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A B S T R A C T   

Contributions that noise can make to the objective of detecting signal in agent expectations for price in financial 
markets are examined. Although contrary to most assumptions on exogenous noise in financial markets as 
increasing both risk and uncertainty in the detection of signal, a basis for the contribution that noise can have to 
agent objectives in signal detection through stochastic resonance (SR) is well-documented across disciplines. 
After reviewing foundations for the micro-processing of expectations, a multi-component model of networked 
agents that includes a component of bounded rational processing and a component that has been cited as 
generating “herding” behavior in financial markets is offered. The signal-to-noise ratios in the proposed models 
provide a basis to investigate SR in an application to financial markets. Results with both deterministic and 
stochastic forms of the proposed model support SR as a process in which randomness can contribute to the re-
covery of signal in agent expectation. Additionally, predictive models that indicate the sensitivity of the 
occurrence of SR to the parameters of the models of agent expectations were estimated and cross-validated. The 
discriminative ability of the models is reported through Area Under the Receiver Operating Curve (AUROC) 
methodology. These results extend the cross-discipline demonstrations of SR to models of price in financial 
markets.   

1. Introduction 

Agent expectations have long been established as intermediaries in 
market behavior across a range of disciplinary contexts (e.g., [1–5]). In 
financial economics, an increasing number of applications continue to 
indicate the relationship of measured expectations to market behavior in 
price and returns (e.g., [6,7]). Accounts of the dynamics of market- 
related expectations, commonly assume at least bounded rationality 
(e.g., [8]) in the use of information to recover signal on price expecta-
tions. As now extensively addressed (e.g., [9]), traders can be catego-
rized as either fundamentalists or “trend followers” (“noise”) traders. 
Fundamentalists can be represented as at least bounded rational in the 
use of objective information in trading. So-called “noise” traders are 
commonly considered to be trend-followers or momentum traders. 
Seminal discourse that includes Grossman and Stiglitz [10] and Black 
[11] has established the importance of “noise” traders in the dynamics of 
market price. Also, see Peress and Schmidt [12]. In the absence of such 
traders, market price would reduce to private and public information. 

In most models of expectations including those in which agents are 
categorized as either fundamentalists or “noise” traders, exogenous 

randomness is assumed to increase uncertainty and risk. Our interest is 
in extending the consideration of randomness in expectations as a price 
signal in financial markets. As will be reviewed, there are sizable dem-
onstrations across disciplines of stochastic resonance (e.g., the compi-
lation in McDonnell, Stocks, Pearce, and Abbott [13]) as a process 
through which randomness can increase efficiency in the detection of 
the signal. In the discourse to follow, the conditions of SR in models of 
agent price expectations for the market price will be directly investi-
gated in deterministic and stochastic market models. Results that will be 
reported support the presence of SR in the signal-to-noise ratios (SNR) of 
the proposed models of price expectations. As will be reviewed, these 
results are among the few demonstrations of SR in economic processing 
and the first we can locate that investigate SR in comprehensive models 
of price expectations in financial markets. The next section will directly 
elaborate on the research problem and objectives. 

1.1. Research problem and objectives 

Agent expectations have been theorized to efficiently anticipate price 
in financial markets (e.g., [4,7]). The research objective of this 
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manuscript is to increase our understanding of dynamics in agent ex-
pectations for a market price through (1) elaborations of behavioral 
foundations of micro-processing in these dynamics, (2) investigation of 
conditions of SR under which the exogenous randomness that is endemic 
in financial markets can increase efficiency in the recovery of signal and 
(3) testing of the sensitivities of the occurrence of SR to model param-
eters. Our applications are in network models that represent an inter-
action between agents as addressed accounts that recognize “herding” in 
financial markets (e.g., [14]). Results for the research objectives in the 
estimation of what is the signature of SR in the signal-to-noise ratio 
(SNR) of multi-component models of expectations will be reported. 

The proposed models of the price expectations of agents are multi- 
component. In contrast to the definitions of different categories of 
agents, it is assumed that individual agents, process as fundamentalists 
under certain conditions and as the equivalent of momentum traders 
under other conditions. A form of the conditions in a transition function 
that weighs the relative weighting of components in terms of distances 
between market price and measures of fundamental or “intrinsic” value 
will be offered. In applications, fundamental or “intrinsic” values can be 
given a metric in price-earnings (PE) or price-earnings to growth (PEG) 
ratios. 

1.2. Organization of the discourse 

In the next section, background studies of price expectations in 
financial markets will be reviewed and the basis for a multi-component 
model and a transition function, that defines component dominance will 
be introduced. In the sections that follow, background studies of sto-
chastic resonance will be reviewed and forms that integrate the presence 
of SR in multicomponent models of agent expectations will be offered. 
The signal-to-noise ratio that is the common base for the detection of SR 
will subsequently be defined for the proposed models of agent price 
expectations. Consistent with the methodology in SR [13], the presence 
of a maximum in the SNR as a function of an exogenous noise level in 
computational exercises that integrate market data will then be exam-
ined. Predictive models that relate model parameters in the forms of the 
SNR to the incidence of SR will also be reported. A final section will 
review the results on SR in the models of price expectations and consider 
directions for subsequent study. 

2. Multicomponent agent-based models in financial markets 

Multicomponent models of agents in financial markets typically 
represent agents who are at least bounded rational and those who are 
predominantly influenced by other agents. The dynamic process in the 
latter is commonly cited as “herding” (e.g., [14,15]. Harras and Sornette 
[16], for example, offer a multi-component model of adaptive agents for 
the growth of a “bubble” in a financial market. In their model, agents 
switch from buyers to sellers or vice-versa, through exogenously-driven, 
“news-based” adjustments to the weights of the model components. In 
exercises that these investigators report, news sources appear to increase 
the correlation between agents in their states and presage or are coor-
dinate with the growth of a price “bubble”. 

In a similar direction, Eckrot, Jurczyk, and Morgenstern [17] 
investigate a multi-component agent-based model that allows for a case 
of multiple assets and information for which there is either public or 
private access. Their model is cited as an Ising analog and shows prop-
erties of fat tails and volatility clustering that have long been recognized 
in financial markets. Although, not strictly in a multi-component model, 
Li and Teo [18] have considered a combinatorial form for uncertainty 
and randomness in financial markets under an alternative definition of 
skewness in the randomness. The investigators integrate their definition 
of randomness in a modified mean-variance model. 

