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Challenges of implementing computer-aided diagnostic models
for neuroimages in a clinical setting
Matthew J. Leming 1,2✉, Esther E. Bron 3, Rose Bruffaerts4,5, Yangming Ou 6, Juan Eugenio Iglesias7,8,9, Randy L. Gollub 10 and
Hyungsoon Im 1,2,11✉

Advances in artificial intelligence have cultivated a strong interest in developing and validating the clinical utilities of computer-
aided diagnostic models. Machine learning for diagnostic neuroimaging has often been applied to detect psychological and
neurological disorders, typically on small-scale datasets or data collected in a research setting. With the collection and collation of
an ever-growing number of public datasets that researchers can freely access, much work has been done in adapting machine
learning models to classify these neuroimages by diseases such as Alzheimer’s, ADHD, autism, bipolar disorder, and so on. These
studies often come with the promise of being implemented clinically, but despite intense interest in this topic in the laboratory,
limited progress has been made in clinical implementation. In this review, we analyze challenges specific to the clinical
implementation of diagnostic AI models for neuroimaging data, looking at the differences between laboratory and clinical settings,
the inherent limitations of diagnostic AI, and the different incentives and skill sets between research institutions, technology
companies, and hospitals. These complexities need to be recognized in the translation of diagnostic AI for neuroimaging from the
laboratory to the clinic.
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INTRODUCTION
Computer-aided diagnostic (CAD) models are computer algo-
rithms capable of making a prognosis or diagnosis about the
health of a patient, given available data. CAD models for
radiological images have been widely applied in breast cancer
screening in mammograms1,2, largely to automate repetitive tasks,
and, more recently, AI tools for the detection of intracranial
hemorrhages (ICH) and large vessel occlusion (LVO) in CT images
have been approved by the FDA and validated in further
studies3–5. The eventual, widespread clinical application of CAD
models6 to brain images routinely collected in hospitals, such as
CT and MRI, holds promise to automate the diagnostic process,
reduce rates of misdiagnosis of brain-related disorders7–10, reduce
diagnostic wait times11,12, cut costs, increase diagnostic objectiv-
ity13, and inform doctors in their assessment of patients14 for a
wide range of brain disorders. Decades of research in machine
learning—accelerated in recent years by the surge of interest in
deep learning—has led to developments in the research world of
CAD models for brain images across a wide range of psychological
and neurological disorders15–17. In spite of this, however, very little
systemic, real-world, clinical translation has thus far occurred18.
This is not entirely unexpected, given historic trends. Oakden-
Rayner6 describes the history of computer-aided detection in
radiology as well as its disappointing results in the initial waves of
AI, specifically for mammography diagnosis2,19–21, given the
limited ability of early diagnostic models. His article provides, in
contrast, a more optimistic light on current CAD models because
of deep learning’s unprecedented success in other areas of

science. This success, however, does not guarantee that it can be
implemented successfully in healthcare because success in
healthcare is only partially related to the reported efficacy of
CAD models.
In this article, we attempt to characterize the ongoing progress

and future directions of CAD models in translational neuroima-
ging. We first review the development of CAD models in the
research world, covering the continuum of methods with current
clinical applicability, those under active development, and those
with potential future applications. We then discuss the general
challenges of developing CAD models from a purely technical
perspective, including issues both unique to healthcare and those
seen in machine learning generally. Finally, we discuss transla-
tional pathways for bringing neuroimaging CAD models to the
clinic as well as the institutional, cultural, and sociological barriers
that affect health AI research more generally. We end by
suggesting potential future directions and scenarios for translating
diagnostic AI to the clinic.

UTILITY OF CAD MODELS FOR BRAIN IMAGES CURRENTLY
BEING DEVELOPED IN RESEARCH SETTINGS
Several past reviews have focused on the development of CAD
models for the diagnosis of different brain-related disorders (such
as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis)
based on radiological images15–17,22. This work has shown that
these disorders exist on an evolving continuum and vary in terms
of CAD models’ ability to detect them in neuroimages,
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neuroimaging modalities required to detect them, and potential
clinical use cases of such models. For the purposes of this review,
we present a cursory overview of these findings in three very
broad categories to facilitate making our key points: those with
current clinical applicability, those under active development, and
those with future potential. As we will see, these three categories
generally include, respectively, brain disorders characterized by
explicit lesions, neurodegenerative disorders characterized by
diffuse structural qualities (these qualities include both normal
and abnormal image features), and psychiatric disorders that are
characterized by both diffuse functional and structural qualities.
These arbitrarily defined categories of the continuum are
summarized in Fig. 1.

