and non-tumour tissues

were identical to our previous study. Two more datasets were recruited. GSE6764

is a microarray study which includes liver samples covering 8 stages from normal

liver to HCC. GSE126848 is an RNA-seq study which compares the transcriptomes

of liver samples from healthy, obese, NAFLD and NASH individuals.

9.2.2 Preprocessing of Transcriptomic Data

Microarray studies with raw data (.CEL files) in GEO database were obtained

via R package SCAN.UPC [15]. All the gene names were translated into HGNC

symbol with R package BioMart [16]. Duplication of microarray features were

collapsed by MaxMean strategy while those of RNA-seq features were by the sum-

mation method [17].

9.2.3 Pseudobulk Generation

Pseudobulk datasets were generated with the same method of our previous

study. The procedure adopted the random module of NumPy: the expression

matrix of the scRNA-seq atlas was separated into two groups, EpCAM-positive

cells and other cell types; 10% of cells in each group were selected using Choice

function of NumPy, then two representative expression vectors (V ) were generated

by calculating the mean value of each gene; a random number f (between 0 and

100) was generated by Uniform function of NumPy; finally, the expression vector

of the pseudobulk sample was generated by Vcelltype × f + Vothers × (100− f). f ′

was used as benchmarking target.

9.2.4 Estimation of Cell Abundance through Support Vector Regres-

sion

Epsilon-support vector regresssion (E-SVR) was constructed with the Scikit-

Learn toolkit and trained with pseudobulk datasets. Training data and expression

matrix for prediction were merged and normalised by the Trimmed Mean of M-

values (TMM) method with library sizes as 1 Ö 106 [18, 19]. Then, features were
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filtered by marker genes. Marker genes were identified based on the gene expres-

sion differentiation calculated by Seurat [20]. The hyperparameters of SVR were

determined by a series of in silico experiements. In each group of experiments, a

consecutive gradient of parameters were tested with all other parameters as default

settings. For example, tested values of hyperparameter c (regularisation) include

1, 0.9, 0.8, 0.5. Tested values of hyperparameter ε (penalty) include 0, 0.02, 0.05,

0.1, 0.2.

9.2.5 Survival analysis, Statistics and Data Visualisation

The survival impact of EpCAM-positive cells was analyzed with TCGA-LIHC.

Survival information was obtained through cBioPortal [21]. Survival analysis was

performed with Scikit-Survival [22]. The patient cohort was first ordered based on

descending order of estimated cell fractions and then separated into high- and low-

level groups. All separation possibilities (from 1:n-1 to n-1:1) have been tested with

log-rank tests. The one with the lowest P-value in log-rank tests was selected as the

optimised separation. If all the P-values were above 0.05 or the optimisation strat-

egy did not return reasonable grouping (e.g., assigning one patient in one group),

the cohort was equally separated into two groups (median-point separation).

Pathway activities were estimated by PROGENy [23]. Results were visualized

by MatPlotLib.

9.3 Results

9.3.1 Estimation of Cell Fraction through Support Vector Regression

and Single-cell RNA-seq Atlas

We first tested the accuracy of SVR to predict the abundance of EpCAM-

positive cells. SVR was trained with pseudobulk data generated from the liver

cell atlas (GSE124395). Another 500 pseudobulk samples were generated with

the same procedure. The best configuration of epsilon-support vector regression

(SVR) was determined through a series of in silico experiments. Adjustments

of hyperparameter c and ε improve accuracy in prediction. Marker genes were

determined based on gene expression differentiation calculated by Seurat. Seurat

returned two parameters to evaluate marker genes – average logarithm of fold

change (avg log2fc) and percentage of occurrence (pct). We defined pct ratio as

pct.1/pct.2. The best feature number were determined by in silico experiments with

a gradient (1, 1.5, 2, 3, 5, 10, 20, 30, 50) of pct ratios. With the best configuration
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Figure 2: Survival impact and pathway activities of EpCAM-positive cells.
A, B. Survival impact of EpCAM-positive cells in TCGA-LIHC cohort. Optimisation strategy
did not return reasonable grouping in the analysis of overall survival (OS), thus median separation
strategy was used. Optimisation strategy gave out reasonable separation in the analysis of disease-
free survival (DFS). High level of EpCAM-positive cells show negative OS and DFS outcomes.
C. Pathway activities of EpCAM-positive cells (estimated by PROGENy). Cells are from the
scRNA-seq atlas GSE124395. Each groups compares the estimated pathway activities between
EpCAM-positive cells and other cells. The numbers on the right side of the boxes are mean
values.
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(hyperparameter c=1, ε=0, and pct ratio=3), SVR achieved a Pearson Correlation

Coefficient of 0.99764 between predictions and predefined values.