While the present study agrees with previous investigators that 
market behavior in aggregates is likely to be generated by contrasts in 
agent processing that introduce different dynamics, the processing of 

multiple components in individual agents will be extended. Rather than 
grouping traders in categories of fundamentals and “noise” traders that 
have different dynamics, the proposed multi-component models of agent 
processing generate price expectations in financial markets from 
competition between components in bounded rational processing and 
the “copying”, of other agents that underlies “herding” [e.g. Rangvid 
et al. [19]]. The non-linear dynamics of a transition function that define 
the relative weight of each component reflects agent behavior in 
response to the distance between market price and metrics of funda-
mental value. Behavioral foundations for the proposed micro-processing 
in expectations for price will be elaborated on in the next section. 

2.1. Multicomponent model of agent heuristics in the formation of 
expectations 

2.1.1. Bounded rational processing 
In agreement with a range of specifications of expectations, it is 

recognized that agents do not generally process objective information on 
the market in a form that is strictly consistent with rationality (e.g., [7]). 
Theorists of bounded rationality [8,20,21] recognize that agents are 
limited in their information processing capabilities and commonly use 
approximation heuristics in this processing. In a representation of this 
component, it is assumed that agents use predictive information on 
fundamentals of value that underlie market price (e.g., PE or PEG ratios) 
in forming their expectations but adjust their expectations based on 
feedback from the past accuracy of comparable information in predict-
ing price. 

2.1.2. Imitative processing and herding 
While there are contentions that even bounded rationality can 

maintain efficient markets (e.g., Lo [22]), behavior that exhibits so- 
called “excessive exuberance” (Shiller [23]) and agent copying of the 
expectations of others is widely recognized as departing from strict ra-
tionality and generating “herding” in the expectations of agents (e.g., 
[19]). Chen, Tan, and Zheng [14] have, for example, investigated an 
agent-based model in which “herding” exists at levels of individual se-
curities, market sectors, and overall market levels. Consistent with these 
and other investigators, a form for imitative processing in a second 
component of agent expectations for price that directly follows from 
agent observations of the states or levels of referent individuals will be 
provided. 

The economic importance that an equivalent of imitative processing 
can have to expectations has been cited in different disciplines [24–26]. 
In an extreme, qualitative text on expectations report a range of in-
stances in which agents distinctly depart from rational or bounded 
rational processing (e.g., [27,28]). Such a so-called “mercurial” sensi-
tivity with which “herding” can build has been observed across many 
applications in financial markets (e.g., [15,29,30]). 

2.1.3. Transition function 
A behavioral basis for dynamic variation in the relative weights of 

bounded rational and herding components of agent expectations will 
next be elaborated. Component dominance in the transition function to 
be proposed is defined by a distance of market price from metrics of 
fundamental value (e.g., historical PE or PEG ratios The transition 
function allows for what can be considered to be the more realistic agent 
behavior of one component dominating with continuing processing 
occurring in the other component. This transition function further in-
troduces non-linear dynamics in price expectations since extreme de-
partures of market price from metrics of fundamental value (as can be 
driven by the equivalent of “herding”) are commonly “corrected” by 
what can be an abrupt transition to a level that is closer to fundamental 
value metrics. 

2.1.4. Non-linear dynamics in the transition function 
In the proposed agent processing, component dominance that is 
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dominated by imitative processing can revert to bounded rational pro-
cessing to correct for a price level of an asset relative to its fundamental 
value that an agent judges to be “excessive”. A basis for the non-linear 
dynamics introduced in the transition function is implied by a number 
of psychological theorists who are sometimes labeled as “incongruity 
theorists” (e.g., [31,32]). These theorists maintain that while small vi-
olations of in-place expectations generate interest and attempts to 
explain and reconcile the violations in what we designate as bounded 
rational processing, larger violations can increasingly generate fear and 
“trepidation”, and, in turn, “irrational” (e.g., imitative) processing that 
results in “herding” (e.g., Foster and Keane [33]).1 

The stylized micro-processing in dynamics of bounded rational and 
imitative components followed can be qualitatively described in the 
graphic in Fig. 1. This graphic exemplifies the proposed account of 
component dominance in terms of the distance between price and 
fundamental value metrics under a consistent measure of dispersion. 

Fig. 1 assumes a symmetrical positive and negative range of expec-
tations for the price of an asset for which there is a market large enough 
to be efficient in matching buyers and sellers. At a mid-point of the range 
(εo), expectations are assumed to be approximately equal to metrics of 
fundamental value, i.e., ε0 = ν0. Even in what was designated as boun-
ded rational processing, there can be more or less random variation 
around fundamental value as in the bounded region of A to -A. The levels 
of ε max (or -ε max) are denoted as the boundary of region A and can be 
considered as the boundary of a confidence interval in which a bounded 
rational component dominates. 

Exogenous events such as the arrival of new technology or natural 
disasters can generate an increase in the distance of market price from 
fundamentals of intrinsic value that are still processed in a bounded 
rational component. In such cases, these events can be assumed by 
agents to presage an increase or decrease in the earnings stream from the 
asset. However, if the expectations of others (or even inference on these 
from the momentum of observed market prices) are of sufficient 

magnitude relative to volatility for a definable duration, agent expec-
tations can be driven to a level that exceeds what has been designated as 
confidence intervals around the mid-point of fundamental value. When 
this occurs, there is commonly a transition to the dominance of the 
imitative processing that underlies “herding”. A transition from boun-
ded rational to imitative processing (A → B in the Figure) can be oper-
ationally defined to occur when the distance of market price from 
fundamental value is a multiple of standard deviations from its zero- 
point equivalence to fundamental value. 

Even when imitative processing dominates, it is assumed here that 
there is a continuing presence of bounded rational processing. As 
imitative processing increasingly drives expectations further from what 
is fundamental value, bounded rational processing by an agent is 
assumed to continuously track the discrepancy. When the discrepancy is 
large enough, the bounded rational and imitative components can once 
again have equal weights in the expectations of an agent. In the Figure, 
this occurs at Max εmax or –Max εmax. The difference between price and 
fundamental value can then fluctuate in a relatively small range around 
ε0 for some time until the equivalent of another disturbance is large 
enough to drive it beyond the bounds of the confidence interval (+A, − A 
in the figure) and the subsequent dynamics repeat in an opposite 
direction. 