Neuroimaging CAD models with current clinical applicability
We first look at neuroimaging CAD models with current clinical
applicability. As of April 2023, the FDA has approved 82
neuroradiology AI models for clinical use23. These fall into three
categories: Medical Image Management and Processing System
(MIMPS), which is software used to preprocess and manage
radiology images; computer-aided triage and notification (CADt)
models; and computer-aided diagnosis (CADx). As of April 2023,
58 of these are MIMPS, 22 are CADt, and 2 are CADx. While many
MIMPS models may rely on AI, they are not used directly for
making a diagnosis. CADt/CADx models could be useful in the
general analysis of neuroimages—e.g., for quantifying the volume
of specific brain regions, which could help clinicians in the
diagnosis of dementia. In particular, FDA-approved models for the
triaging of structural CT images3–5,24 are used to detect brain
disorders that are characterized by a local, structural anomaly that
can be seen by a human expert.
It is already routine clinical practice to detect suspicious lesions

based primarily on radiological images. As a result, the modalities

used to acquire them, namely CT and different forms of structural
MRI, are already in common clinical use. A range of disorders is
characterized by such focal structures, including brain tumors25,26,
multiple sclerosis lesions27–29, and various forms of traumatic brain
injury12,30 such as intracranial hemorrhage11, intracranial mass
effect, and stroke31.
From a technical perspective, AI models that analyze such

localized disorders are distinct from the detection of diffuse
functional or structural disorders, covered below; the detection of
tumors, hemorrhages, or structural damage by traumatic brain
injury may use a segmentation algorithm that can be verified
visually (or a simple binary detection algorithm that is nonetheless
easy to verify), and the presence of visible biomarkers are present
by definition. In contrast, the more sophisticated CAD models that
translate brain images directly to a diagnostic label (as opposed to
segmentation-based models) generally lack a visually interpreta-
ble output and are thus more difficult to validate. Success in
disease detection is largely reflected in the literature. Recent
models are variously able to find tumors, regardless of the specific
type of tumor, in MRI at higher than 95% accuracy in the most
recent studies32; intracranial hemorrhages in CT at rates ranging
from 82% to 96%33–35; and multiple sclerosis lesions, as measured
by dice similarity coefficients, between 0.35 and 0.9536. (Note that
sensitivity and specificity, or AUROC, are more preferred
performance metrics than accuracy37,38, though we compare
accuracies here since those are most commonly cited across
studies, especially those that are older). Each of these methods is
highly dependent on the dataset used and the specific method of
measurement, but the emerging picture is that they are
remarkably effective in the laboratory.
For clinical translation, however, such models need to be

validated for specific clinical needs. In a unique report of a
neuroimaging CAD model being implemented and validated

Fig. 1 Current development of different types of neuroimaging CAD models. Neuroimaging CAD models and analysis methods exist on a
continuum of development and clinical applicability. Models that use diagnostic segmentation can be applied to brain disorders characterized
by focal structural anomalies, and they are in a better position today to be applied clinically. CAD models that output a label directly can help
in diagnosing neurodegenerative disorders, which have an explicit, though diffuse, structural basis, and thus CAD models can be used to
detect and inform their diagnosis. However, they have yet to see widespread clinical use or a specific clinical need. Brain disorders
characterized by both diffuse structural and functional qualities have been analyzed by CAD models, but specific biomarkers are elusive and
their clinical implementation would require further development.
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clinically, Arbabshirani et al. proposed the use of an intracranial
hemorrhage detection algorithm for CT scans at the Geisinger
Department of Radiology in Pennsylvania to evaluate routinely
collected CT scans11. The model, which was trained on historical
data collected at Geisinger, triaged data. It reclassified those scans
in which intracranial hemorrhages were detected from “routine”
to “stat”, meaning that they would be prioritized for clinical
evaluation much sooner than normal. This is one of the only cases
of a neuroimaging CAD model being integrated into a clinical
workflow (Fig. 2). Notably, in favoring higher sensitivity and lower
specificity, the model did not have to work perfectly for it to be
clinically useful since it was designed to accelerate the overall
decision-making process by passing on likely images to human
interactors rather than making a final decision (decreasing the
median diagnostic time from 512min to only 19 min). This
established a concrete clinical use case for this particular
neuroimaging CAD model, which was followed by several
algorithms designed to detect ICH and LVO in CT images3–5. As