Then SVR was used to predict the abundance of EpCAM-positive cells in clini-

cal samples. Figure 1 shows the comparison of estimated EpCAM-positive cells be-

tween tumour and non-tumorous liver tissues. All of the studies in Figure 1 included

paired tissues from patients with liver cancers. LIRI-JP included primary (ICD10

C22.0) and secondary liver cancers (metastatic tumours from esophagus, stomach

and colon, etc.). GSE119336 compared primary cholangiocarcinomas while other

studies compared HCC cases. Among them, GSE77509 includes samples from

portal vein tumour thrombosis (PVTT). EpCAM-positive cells elevate in tumour

tissues in all the recruited studies.

The elevations of EpCAM-positive cells can also be observed in consecutive case

review studies. GSE6764 includes a case series covering 8 stages from premalignant

alterations to HCCs. Estimated EpCAM-positive cells does not show substantial

alterations in premalignant stages. Significant elevations can be seen from early

HCC. GSE126848 is an RNA-seq study about non-alcoholic fatty liver (NAFLD)

and non-alcoholic steatohepatitis (NASH). Active EpCAM-positive cells can be

observed in NAFLD group.

9.3.2 EpCAM-positive Cells as a Potential Therapeutic Target against

Liver Cancer

We estimated the impact of EpCAM-positive cells on patient outcomes through

survival analysis. In public databases, TCGA-LIHC provides follow-up information

of overall survival (OS) and disease-free survival (DFS). Patients were first stratified

with optimization strategy. However, this method did not return a reasonable

grouping in OS analysis. Thus, median separation strategy was used. Both OS

and DFS show significant negative impacts of EpCAM-positive cells.

An in-depth investigation of biological essence of EpCAM-positive cells may

hint at potential therapeutic strategies. Figure 2 shows the pathway activities

estimated by PROGENy. Compared with other liver cells, EpCAM-positive cells

show higher activities in Androgen, Trail, TGFb, p53, MAPK, and JAK-STAT

pathways. Further study could focus on the impact of these pathways in the cancer

progression.
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9.4 Discussion

Epithelial cell adhesion molecule (EpCAM) is an evolutionarily conserved trans-

membrane protein. It mediates cell contact in human epithelial tissues but overex-

presses in most cancer tissues. During the cancer progression, EpCAM participates

in cell proliferation, maintenance of stemness, epithelial to mesenchymal transition

and metastatic invasion [10–12]. Therefore, EpCAM not only serves as a cancer

biomarker but also as a potential therapeutic target [13,24].

SVR predicts a fraction of genes expressed specifically in EpCAM-positive cells.

In our optimised procedure, 322 genes were selected as features in SVR estimation.

These genes were filtered by differential expression calculated by Seurat. Bioin-

formatic analysis of these unique genes may hint at the biological essence and

potential therapeutic strategies. Figure 2 shows the example of pathway activity

estimated by PROGENy. PROGENy is a state-of-the-art algorithm for the esti-

mation of pathway activities. It evaluates the pathway activity according to the

expression of manually curated signature genes [23]. PROGENy highlighted Trail,

TGFb, p53, and MAPK pathways, all of which have been well-established in cancer

progression [25–28].

Cancer stem cells attract interest in anti-cancer therapy. Our study proves

the broad attendance of EpCAM-positive cells in the carcinogenesis of liver can-

cers. Future work should focus on the biological process essentially distinguishing

EpCAM-positive cells and unaffected normal liver tissues.
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Chapter 10

Summary and Future Perspectives

10.1 Summary

Viral hepatitis and liver cancer pose challenges to healthcare worldwide. Chronic

viral hepatitis is responsible for end-stage liver diseases and hepatocellular carci-

noma (HCC). Among the five pathogens for viral hepatitis with high incidence

rates, HBV and HCV are responsible for vast chronic infections. However, recent

studies suggest the long underestimation of HDV and HEV infections. Vaccina-

tion programs have reduced HBV-related HCC in some regions (e.g., eastern Asia).

Non-alcoholic fatty liver disease (NAFLD)/ non-alcoholic steatohepatitis (NASH)

and related cancer incidence rise quickly in other areas (e.g., America). More efforts

are required to improve the healthcare of viral hepatitis and liver cancer.