A form of a transition function that represents these dynamics in 
component weights can be given as. 

α(t) =
{

0.9, if ∣Vt − Pt∣ ≤ ζt or ∣Vt − Pt∣ ≥ 2ζt
0.1, otherwise (1)  

where ζt is a bound on the interval of difference between price and 
fundamental value as indicated in Fig. 1. 

3. Stochastic resonance (SR) 

The indirect and subtle ways that randomness can contribute to 
functional objectives have been engagingly recognized in qualitative 
discourse by authors that include Gladwell [35] and Taleb [36]. In ap-
plications to financial markets, a basis for a well-defined account in 
which exogenous randomness can contribute to the detection of a signal 
can be through stochastic resonance ([13]). In SR, a level of exogenous 
randomness has been shown to have the capability to make a sub- 
threshold signal detectable. The generality of SR is now supported by 
extensive numerical and empirical applications across disciplines that 
include Hopfield neural networks (e.g., [37–39]), predator signals in 
crayfish (e.g., [40]), and perceptual interpretation of ambiguous figures 
(e.g., [41,42]) as well as binary states of financial markets in “bubbles 
and crashes” (e.g., [43,44]). 

Available applications of SR in financial markets have not addressed 
price expectations of agents and the multiple components of bounded 
rationality (e.g., Conlisk, [8]) and “herding” in referent agents (e.g., 
[30,45,46]) in their processing. Since expectations are precursors of 
market behavior (e.g., [7]), there is an opportunity to contribute to our 
understanding of dynamics in financial markets by extending the con-
dition of exogenous randomness to the detection of signals in 
expectations. 

Specification of agent expectations provided offers a more complete 
representation of continuous agent micro-processing in financial mar-
kets than has been introduced in previous demonstrations of SR in bi-
nary states of “bubbles” and “crashes” in market price (e.g., [43,44]). 
The results reported by investigators indicate the functionality that 
exogenous randomness can have through SR in extreme cases in “bub-
bles” and “crashes” of financial markets. We propose to elaborate on 
these models by addressing SR in the continuous processing of multi-
component models of agent expectations for price. The range of appli-
cations across disciplines that have demonstrated the case of efficiency- 
increasing randomness does not ensure a comparable effect in the 
detection of signal for market price in agent expectations. However, the 

Fig. 1. Dynamics of multicomponent processing in expectations.  

1 Tan [34] documents one recent example of emotion-based momentum and 
subsequent abrupt corrections toward fundamental value in the security mar-
kets of Shanghai and Shenzhen. Over this author’s reference period, indexes for 
these markets more than doubled in the face of a decline in the growth of the 
Chinese economy from about 12 % to 79 % and no increase in earnings or real 
value in the underlying assets of listed companies. The subsequent crash 
reduced price indexes to a level that was actually less than many fundamental 
value metrics would assign to assess in the index. 
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results of the background studies that have been cited encourage further 
investigation of the case in agent expectations for market price. 

3.1. Randomness as increasing efficiency in the detection of signal 
through SR 

The information-theoretic tradition that follows from Shannon (e.g., 
Shannon and Weaver [47]; also see Cover and Thomas [48]) investigates 
the objective of recovering signal in the presence of noise. This is clearly 
an objective of agents in financial markets ([49,50]). This objective is 
commonly given a form in the signal-to-noise ratio (SNR). A range of 
investigations have elaborated and tested an account of stochastic 
resonance in which noise of a certain intensity can contribute to rather 
than detract from the detection of signal in the SNR (e.g., McDonnell, 
Stock, Pearce, and Abbott, [13]). 

3.2. Dynamics in stochastic resonance 

Accounts of SR introduce a basis to expect that even the “weak pe-
riodic variation” that environments impose in price expectations can be 
made more detectable by randomness. Stochastic resonance is perhaps 
most easily understood in a case where the system’s variation is not 
directly observable except in terms of “switching” events (i.e., a change 
of states as in “on-off” states). In a simple case of demonstrated SR, 
deterministic variation is often given weak periodic (e.g., sinusoidal) 
variation as signal. Here, random variation, as in Gaussian “noise” can 
be added to each agent to represent agent idiosyncrasy in signal. Noise 
can increase the impulse of the periodic signal and “switch” the state. 
Thus, the combination of a certain level of noise and signal can be more 
informative on the state of the system than the signal is in the absence of 
noise. This is schematically represented in Fig. 2. 

In Fig. 2, signal by itself does not attain the minimum magnitude at 
which an agent can detect it as shown in the “no noise” and “weak noise” 
panels. The addition of an optimal Gaussian noise level that is coordi-
nated with a magnitude of the signal can make the signal detectable as 
shown in the “optimal noise” panel. At too high a noise intensity, the 
“high noise” panel indicates that only noise can be detected. 

The signal-to-noise ratio remains the common metric for detecting 
efficiency in the recovery of signal in information theory (e.g., [48]). In 
applications to SR, the presence of SR is typically indicated by (1) an 
identifiable maximum in the signal-to-noise ratio (SNR) as a function of 
noise intensity in the time domain and (2) a corresponding maximum for 
the Fourier Transform in the frequency domain. The explicit form given 
the SNR is dependent on the application and differs across applications 
that range from ocean engineering (e.g., [51]) to opinion dynamics (e.g., 
[52]) and financial and energy markets (e.g., [43,44,53]). 

As noted, the direct demonstration of noise-induced enhancement of 

signal in nonlinear systems (e.g., [13,54]) does not ensure commensu-
rate effects in agent expectations for market price. However, available 
demonstrations of SR across contextual representations do encourage 
explicit applications of the process to economic agents. In the section 
that follows, applications of SR in financial markets will be reviewed in 
further detail. Following this review, a form for the SNR in agent ex-
pectations that follow from the foundations of microprocessing and the 
transition function introduced in an earlier section will be proposed. We 
will then investigate whether SR can be demonstrated in the proposed 
forms for the SNR. 

3.3. Applications of stochastic resonance in financial markets 

Xiao-Ming, Kai, and Qi [55] have examined SR in a model of the 
binary states of “bubbles” and “crashes” that follows Kiselev, Phillips, 
and Gabitov [56] where the interest rate is considered as an external 
signal and the randomness in traders’ behavior is noise. Their results 
indicate the presence of SR that increases with noise intensity to a 
maximum. Krawiecki and Holyst [43] investigated a bi-stable model of a 
financial market designed to represent “bubbles and crashes” as subject 
to a weak external information-carrying signal and noise. These authors 
show that an information-carrying signal assumed to be too weak to 
induce the equivalent of “magnetization jumps” can be enhanced by 
external noise as in standard SR accounts. Both Helbing and Platkowski 
[57] and Krawiecki and Holyst [43] implement a form in which the 
arrival of information considered to have relatively weak importance to 
an objective can be enhanced by external noise as in stochastic reso-
nance and result in the end to a “bubble” and a market “crash”. 

Zhou, Zhong, Li, Li, and He [44] have simulated a modified Heston 
model of market price and directly demonstrated SR in the periodic 
volatility of two financial markets. Their results demonstrate that (1) 
optimal levels of volatility parameters can maximize the effects of both 
systematic and non-systematic randomness on market periodicity and 
(2) different correlation magnitudes between systematic and non- 
systematic noise can result in different critical points that can induce 
single or multiple instances of SR. 

Although not directly evidenced in stochastic resonance, the 
importance of price that noise and drift (e.g., Black and Scholes [58]) 
can have in evolutionary games has also been recognized (Vega- 
Redondo [59]). Vukov, Szabó, and Szolnoki [60] have directly identified 
SR as generating cooperation in a Prisoner’s Dilemma game. Less 
frequently, SR has been applied to the study of opinion formation 
(Kuperman and Zanette [61]; Tessone and Toral [52]) which the authors 
note as having analogs to binary states in market behavior. 

As has been proposed, available studies of SR in financial markets 
can be extended by addressing agents’ expectations for price that are 
precursors of market behavior (e.g., [6,7]). As indicated, the form and 
dynamics of the proposed model of multicomponent processing and a 
transition function for component dominance give a finer behavioral 
representation of the dynamics of expectations for price in financial 
markets than has been available in previous models. In the sections to 
follow, an integration of signal and noise in the SNR for multi- 
component models of price expectations will be introduced. 

4. Investigating stochastic resonance in the dynamics of 
multicomponent expectations 

A component of a multi-component model of “herding” in a model of 
expectations is most informedly investigated in network models since 
agents at collective levels exhibit structural configurations. Models of 
agent expectations when agents are integrated in small-world networks 
(SWN: Watts and Strogatz [62]) will be studied. For the integration of 
SWNs in the economic analysis also see Jackson [63,64]). SWNs 
parametrize structure in a network as a proportion (ρ) of the total 
vertices in the network that are disconnected from neighbors or next 
neighbors in a regular network and re-connected to a randomly selected Fig. 2. Schematic of signal and noise in stochastic resonance.  
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vertex. This structural parameter has been related to path length (mean 
number of transfers across vertices to connect any two vertices in the 
network) and clustering in states or levels of variables in the network (e. 
g., Barrat and Weight [65]). 

Path length and clustering have direct interpretability in economic 
analyses. On path length and economic efficiency in networks, see 
Cowan and Jonard [66], and Wen, Yang, and Zhou [67]. On clustering in 
networks and economic inequality, see D’Angelo and Lilla [68], Tsvet-
kova, Wagner, and Mao [69], and Brida, Carrera, and Segarra [70]. 

Relatively small proportions of total connections in the SWN that are to a 
remote vertex (e.g., ρ ~ 0.001) have been shown to have highly sig-
nificant effects on path length and clustering in the network ([65]). In 
the exercises to follow, we directly investigate the relationship of the ρ 
parameter in SWNs in conjunction with other parameters to define ef-
ficiency and structure in the detection of signal in agent expectations. 

Definitions of the SNR and SR in deterministic and stochastic models 
that operationalize the dynamics of agent expectations in networked 
agents will be implemented in deterministic and stochastic models. A 
deterministic model integrates empirics from market data in market 
price, earnings, and PE ratios of the S&P 500. A stochastic model follows 
historical traditions in representing market price as Brownian motion 
with drift and integrates market data on earnings and PE ratios of the 
S&P 500. 

After formally defining the SNR and the condition for the occurrence 
of SR, results that demonstrate that the implemented models of price 
expectations can evidence SR will be reported. In the application, note 
that as Fakir [71] has indicated, the demonstration of SR does not 
require stationary time series. Accordingly, background studies that 
include Zhou, Zhong, Li, Li, and He [44] have investigated SR in the 
occurrence of “bubbles and crashes”, in non-stationary time series. Park 
and Phillips [72] have also demonstrated SR in non-stationarity in 
models of binary choice. Following the demonstration of SR in the 
proposed models, we will investigate parameters in levels, and combi-
nations of models that discriminate cases of SR in the models will be 
investigated. These prediction exercises will implement Area Under the 
Receiver Operator Characteristics (AUROC) models that have been re-
ported in economic applications including [72–75]. 

4.1. Deterministic model of agent multi-component expectation 

For the exercise with a deterministic multi-component system, S&P 
market data were integrated into an estimation of the model. Price data 
and a historical PE-based multiple from S&P 500 market data were used 
to define a PE-based measure of what has been denoted as a fundamental 
value. Eq. (2) represents the dynamics of the multi-component model to 
be estimated with a sinusoidal forcing term for periodic signal. 

εi,t+1 = αt(Vt +(Vt− 1 − Pt− 1) )+ (1 − αt)
∑

j
Mij
(
εj,t − εi,t

)
+A sin (Ωt)+ϕi,t

(2)  

αt =

{
α if |Pt − Vt| ≤ ζt or |Pt − Vt| ≥ 2 ζt

1 − α, otherwise (3) 

and   

Vt = (0.2Et− 1 + 0.8Et)n(t) (4)  

ζt =

(∑5
k=1(Vt− k − Pt− k − μt)

2

5

)0.5

(5)  

μt =

∑5
k=1(Vt− k − Pt− k)

5
(6) 

In Eq. (2), εi is the expectation of the ith agent for market price 
Vt is a measure of “fundamental value” in the S&P 500 (the product 

of real S&P earnings and the mean historical PE ratio for the S&P index). 
Pt is the observed monthly S&P 500 price index. 
αt is the relative weight of a component 
Mij is a magnitude parameter for weights of differences between the 

expectation of agents i and j 
β ≥ 1 parametrizes an exponentially increasing sensitivity of agent i 

to the distance between the expectations of the ith and jth agents. In 
numerical exercises, condition β = 1 was set. 