Hepatitis Delta virus (HDV) is a defect virus and requires the helper role of

HBV for propagation in human livers. Clinical diagnoses of HDV infection rely on

HDV antibody detection or PCR tests of HDV RNA. Complicated transmission

mechanisms have probably misled the calculation of HDV prevalence. Chapter 2

is an update on the estimation of HDV prevalence. Our methodology further broke

the grouping of HBsAg-positive carriers and HBV-infected patients with liver dis-

eases. Such refinement of patient stratification avoided the possible confusion of

HDV prevalence in different groups (e.g., HBsAg-positive individuals versus intra-

venous drug users) and regions (e.g., high prevalence in Asia and Africa). Our

study also revealed the relationship between infection status (e.g., HBV-HDV co-

infection versus HDV superinfection) and patient outcomes. In Chapter 3, we

updated the HDV phylogeny. Although studies of the global prevalence of HDV

infection and its relationship with other demographic characteristics require a uni-

fied classification system of HDV, confusions exist in the public resources of HDV

genomes. Due to recombinant events during viral adaptation (observed in both

patient samples and laboratory culture systems) and the high proportion of self-

complement in the HDV genome, uncorrected (e.g., mixed positive and negative

sense) genomes have been published. Phylogenetic and Bootscaning analysis con-

firmed potential recombinants. After excluding the recombinants and potentially
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confounding sequences, we updated the phylogenetic tree and classification system

of HDV genomes.

Hepatitis E virus (HEV) is the fifth identified pathogen for acute viral hepati-

tis. It propagates through faecal-oral transmission and is self-limited. However,

recent studies highlighted severe outcomes in pregnant women and immunocompro-

mised individuals. As a potentially underestimated pathogen, no specific therapy

is available for HEV infection. Current options include IFNα and ribavirin despite

frequent resistance. Inspired by the success of direct-acting antiviral (DAA) ther-

apy in HCV treatment, we investigated the HEV open reading frame (ORF) 2 at

both sequence and structure levels in Chapter 4. ORF2 products are the only

translational components in the infectious HEV particles. Conservation analysis

identified conserved amino acids and structural characteristics. The evolutionary

rate of a fragment is also associated with host tropism. This fragment stands in

the valley between antigen epitopes and may be involved in the interaction with

the host components. Chapter 5 reviews the role of mitochondria in the infection

of viral hepatitis. Mitochondria are the powerhouse of mammalian cells. Recent

studies gradually disclose their pivotal role in cell signalling. Mitochondria provide

a platform on which antiviral immunity complexes are assembled but also limit the

dissemination of viral progenies by dictating the cell fate via mechanisms such as

apoptosis. As a hub coordinating the antiviral-signalling pathways, mitochondria

may be an off-target sufferer in antiviral therapies. For example, some agents of

DAA therapy fail for the negative impact on mitochondria. Viruses reversely devel-

oped various strategies to interfere with the participation of mitochondria, further

circumventing immune surveillance. In cell culture systems, HEV produces large

amounts of ORF3 products, disturbing the initiation of apoptosis [1]. In Chap-

ter 6, we profiled the effects of pharmacological inhibitors targeting mitochondrial

electron transporting complexes (ETCs) in the HEV cell culture system. We found

that ETC III inhibitors inhibit viral replication. We projected that the antiviral

effects of ETC III inhibitors depend on the normal functioning of mitochondrial

permeability transition pores (MPTP), which may be disturbed by intracellular

HEVs for their better survival.

Liver cancer is one of the most lethal cancers and poses a health threat world-

wide. Most clinically diagnosed liver cancers are hepatocellular carcinoma (HCC)

and cholangiocarcinoma (CCA). Surgical resection and liver transplantation remain

the intervention strategy providing the best outcomes. However, their implemen-

tation often faces the loss of operational window and the scarcity of donor’s livers.
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As non-specific chemotherapy leads to frustrating results both in HCC and CCA,

innovative and more specific therapies are required. In Chapter 7, we investigated

the role of LGR5+ stem cells in liver cancer development. Reported markers for

liver cancer stem cells (CSC) include epithelial cell adhesion molecules (EpCAM),

CD133, CD90, CD13, and OV-6, etc. Leucine-rich repeat-containing G protein-

coupled receptor 5 (LGR5) is an established biomarker for colorectal CSCs. LGR5+

bipotential human liver stem cells have also been successfully cultured. We found

LGR5+ liver cancer cells resistant to conventional treatment such as sorafenib or

5-FU. Our discovery suggests a new member of the CSC marker family and the

potential as a therapeutic target. In Chapter 8, we used the deconvolution algo-

rithm and single-cell RNA-seq (scRNA-Seq) atlases to exploit the public RNA-seq

data. ScRNA-seq technology offers the advantage of deciphering the heterogene-

ity of tumours. However, investigations on the bulk tissues constitute the main

body of transcriptomic studies, while an update with scRNA-seq technology for

all these scientific scenarios is prohibitive. Fortunately, deconvolution algorithms

and emerging scRNA-seq atlases provide an economical alternative. With three

scRNA-seq atlases, we transformed bulk RNA-seq samples into compositions of

about 20 different cell types. Finally, we found five cell types/subtypes signifi-

cantly associated with patient survival by linking the estimated cell fractions and

patient outcomes. Some cell types, e.g., bi-potent stem cells, have the potential as

therapeutic targets. In subsequent analysis, bi-potent cell, proliferative cells and

cholangiocytes have close relationship with putative liver CSCs. Thus in Chapter

9, we focused on the EpCAM-positive cells. We used support vector regression

and scRNA-seq atlas to estimate the abundance of EpCAM-positive cells in the

tumour and non-tumour tissues and analysed the survival impact. Survival anal-

ysis suggests that high level EpCAM-positive cells negatively impact both overall

survival and disease-free survival of HCC. We also compared the pathway activities

between EpCAM-positive cells and other liver tissues.