Ω is a position in the cycle defined in radians 
A is the magnitude of the cycle 
ϕi is a sequence of independent N(0,κ) random variables to represent 

the arrival of exogenous randomness in agent expectations where κ is a 
small positive number. 

Eq. (3) is a form for the transition function of the deterministic 
model. 

In Eq. (4), E is a time series of inflation-adjusted earnings in the S&P 
500 

n(t) is a 5-year moving average of the S&P 500 PE ratio 
In Eq. (5), ζt is a bound on the interval of difference between price 

and fundamental value as indicated in Fig. 1. 
To parameterize the dynamics of the transition function in numerical 

exercises, it is proposed that the component in bounded rational pro-
cessing will dominate when the difference between fundamental value 
and the observed price is within one standard deviation of the predicted 
price or when the difference is more than two standard deviations from 
predicted price. Processing in the imitative component of expectations 
that generates “herding” will dominate in the interval where the dif-
ference of observed from the predicted price is greater than one SD but 
less than two SDs.2 

Table 1 
Parameter distributions for the deterministic 
model.  

Variable Range 

ρ (0,1) 
Mij (0,0.2) 
α (0,1) 
Ω (0,5) 
A (0,1000)  

Mij =

{
M if i and j are neighbors or remote connections in the small − world network (i.e., cohorts)

0, otherwise   

2 As indicated previously, w a monotonic relationship of component domi-
nance to the distance of market price to a price based on fundamental value is 
not assumed. Here, it is assume that as in observable market dynamics, market- 
oriented agents can respond to too large a discrepancy between fundamental 
value metrics and market price by a return to bounded rational processing of 
the discrepancy. This is because to most agents there are discrepancies so large 
that they are no longer credible in even bounded rational processing. 
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Table 1 summarizes model parameters and their ranges in the 
deterministic model. 

In Table 1, ρ is the parameter of a small world network that defines 
the proportion of vertices that are connected to a vertex that is not a 
neighbor or a next-neighbor, Mij is the weight of the interpersonal in-
fluence of agent j on agent i, α is the relative weight of a model 
component, Ω is the angle of the sinusoidal signal in radians, and A is the 
magnitude of the signal. 

4.2. Stochastic model of agent multicomponent expectations 

A range of specifications (e.g., [58,76,77]) have represented realized 
market price as a stochastic process and is next given an explicit form. 
The form in SR for the model of Eqs. (3) and (4) with a stochastic market 
price will next be given. When the asset is an indexed bundle of equities, 
prices (Pt) have historically grown linearly with local perturbations 
some of which attain a magnitude to be classified as a cycle. Following a 
range of specifications, (see Paul and Baschnagel [77]), this dynamic can 
be given a simplified representation in Eq. (7) as Brownian (B) motion 
with drift: 

P(t) = γt+ δB(t) (7)  

where γ is a growth parameter, B is a Weiner process, and δ is the 
magnitude of Brownian motion. 

From the Law of the Iterated Logarithm for Brownian Motion (e.g., 
Khoshnevisan and Lewis [78]), it follows that: 

limt→∞(2tloglogt)−
1
2B(t) = 1 with probability one 

If we assume that all agents can rationally predict the stock price 
perfectly in the long run, the Law of the Iterated Logarithm allows the 
further inference that in Eq. (2) and thereafter: 

V(t) = γt 

Since the Brownian fluctuations become negligible in the limit, the 
ratio between the observed price and a metric of fundamental value in 
price can be assumed to get closer to 1 as time increases. However, local 
perturbations remain of major interest since they are persistent at any 
finite time. 

Using basic properties of Brownian motion in Eq. (7), expectations 
can be written as: 

εi,t+1 = αt(Vt +(Vt− 1 − ξt− 1) )+ (1 − αt)
∑

j
Mij
(
εj,t − εi,t

)
+Asin(Ωt) (8)  

where αt =

{
α if |Pt − Vt | ≤ (Var(Pt) )

1
2 or |Pt − Vt | ≥ 2(Var(Pt) )

1
2

1 − α, otherwise
and  

with 0 ≤ α ≤ 1, Pt = γt+ δBt , Vt = γt and Bt is a standard Brownian 

motion 

α(t) =
{

α1, if |B(t) | ≤
̅̅
t

√
or if |B(t) | ≥ 2

̅̅
t

√

α2, otherwise
(9) 

The stochastic model can be estimated in exercises with ξ in Eqs. (8) 
and (9) substituted for the price and in the transition function 
(α1 and α2), respectively. 

Table 2 summarizes parameters and their ranges in the stochastic 
model. 

The parameter ranges that were investigated in Table 2 correspond 
to those defined in Table 1 with the exception of the absence of a 
parameter of a forcing term for signal and the addition of γ as a time- 
delimited growth parameter in the function for stochastic price. 

4.3. Definition of the SNR and SR 

A range of small-world networks over the parameter (ρ) that repre-
sents an underlying topology for the model was initially defined for 
computational exercises. Each network is defined over 500 × 500 =
250,000 agents. In a deterministic model of agent expectations, the 
noise level will be defined by a parameter (κ) of the variance of an ad-
ditive random variable (ϕ) to represent exogenous randomness in agent 
expectations. In the stochastic model, the noise level will be defined 
through δ which is in itself a parameter of the Brownian motion with 
drift that classical investigators have defined in generating market price. 

In the definition of the SNR, let the noise level χ be represented by κ 
in a deterministic model and δ in a stochastic model. Let εχ

i (t) represent 
the time series of expectations of agent i that will be defined by the time 
series of predictor variables in Eqs. (2) and (3). Following investigators 
that include Krawiecki and Holyst [43], f χ

i (t) was defined as a power 
spectral density of εχ

i (t). Let t* =
argmax
t ∈12…256 f χ

i (t) stand for the location of 
the maximum of f χ

i (t). The SNR can then be defined as 

SNR(χ) = E

(
f χ
i (t*)

f χ
Ni (t*)

–1

)

where, f χ
i (t*) is the height of the maximum of f χ

i (t). E here stands for the 
mathematical expectation computed over many different network to-
pologies, and f χ

Ni (t*) is the noise background in the proximity of t*.
The term, f χ

Ni (t*) can be formally defined over a representative in-
terval as. 

f χ
Ni (t*) =

∑ t* − 20
k=t* − 49

fχ
i (k)+

∑ t*+50
k=t*+21

fχ
i (k)

60 . Following the extensive range of 
background studies, (see McDonnell, Stocks, et al. [13]), the SNR can 
then be plotted as a function of χ, the noise level in the time domain. The 
instance of stochastic resonance is identified with the existence of a clear 

maximum of the SNR at some strictly positive χ. This study follows 
previous investigators in also reporting a corresponding maximum for a 
noise level in the frequency domain. 