10.2 Future Perspectives

This thesis aims to improve the healthcare of viral hepatitis and liver cancer.

We focused on HDV and HEV because recent evidence suggests the possible neglect

of these two pathogens. We also tried to identify innovative therapeutic targets

for liver cancer. Our study involves macroscopic and microscopic characteristics of

disease progression.

HDV is not highly prevalent but responsible for severe outcomes. The esti-
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mation of its global incidence rate relies on the resampling of scattered reported

data [2, 3]. This calculation could introduce bias because virus transmission cir-

culates in different subpopulations. Thus, Chapter 2 stressed the refined patient

stratification and highlighted the significantly higher incidence rates in intravenous

drug users. Incidence rates may influence the clinical practice in primary care

settings or specialized medical centres. Subsequent epidemiological studies can

provide more insights when combined with other disease features such as racial

diversity, risk factor exposure, geographical and social information, etc. Future

research should take into account more detailed data and reasonable stratification

strategies. HDV genomes are short but contain multiple self-complementary re-

gions. The high mutation rates of RNA replication also confuse the construction

of HDV phylogeny. In Chapter 3, we re-examined possible errors in published

resources and updated HDV phylogeny. We adopted state-of-the-art algorithms to

exclude recombinant strains and distinguish mixed-sense and anti-sense genomes.

Different virus genotypes or subtypes have various host prevalences and patholog-

ical potentials. An accurate virus phylogeny may help to understand the virus

adaptation during evolution.

HEV is typically self-limited but often leads to high mortality rates in preg-

nant women and immunocompromised individuals. Commonly used present an-

tiviral agents include IFNα and ribavirin, which are not specific for HEV and

frequently lead to resistance. Moreover, previous studies also revealed the dete-

rioration of HEV infection in the presence of clinically widely used drugs, such

as everolimus [4]. To search for new therapeutic targets, we used conservation

analysis for the HEV ORF2 gene in Chapter 4. HEV ORF2 encodes the cap-

sid proteins with three glycosylation sites. Our study suggests these modification

sites are highly conserved. The second glycosylation site has a conserved motif

(310NLT). This modification is a disturbing factor in the viral assembly from the

perspective of 3D structure. However, mutation of glycosylation sites leads to the

ceasing of infection in macaques, suggesting an additional role in the adaptation

of viral infection [5]. Structure modelling of all the representative strains of HEV

may facilitate further development of genetically engineered antibodies or search

for cellular receptors for virus entry through molecular docking. Finally, our study

adopted the state-of-the-art algorithm (I-TASSER [6]) in 2017. In 2021, AlphaFold

2 [7] made a great leap forward, facilitating the prediction of HEV transcription

machinery [8]. This breakthrough hints at the potential of protein structure mod-

elling in developing DAA therapies. In Chapter 5, we reviewed the progression

203



of research on mitochondria in the infection of viral hepatitis. Mitochondria act in

response to viral infection in two ways, directly participating in the assembly of the

mitochondrial antiviral signalling (MAVS) complex or indirectly limiting the prop-

agation by dictating the cell fate through mechanisms such as apoptosis. Viruses

developed strategies to interfere with the regulatory nodes in the interaction net-

work between viruses and mitochondria. These nodes may be crucial modulators

of antiviral immunity and thus could be potential therapeutic targets. Multiple

clinically used drugs have impacts on cellular metabolism, further influencing mi-

tochondria. Metformin administration is at ultra-high frequency. Identification of

its virus-promoting effects may help doctors to avoid unfavourable conditions (e.g.,

patients with HEV infection and gestational diabetes). Inspired by the review in

Chapter 5, we profiled the effects of pharmacological inhibitors of mitochondrial

ETCs in the HEV cell culture system in Chapter 6. We found that some agents

targeting ETC III show significant anti-HEV potential and proposed the hypoth-

esis that the formation of MPTP is essential in mitochondrial antiviral immunity

and could be disturbed by HEV for its better survival. MPTP formation is a hall-

mark event in the initiation of apoptosis, which induces cell death and limits the

propagation of virus infection. The interference with apoptosis helps elongate the

viral replication, as observed in HBV cell culture systems. This mechanism may

be responsible for the formation of chronic infection and the initiation of cancer

development [9]. In contrast to HBV/HCV/HBV-HDV infections, very few HEV

chronic infections end up with liver cancers. Investigating mitochondrial-aided an-

tiviral immunity may not only facilitate the development of antiviral strategies but

also disclose the crosslink between chronic viral infections and the initiation of liver

cancer.