4.4. Procedure in analysis 

Agents selected for analysis (n = 1000) are chosen randomly from a 
uniform distribution of all agents in the networks that have been 
defined. Market data was integrated to operationalize the models and 
enact a direct search algorithm that iterates over defined ranges of pa-
rameters was enacted to instantiate a universe of estimates of 

Table 2 
Parameter distribution for the stochastic 
model.  

Variable Range 

ρ (0,1) 
Mij (0,0.2) 
α (0,1) 
γ (0,5)  

Mij =

{
M if i and j are neighbors or remote connections in the small − world network

0, otherwise   
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expectations. The occurrence of SR as a function of χ, where χ is the 
noise level in the time and frequency domains in these estimates was 
subsequently examined. 

Elaborating on standard definitions of SR, its incidence was defined 
in the time and frequency domains as a spike of at least twice the 
magnitude of the maximum of any observation of the SNR sequence 
generated. Given demonstrations of SR in the defined models of the SNR, 
estimates, and graphics of predictive models of SR in the SNR over 
defined model parameters will be examined with AUROC methodology 
that has had models extensive applications in economics and life sci-
ences (e.g., [73–75,79]). 

5. Implementing models of stochastic resonance in 
multicomponent expectations 

Results for the incidence of SR with parameters that were identified 
in the deterministic and stochastic instantiations of multi-component 
models will next be reported. A direct search procedure (e.g., Nash 
[80]) sampled from uniform distributions of the parameter intervals in 
Tables 1 and 2 and estimated corresponding SNRs as formally defined in 
Section 4.3. The estimates of the SNR from defined variables and 
selected parameter levels and combinations in this part of the exercise 
were from a C++ program written to represent the SNR in the proposed 
models. 

5.1. Estimates of stochastic resonance in the deterministic model of agent 
expectations 

The incidence of SR was first examined with the deterministic model 
of Eqs. (2)–(5) in which market-based measures of price, earnings, and 
PE ratios were implemented. As noted, background studies establish that 
demonstrations of SR can be in stationary and/or non-stationary pre-
dictors (e.g., Fakir [71]). The deterministic model includes a forcing 
term for a sinusoidal signal and parameters of A as the magnitude of the 
signal and Ω as the angle of the sinusoidal signal in radians. 

Figs. 3 and 4 exemplify instances of SR in the time and frequency 
domains, respectively, that were identified with C++ code for the 
deterministic model. In the time domain, the definition of the presence 
of SR required a spike in the SNR at a noise intensity that exceeded 2 
times the magnitude of other spikes in the domain. Variation in the 
frequency domain was generally of a smaller magnitude than that 
observed in the time domain. Cases of SR in the frequency domain 
evidenced a spike of at least 3 times the magnitude of other spikes in this 
domain. Instances of SR were detected in 60 of 800 simulations (7.5 %). 
Parameters for the exemplary instantiations are reported in the figures. 

As indicated in a previous discussion, the results in Figs. 3 and 4 
correspond to the so-called “signature” of SR: a distinct spike in the SNR 
relative to the surrounding variation of the SNR as a function of noise 
intensities in the time domain and a corresponding maximum in the 
power function for the frequency domain (e.g., [13,54,81]). 

5.2. Estimates of stochastic resonance in the stochastic model of agent 
expectations 

For this exercise with a stochastic measure of market price as 
introduced in Eqs. (6)–(8), 340 instances of SR in the signal-to-noise 
ratios (SNR) were generated in the time domain with a matching num-
ber of Fourier transforms of the signal in the frequency domain. The 
parameters under study in this model are shown in Table 2. As indicated, 
this model follows historical traditions in implementing a price that in 
short intervals can be represented as Brownian motion with drift. A total 
of 60 (0.176) of the 340 networks we investigated evidenced SR. Results 
with the models indicated that the model with a stochastic term for price 
and fundamental value generated acceptable results in the SNR without 
a forcing term for signal. 

Figs. 5 and 6 exemplify instances of SR in the time and frequency 

domains, respectively, in the results with the C++ code for the model 
with a stochastic measure of price and their parameter levels. 

Fig. 5 demonstrates a clear spike in the signal-to-noise ratio as a 
function of the noise intensity. The consensus of the literature cited on 
SR is that the presence of a unique and clear spike in the time domain of 
SNR is a signature of stochastic resonance in the system. Fig. 6 dem-
onstrates a clear spike of power as a function of frequency. The literature 
consensus is that the presence of a unique and clear spike in the fre-
quency domain is a further confirmation of the presence of stochastic 
resonance in the system. The exact parameter combination used to 
generate the figures is specified below the figures. 

6. AUROC predictive models of the incidence of SR 

Finally, estimates of the predictive power of these models were 
examined with Area Under the Receiver Operating Curve (AUROC) 
methodology that has now been applied across a range of applications in 
economics and life sciences and economics (e.g., [73–75,79,82]). 
AUROC metrics provide widely used numerical and graphic perfor-
mance measures of the goodness of fit of discrete classifications in 
implemented models (e.g., [83,84]). 

6.1. AUROC predictive estimate of the deterministic model 

Table 3 reports the results of estimating an AUROC maximization 
model of predictive efficiency in detecting cases of SR with 103 cross- 
validations over the pool of variables defined in Table 1 for the deter-
ministic model, AUROC models were estimated by an algorithm in the 
CARRoT package (Bazarova and Raseta, [85]) that implements “best 
subset” regressions (e.g., [86–88]) of binary model states on model pa-
rameters with cross-validation (e.g., [89,90]). The coefficients in these 
models were maximum likelihood estimates. Each of 103 cross- 
validations for a parameter set corresponded to the partition of an 
entire data set into training (90 %) and test sets (10 %). The classifica-
tion model for the deterministic model had the largest AUROC of 0.66 in 
the (0.5,1) interval and was comprised of linear, quadratic, and inter-
action terms in the parameters of ρ, Mij, A, Ω and Ω2. Coefficients and 
their respective confidence intervals of the mixed AUROC model are 
reported in Table 3. The AUROC figure for the model itself is presented 
in Fig. 7. The best fit predictive model includes non-linear terms in the 
interaction between the small-world parameter (ρ) and the weight of the 
influence of other agents on an agent’s expectations (Mij) and the square 
the angle (Ω) in the sinusoidal signal in radians. 