Failures of recent trials repudiated non-specific chemotherapy in HCC or CCA

management. Sorafenib is among the few successful drugs for HCC therapy by in-

creasing the survival length of advanced HCC patients by three months. Sorafenib

is a multikinase inhibitor targeting pathways such as Raf-1, VEGFR, PDGFR, etc.

It modulates tumour cell proliferation, apoptosis, and tumour angiogenesis [10].

Our study therefore aimed at innovative therapies. In Chapter 7, we repurposed

an established biomarker for CSC in colorectal cancer to HCC and found unique

behaviours of LGR5+ cells in liver cancer. CSC theory hypothesizes that small

numbers of dedicated stem cells fuel tumour growth. However, it is difficult to iden-

tify CSCs except through indirect methods such as lineage tracing technology [11].

Researchers have confirmed cell lines with multiple markers in animal models (in-
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cluding our study). Gaps still exist between cell line observations and clinical

implications before application in clinical practice. Tumour stem cells generate

organoids in vitro, imitating TME [12]. Mouse models with xenograft tumours were

used to mimic the systemic impact of cancer development and therapy [12]. How-

ever, barriers still exist before the generalization of these findings, such as the role

of CSCs in heterogeneous clinically diagnosed cases and their long-term impacts.

To overcome this issue, we tried to link the TME and clinical outcomes through

the deconvolution of bulk RNA-seq samples with scRNA-seq atlases in Chapter 8.

With identified marker genes representing specific cell types/subtypes, we used the

state-of-the-art deconvolution algorithms to distil bulk RNA-seq samples into cell

fractions. By linking estimated cell type/subtype fractions to the patient outcomes

(overall survival and disease-free survival), we found five cell types/subtypes highly

correlated with patient survival. With similar approaches in Chapter 9, we found

broad existence of EpCAM-positive in tumour and premalignant tissues and active

pathways in EpCAM-positive cells. These findings provide alternative evidence

for the CSC theory. Further bioinformatic anlysis could guide the development

of innovative therapies. For example, our study demonstrates the estimation of

pathway activities by PROGENy. Other methods include the construction of gene

regulatory networks and profiling the activities of transcription factors, etc [13,14].

These analyses may help the identification of essential pathways supporting cancer

cell vitality or druggable targets, further guiding the development of anti-cancer

therapy. In summary, our study illustrates a convenient and economical approach

to testing the biological findings in clinical observations.

10.3 Conclusion

An ideal therapy should coordinate two flip sides of interventions on patients

– efficacy and safety. To identify such valuable therapeutic targets, we need to

uncover the unique biological events which sufficiently distinguish diseased and

healthy components. In this thesis, we tried to observe these differences at mi-

croscopic and macroscopic levels. From the microscopic perspective of biology, we

calculated the conservation of viral genes, recombinants in virus evolution, and cell

fraction of bulk RNA-seq samples. We also observed the antiviral effects of FDA-

approved drugs in cell culture systems, the mitochondrial morphology in virus

infection and cancer growth, and the biology of cancer-associated stem cells. In

the macroscopic view, we estimated the geographical or population characteristics

during virus propagation and the impact of a molecular or cellular identity on the
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survival of cancer patients. As the data accumulate exponentially, the observation

associating the molecular or cellular events to macroscopic disease progression may

generate more valuable therapeutic strategies.
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Summary in English

Right in the upper part of the abdomen, below the lowest ribs, lies the liver.

The liver has many important functions: it purifies the blood of toxins by con-

verting them into less toxic substances; it produces bile juice, necessary for the

absorption of fats and fat-soluble nutrition; it produces important substances such

as cholesterol, protein components of haemoglobins (which carry the oxygen in the

blood), proteins necessary for the clotting of the blood, albumin (which maintains

circulation) and antibodies among many other tasks. As a result, liver diseases

often result in unfavourable consequences. Better understanding and developing

new treatments for liver diseases is an important task for biomedical science. In

this thesis, I try to contribute to this. I mainly look at two viral liver diseases

(Hepatitis D and Hepatitis E), as well as liver cancers. In chapter 1, I give an

extensive account of the choices I have made.

In the fist part of this thesis, I focus on Hepatitis D. This mainly concerns

the epidemiology and also the evolution of the pathogen. The disease is caused

by the Hepatitis D virus, which can only amplify in cells that are also infected

by Hepatitis B virus. All patients with Hepatitis D therefore also have Hepatitis

B. In chapter 2, I showed that the symptoms of Hepatitis B/D co-infection are

worse than mono-infection with only the Hepatitis B virus. In this chapter, I also

estimated the number of Hepatitis D patients worldwide. It turns out that global

prevalence of Hepatitis D is a shockingly 0.8%. Because Hepatitis D can be pre-

vented by vaccination against Hepatitis B, these data clearly show the importance

of the latest vaccination. I was able to publish this data in the journal Infectious

Diseases. Encouraged by these results, I also decided to tackle a problem that

researchers encountered when designing rational strategies to combat Hepatitis D:

the taxonomy of this virus was quite a hodgepodge. Different virus strains of the

Hepatitis D virus are distinctive anyway. There are many confusions between dif-

ferent strains and, in the past, different starting positions have often been used

when offering viral sequences to public databases of this circular virus. This made

it impossible, for example, to classify or name a new variant in a rational way. In

chapter 3 of my thesis, I do something about this situation by proposing an HDV

standard genome and an updated system on how to classify viruses. My work on

this was published in the leading journal Journal of Viral Hepatitis.

In the second part of this thesis, I discuss my work concerning the Hepatitis
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E virus. Hepatitis E occurs worldwide but has a local presentation, due to the

presence of different virus subtypes in different parts of the world. In the Nether-

lands, there is also Hepatitis E. The symptoms of hepatitis E resemble those seen

in hepatitis A. For the disease caused by this virus, there is no registered medi-

cation yet. Some agents can be used in off-label indications, although these have

many side effects and treatment of pregnant women is still not possible. Because

expectant mothers in particular may show a very unfavourable clinical picture after

infection with certain genotypes of the Hepatitis E virus, which is a major problem.

One of the things we don’t understand about Hepatitis E viruses is the genomic

organization through which the virus codes for the capsid proteins. By compar-

ing numerous different virus sequences for these capsid proteins and searching for

similarities, I was able to bring order to this chaos. A possible application of this

work is that it is now easier to develop vaccines that should protect against this

virus. The results are described in chapter 4 of this thesis, but I also made it

known to the world through a publication in the respected journal Gene. Next, I

tried to better understand the interaction of the hepatitis E virus with the human

body. I did this through a literature study that was included as chapter 5 in this

thesis, which also appeared in the top journal Reviews in Medical Virology. To

better understand the biology of the hepatitis E virus within the host cell, I focus

on the so-called mitochondrion, the energy factory of the cell. In the mitochondria,

oxidative phosphorylation (through electron transport chains) takes place, together

with the citric acid cycle, at the centre of the metabolism of all living creatures

that consume oxygen. I was able to conclude that the biology of the HEV virus

depends on the presence of the respiratory chain and the inhibition of HEV by

ETC inhibitors hints at a rational way to combat the virus. I also tested this ex-

perimentally and indeed I saw that pharmacological inhibition of the respiratory

chain restricted the replication of the hepatitis E virus (chapter 6). These results

appeared in the prestigious broad-scientific journal FASEB Journal.

Both viral liver infection and fatty liver can lead to liver cancers and the last

experimental chapters of this thesis deal with this. In chapter 7, I show how to

use organoids in designing better therapies for liver cancers. I operated this system

to investigate whether disabling a particular stem cell type, called LGR5-positive

cell, had value in treating liver cancers. I showed that chemotherapy alone was

not able to fight liver cancer. Also, merely turning off the LGR5-positive cell had

little effect. If both treatments were combined, the liver cancer was effectively

suppressed. These promising results were published in the leading scientific jour-

209



nal Nature Communications. In chapter 8, I will discuss a deliberate analysis

method, the so-called scRNA-seq. Obviously, this method can be of great value

in better understanding liver cancer. In contrast, however, to ordinary RNA-seq,

the scRNA-seq is a terribly expensive method and therefore hardly used for liver

cancer research. By using reference scRNA-seq atlases, I was able to create a

method to project scRNA-seq findings to ordinary RNA-seq datasets. This makes

it possible to use the power of scRNA-seq cheaply, even when re-exploiting existing

ordinary RNA-seq data. I have spread this new method to my colleagues through

a publication in the respected scientific journal Cancers. In the last experimental

chapter, chapter 9 of this thesis, I elaborate on this technology, but now I focus

on identifying the fraction of so-called EPCAM-positive cells using conventional

RNA-seq datasets. This should make it possible to determine the quantity of can-

cer stem cells from such datasets, something that can form an important basis in

the rational design of new pathways for the treatment of liver cancers.