Fig. 7 reports the Area Under the Receiver Operating Curve (AUROC) 
for the best-performing model under deterministic price assumption. 
The AUROC was obtained by fitting the model with the best perfor-
mance on the entire data set which is a logistic regression whose vari-
ables and coefficients are fully specified in Table 3. The convention of 
defining the x-axis as (1-Specificity) was followed. 

6.2. AUROC predictive estimates of the stochastic model 

This model was estimated over parameters in Table 2. The parameter 
ranges with the largest AUROC of 0.903 in the (0.5,1) interval were 
comprised of ρ2and M2

ij. Model coefficients and their respective confi-
dence intervals for this model are shown in Table 4. The AUROC is 
presented in Fig. 8. 

Fig. 8 reports the Area Under the Receiver Operating Curve (AUROC) 
for the best-performing model under the assumption that price follows a 
Brownian motion with drift. The AUROC was obtained by fitting the 
model of the binary states of SR to parameters with the best performance 
over the entire data set in logistic regression. The variables and co-
efficients are fully specified in Table 4. 
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6.3. Summary of model estimates of SR 

The results reported for models in both the deterministic and sto-
chastic specifications are consistent with the presence of stochastic 
resonance in multicomponent models of agent expectations for financial 
markets. It has been shown that parameterized of the proposed deter-
ministic and stochastic models demonstrate what is widely defined to be 
the signature of SR in the signal-to-noise ratio in both the time and 
frequency domains. These results support the capability of a noise term 
to increase the detection of signal in multicomponent expectations for 
price. Following these demonstrations, estimates of widely implemented 
AUROC models that support the predictive capabilities of the 

parameters in the models of SR in agent expectations have been 
reported. 

In the results for the AUROC deterministic model, non-linearity was 
detected in an interaction between the SWN parameter of remoteness in 
the SWN (ρ) and the parameter for the magnitude of the influence of 
other agents (Mij) and a squared term in the angle of the signal in radians 
(Ω). In the results with the stochastic AUROC model, squared terms in 
the structural parameter of the SWN (ρ) and the magnitude of other 
agents’ influence (Mij)were the strongest predictors of the occurrence of 

Noise intensity

Fig. 3. SNR as a Function of Noise Intensity in the Time Domain of an SWN: Deterministic Model1. 

1 ρ = 0.1681; Mij = 0.0176; α = 0.8134; Ω = 0.2501; A = 791.637. 

Fig. 4. SNR as a function of Noise Intensity in the Frequency Domain of an SWN: Deterministic Model1 

1 ρ = 0.1681; Mij = 0.0176; α = 0.8134; Ω = 0.2501; A = 791.637. 
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SR. The results of the AUROC models indicate the importance that the 
representation of the network organization of agents in a component for 
“herding” can have to the representation of agent expectations.3 

7. Summary and discussion 

Following a review of expectations as precursors of price levels in 
financial markets, a multi-component model of price expectations was 
introduced. In the multi-component model, a component in bounded 
rational processing and a component that represents the influence of 
other agents on an agent’s expectations and generates commonly cited 
“herding” in financial markets were represented. A transition function 
for component dominance that depends on the distance between market 
price and metrics of fundamental value was further specified. A 
behavioral basis for transitions in component dominance was elaborated 
in support of the form given in the specification of this function. 
Following a background review of multi-component models of expec-
tations, we have defined an agent objective in the detection of signal on 
the direction and level of expectations for market price. 

While in most models of expectations, exogenous randomness is 
assumed to interfere with detecting the equivalent of signal for market 
price levels, conditions in which randomness can facilitate the detection 

S
N

R

Noise intensity 

Fig. 5. The SNR as a Function of Noise Level in the Time Domain: Stochastic 
Model 
1ρ = 0.1890; Mij = 0.0066; α = 0.9556; γ = 0.8900. 

P
o

w
e

r

Frequency 

Fig. 6. Power Function in the Frequency Domain: Stochastic Model1 

1ρ = 0.1890; Mij = 0.0066; α = 0.9556; γ = 0.8900. 

Table 3 
Coefficient Estimates and Confidence Intervals in an AUROC deterministic 
model.  

Variable Coefficient 95 % CI 

ρMij 68.03689 (68.03688, 68.03690) 
A − 2.165204×10− 4 (− 4.904985×10− 4, 5.745767×10− 5) 
Ω 639.5538 (639.5537, 639.5539) 
Ω2 − 1321.397 (− 1321.398, − 1321.396)  

3 The Mij parameter in the models index the influence of referent agents (i.e., 
a cohort) on an agent in a component of “herding” [29,30]. 
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of signal have been reviewed. Stochastic resonance has been elaborated 
as a general process through which randomness can increase efficiency 
in the objective of detecting signal across a wide range of applications. In 
subsequent sections, SR in a signal-to-noise ratio for expectations was 
defined and directly investigated in alternative operationalizations of 

the multi-component models of agent price expectations. 
In a deterministic model of the SNR, data on the S&P index was used 

for market price, mean earnings, and historical PE ratios of the com-
panies in the index to operationalize fundamental value in the model. In 
a stochastic model, a derived price following historical representations 
of price dynamics in short intervals as Brownian motion with drift was 
specified. As indicated in Eq. (1) and (3) of the general model of the 
deterministic model, and Eq. (8) of the stochastic model, the difference 
between market price and fundamental value defines component 
weights through a proposed transition function. 

In exercises with both models, small-world networks (SWN) models 
were implemented to represent structure in agent interactions within a 
component that generates “herding” in agent price expectations. A 
direct search algorithm in C++ code was used to identify instances of SR 
in the parameter spaces of the signal-to-noise ratios of defined models. 
Results with both of the models we implement support SR as a process 
through which noise can contribute to the detection of signal on price in 
financial markets. 