I end the thesis with a summary (chapter 10) of the results achieved and I

mirror this to the questions I had asked myself at the beginning of this dissertation.

Then I will focus on how my results can influence future studies and where the field

is moving in general. All in all, I hope to have contributed to the human’s fight

against liver disease with this thesis.
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Samenvatting in het Nederlands voor de
leek

Rechts boven in de buik, onder de laagste ribben, ligt de lever. De lever heeft

vele belangrijke functies: zij zuivert het bloed van gifstoffen door deze in minder

giftige stoffen om te zetten, zij produceert de gal, noodzakelijk voor de opname van

vetten en vetoplosbare producten, zij produceert belangrijke stoffen zoals choles-

terol, eiwitonderdelen voor hemoglobine (de stof die de zuurstof in het bloed ver-

voert), eiwitten die nodig zijn voor de stolling van het bloed, albumine (wat de

circulatie in stand houdt) en afweerstoffen naast nog vele andere taken. Ziekte

van de lever heeft dientengevolge vele nare consequenties en het beter begrijpen en

ontwikkelen van nieuwe behandeling voor leverziektes is een belangrijke taak voor

de biomedische wetenschap. In dit proefschrift probeer ik hier een bijdrage aan te

leveren. Hierbij kijk ik voornamelijk naar twee virale leverziektes (Hepatitis D en

Hepatitis E) en naar kanker van de lever. In hoofdstuk 1 geef ik een uitgebreide

verantwoording van de keuzes die ik daarbij heb gemaakt.

In het eerste deel van het proefschrift concentreer ik mij op Hepatitis D. Hierbij

gaat het voornamelijk over de epidemiologie en ook de evolutie van de ziektever-

wekker. De ziekte wordt veroorzaakt door het Hepatitis D virus, een virus dat zich

louter kan vermenigvuldigen in cellen die ook gëınfecteerd zijn door Hepatitis B.

Alle patiënten met Hepatitis D hebben dus ook Hepatitis B. In hoofdstuk 2 laat

ik zien dat de ziekteverschijnselen van Hepatitis B/D co-infectie zijn echter erger

dan mono-infectie met alleen het Hepatitis B virus. Ook doe ik in dit hoofdstuk

een schatting over het aantal Hepatitis D patiënten wereldwijd. Het blijkt dat

wereldwijde prevalentie van Hepatitis D een schokkende 0,8% is. Omdat Hepatitis

D voorkomen kan worden door te vaccineren voor Hepatitis B, laten deze data

het belang van de laatste vaccinatie goed zien. Ik kon deze data publiceren in

het vaktijdschrift Infectious Diseases. Aangemoedigd door deze resultaten besloot

ik ook een probleem aan te pakken waar onderzoekers bij het ontwerpen van ra-

tionele strategieën om Hepatitis D te bestrijden tegen aan liepen: de taxonomie

van dit virus was nogal een ratjetoe. Verschillende virusstammen van het Hep-

atitis D virus zijn sowieso verschillend, er bestaan vele fusies tussen verschillende

stammen en in het verleden zijn er bij het aanbieden van virale sequenties aan

publieke databases van dit cirkelvormige virus vaak verschillende startposities ge-

bruikt. Hierdoor was het bijvoorbeeld onmogelijk om een nieuwe variant op de
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rationele wijze te classificeren of benoemen. In hoofdstuk 3 van mijn proefschrift

doe ik iets aan deze situatie door een HDV standaard genoom voor te stellen en een

systematiek over hoe virussen te classificeren. Mijn werk hieraan werd gepubliceerd

in het vooraanstaande vaktijdschrift Journal of Viral Hepatitis.

In het tweede deel van dit proefschrift behandel ik mijn werk met betrekkking

tot het Hepatitis E virus. Hepatitis E komt wereldwijd voor maar heeft een lokale

presentatie, dit door de aanwezigheid van verschillende virusstemmen in verschil-

lende werelddelen. In Nederland is ook Hepatitis E, waarbij de ziekteverschijnselen

van hepatitis E lijken op die zoals gezien van hepatitis A. Voor de ziekte veroorzaakt

door dit virus is nog geen registreerde medicatie. Er zijn wel middelen die off-label

gebruikt kunnen worden, maar deze hebben veel bijwerkingen en ook behandeling

van zwangere vrouwen is niet mogelijk. Omdat met name aanstaande moeders

een zeer ongunstig ziektebeeld kunnen vertonen na besmetting met bepaalde geno-

typen van het Hepatitis E virus is dit een groot probleem. Een van de zaken

die we minder begrijpen van Hepatitis E virussen is wat de genomische organ-

isatie is van dat stuk van het virus wat codeert voor de manteleiwitten. Door

talrijke verschillende virussequenties voor deze manteleiwitten te vergelijken en te

zoeken naar overeenkomsten, kon ik orde in deze chaos aanbrengen. Een mogelijke

toepassing van dit werk is dat het nu makkelijker wordt om vaccins te ontwikkelen

die bescherming moeten bieden tegen dit virus. De resultaten staan beschreven

in hoofdstuk 4 van dit proefschrift maar ook ik ook wereldkundig middels een

publicatie in het gerespecteerde vaktijdschrift Gene. Vervolgens probeerde ik de

interactie van het hepatitis E virus met het menselijk lichaam beter te begrijpen.