AUROC of predictive models of the discrimination of SR over the 
defined parameter ranges of model parameters for both the determin-
istic and stochastic models were subsequently reported. Across all esti-
mations of both the models, parameters of network structure in the SWN 
(ρ) and the magnitude of inter-agent influence (Mij) in the component 
that generates “herding” was indicated to be among the significant 
predictors of SR. Taken together, our results provide strong support for 
the capability of the proposed system to accommodate SR in the re-
covery of signal on expectations for price in financial markets. 

These results, in turn, further indicate the importance that random-
ness can have to efficient markets. The recovery of signal on price is a 
common objective in a range of applications to financial, and com-
modity markets ([18,50]). In most market applications, as in most en-
gineering applications, the objective has been in recovering signal in 
cases where noise can obscure the signal. Here, as in applications in a 
range of disciplines that have been cited, there is a basis to anticipate 
that under certain conditions, randomness in expectations for financial 
markets can increase rather than detract from efficiency in agent ob-
jectives of detecting signal. The results that have been reported add to 
evidence that cases in which noise can contribute to the recovery of the 
signal in financial markets are likely to be more general than had pre-
viously been recognized. 

The contribution that randomness can make to detecting signal 

1 -

Fig. 7. AUROC for Binary Classifiers of SR: Deterministic Model1 

1 By convention, sensitivity is the proportion of the cases that were correctly 
identified by the model as evidencing SR. Specificity is the proportion of the 
cases identified by the model as not evidencing SR. 

Table 4 
Coefficient estimates and coefficient intervals: AUROC stochastic model.  

Variable Coefficient 95 % CI 

ρ2  − 8.364157 (− 11.20621, − 5.522101) 
Mij

2  − 120.4154 (− 162.6336, − 78.19708)  

Fig. 8. AUROC for Binary Classifiers of SR: Stochastic Model2 

2By convention, sensitivity is the proportion of the cases that were correctly identified by the model as evidencing SR. Specificity is the proportion of the cases 
identified by the model as not evidencing SR. 
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under certain conditions does not necessarily mean that one can directly 
“tune” a representation of randomness to increase efficiency in the 
detection of signal on market price [13]. In market applications as in 
other applications, randomness is likely to be embedded in structural 
determinations of price. It does further support the indication that the 
extensive treatment of randomness as decreasing efficiency in the 
detection of signal on price in financial markets can be modified for the 
case of stochastic resonance. Previous results with binary states of 
“bubbles” and “crashes” in financial markets (e.g., [43]) have been 
extended to a case of continuous processing in multi-component ex-
pectations in the results that we report. 

7.1. Directions for subsequent studies 

Finally, several directions for the discourse on models of SR in price 
expectations and their implementation in financial markets are noted. 
First, it is noted that contrary to strict perspectives in natural selection 
that others have applied to the evolution of economic institutions, 
including those that govern markets (e.g., [91,92]), it can be a sufficient 
condition for efficiency-increasing noise to have been coordinated with 
other processes in dynamic systems that increased efficiency in signal 
detection. Once in place, efficiency-increasing noise can become struc-
turally integrated in dynamics and remain operative. The basis for such 
an observation can be found in a number of examples of “hitchhiking” in 
sensory and physical processes. (e.g., Barton [93]). 

Second, there are alternatives in representations of how agents 
converge to levels of noise that maximize an SNR that merit being 
investigated. As now well documented, self-organization (e.g., [94,95]) 
can allow convergence to an equilibrium from semi-autonomous 
behavior (i.e., behavior that uses greatly simplified rules to coordinate 
with other agents) that results in organized behavior at a group level (e. 
g., [96–98]). In well-recognized examples in studies of “flocking” (e.g., 
[99,100]), entities in these studies are commonly used rules to organize 
that are simple for agents, (e.g., distance from others) but have emergent 
properties at the group level that do benefit individual entities (e.g., 
resistance to predators). As such, there may be a basis to examine cor-
responding applications of “swarm-based” coordination of the expecta-
tions of agents in financial markets that can contribute to the efficiency 
that noise can have in signal detection. 

Third, while closed systems have understandingly predominated in 
the demonstration of SR [13], there is a basis to anticipate that further 
investigation of SR in open systems (Trushechkin et al. [101]) can 
advance our capabilities in integrating sources of randomness in SR in 
financial markets and other applications. In such cases, SR can occur 
through internal processing that accommodates characteristic random-
ness from environments. While such processing has been recognized in 
closed systems of experimental studies [13], the representation of open 
system processing is further by recent representations. See, [101] on 
dynamics in open quantum systems. Also, see Rodrigo’s [102] integra-
tion of intrinsic and extrinsic noise in the efficient processing of genetic 
signals that include SR. 

Fourth, and finally, somewhat counter-intuitively, it appears that 
increased randomness in agent characteristics that result in increased 
variance in an emergent mean signal can increase subsequent accuracy 
in the prediction of a signal. Elton, Guber, and Gultekin [103] demon-
strate this directly in the convergence of analysts in a financial market. 
Harnett et al. [104] demonstrate this in their application to collective 
decision-making. More fine-grained representation of heterogeneity in 
interactive agents (e.g. Oliva, Panzieri, and Setola [105]) possibly 
through social media [106] may further our understanding of how even 
random differentiation of agents in a financial market can contribute to 
accuracy in the recovery of signal through SR. 

8. Conclusions 

The importance of agent expectations in understanding dynamics of 

financial markets continues to be demonstrated by a range of in-
vestigators. Multicomponent models remain conceptually and empiri-
cally relevant in the study of expectations for price in financial markets. 
The results that we have reported with multicomponent models 
contribute to the evidence that stochastic resonance, as initially 
demonstrated in biological and physical systems ([13,40,104]) is a 
much more general mechanism that can have an important function in 
detecting signals in financial markets. Whereas background studies have 
reported SR in market cycles of “bubbles and crashes”, we have exam-
ined SR in continuous, multi-component models of price expectations. 
Results reported for both deterministic and stochastic models suggest 
that under certain conditions the randomness that is endemic to finan-
cial markets can contribute rather than detract from the recovery of 
signal in agent expectations. The information-theoretic framework 
referenced in defining the SNR can provide a useful starting point to 
investigate the mechanisms of SR and their generality in other 
competitive markets. From the above, processing in multicomponent 
models for signal from expectations and the study of conditioning var-
iables that include randomness continue to be directions that contribute 
to our understanding of the dynamics of financial markets. 
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