Dit deed ik middels een literatuurstudie die als hoofdstuk 5 in dit proefschrift

is opgenomen maar ook verschenen is in het topvaktijdschrift Reviews in Medical

Virology. Om de biologie van het hepatitis E virus met de gastheercel beter te

begrijpen concentreer ik mij op het zogenaamde mitochondrion, de energiefabriek

van de cel In de mitochondria speelt zich de oxidatieve fosforylering of elektro-

nentransportketen af die samen met de citroenzuurcyclus in het midden van het

metabolisme staat van alle levende wezens die zuurstof kunnen gebruiken. Ik kon

concluderen dat de biologie van het HEV virus afhankelijk is van de aanwezigheid

van de ademhalingsketen en dat haar remming een rationele weg kan betekenen bij

bestrijding van het virus. Ik heb dit ook experimenteel getest en inderdaad zag

ik dat farmacologische remming van de ademhalingsketen de vermenigvuldiging

van het hepatitis E virus aan banden legde, maar wel goed verenigbaar was met

het leven (hoofdstuk 6). Deze resultaten verschenen in het prestigieuze breed-
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wetenschappelijke tijdschrift FASEB Journal.

Zowel virale leverinfectie alsook leververvetting kunnen leiden tot leverkanker

en de laatste experimentele hoofdstukken uit dit proefschrift gaan hierover. In

hoofdstuk 7 laat ik zien hoe je organöıden kan gebruiken bij ontwerpen van betere

therapie voor leverkanker. Ik heb ik dit systeem geëxploiteerd om te onderzoeken

of het uitschakelen van een bepaald stamceltype, de zogenaamde LGR5-positieve

cel, waarde had bij het behandelen van leverkanker. Ik liet zien dat chemotherapie

alleen niet in staat was leverkanker te bestrijden. Ook louter het uitschakelen van de

LGR5-positieve cel had weinig effect. Werden beide behandelingen gecombineerd,

dan werd de leverkanker wel effectief bestreden. Deze veelbelovende resultaten

werden gepubliceerd in het vooraanstaande wetenschappelijke tijdschrift Nature

Communications. In het volgende experimentele hoofdstuk, hoofdstuk 8, ga ik in

op een zeer nieuwe analyse methode, de zogenaamde scRNAseq. Het is duidelijk

dat deze methode van grote waarde kan zijn bij het beter begrijpen van leverkanker.

In tegenstelling, echter, tot gewone RNAseq is de scRNAseq een verschrikkelijke

dure methode en daardoor wordt deze nog nauwelijks gebruikt voor leverkankeron-

derzoek. Door gebruik te maken van referentie scRNAseq databestanden kon ik

een methode maken om gewone RNAseq data te projecteren als scRNAseq data.

Hierdoor wordt op goedkope wijze mogelijk om toch de kracht van scRNAseq te

gebruiken, ook bij hergebruik van bestaande gewone RNAseq data. Deze niewue

methode heb ik middels een publicatie in het gerespecteerde wetenschappelijke vak-

tijdschrift Cancers verspreid onder mijn vakgenoten. In het laatste experimentele

hoofdstuk, hoofdstuk 9 van dit proefschrift werk ik deze technologie verder uit,

maar nu concentreer ik mij op het identificeren van het aantal zogenaamde EPCAM

positieve cellen gebruik makend van conventionele RNAseq datasets. Hiermee moet

het mogelijk worden om uit dergelijke datasets ook het aantal kankerstamcellen te

bepalen, iets wat een belangrijke basis kan vormen bij het rationeel ontwerpen van

nieuwe wegen voor de behandeling van leverkanker.

Ik eindig het proefschrift met een samenvatting (hoofdstuk 10) van de be-

haalde resultaten en ik spiegel deze aan de vragen die ik aan het begin van deze

dissertatie aan mijzelf had gesteld. Daarna ga ik name in hoe mijn resultaten

toekomstige studies kunnen bëınvloeden en waar het veld zich in het algemeen naar

toe beweegt. Alles tezamen hoop ik met dit proefschrift een bijdrage te hebben

geleverd aan het gevecht der mensheid tegen leverziekte.
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