mentioned above, these are the only class of disease-detection AI
algorithms for brain images currently approved for clinical use by
the FDA24.
Triaging can be applied as well to the detection of traumatic

brain injuries, since CAD models’ fast and automatic analysis can
make them useful12, and their clinical effectiveness in minimizing
the lead time delay to treatment could be further tested.
Detection of focal structural features of other diseases may not
have a similar time-sensitive clinical need to drive clinical
adoption. Another valuable use case of these models is to
standardize clinical review. In this case, however, the high-
sensitivity paradigm described above would only in part meet
clinical needs, and models would require further validation to
ensure clinically meaningful specificity. This includes validation in
prospective large cohort studies to assess the clinical feasibility of
the models in comparison with readouts from expert radiologists
and the general applicability of a given imaging instrument,

Fig. 2 Workflow integration of ICH detection model for brain CTs, from Arbanshirani et al.11. A Head CT image with ICH. B A clinical
workflow integration of a triaging tool that detects ICH automatically and subsequently reclassified it from “routine" to “stat", which
significantly decreases the average time required to detect ICH. This is one of the few cases of a neuroimaging CAD model being integrated
into clinical workflow to address a specific clinical need. We would like to thank Aalpen A. Patel for permission to use figures in this paper.
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especially for abnormality detection in local clinics where expert
radiologists may not be readily available.

Neuroimaging CAD models in active development and testing
We next consider models that are under active development and
for which widespread clinical implementation is possible, but still
elusive. Unlike those disorders covered above, there are neurop-
sychiatric disorders for which specific and focal anomalies have
not yet been established as accepted biomarkers but have
established clinically meaningful correlations between available
imaging features of brain structure and behavior39. Diagnostic
algorithms for local abnormality detection, such as those
described above, are less applicable to these. Thus, another class
of analysis techniques is often used. Direct image-to-label
methods, for instance, can be applied for disease detection, even
in routinely collected clinical data40. Other methods, such as voxel-
based morphometry (VBM)41 or forms of volumetric analysis like
cortical thickness measurements42 do not output a prediction
directly but would be particularly useful in the diagnostic process
because they focus on the quantification of a wide range of
diffuse effects, such as subtle changes in gray matter volume, local
diffusion properties, cortical thickness, and the shapes and signal
intensities of structures in multimodal MRI scans43. This analysis is
more difficult for unaided humans to accomplish than the
identification of localized structural lesions.
In particular, CAD models for neurodegenerative disorders,

namely Alzheimer’s disease on structural MRI, is widely studied in
the research world22,44. Alzheimer’s is a particularly common
disease45, and early diagnosis could have a substantial impact on
patient well-being and advance care planning46. It also has an
established association with brain structure47,48, and has several
publicly available datasets49–51 on which CAD models can be
developed and tested. Interest in finding imaging biomarkers for
Alzheimer’s disease is largely centered on the need for both early
detection and differential diagnosis, or the need to distinguish AD
from other underlying causes of dementia. Commonly intended
outputs of such models may be an exact diagnosis, a prognosis,
or, more accurately modeling the disorder, and its temporal
progression52. Even outside of diagnosis, such temporal progres-
sion models may expand on the clinical diagnostic models
discussed in this article by, for instance, detecting and selecting
appropriate at-risk subjects for clinical trials, greatly reducing
sample sizes53.
The use of structural images as one factor in reaching a

diagnosis of Alzheimer’s is common clinical practice47,54, but, in
this area, analysis of neuroimages is often done without the use of
the quantitative algorithms that are often studied in the research
world22. The slowness in adopting such methods to aid in this
diagnosis, in spite of the interest in the development of CAD
models in research22, has been the subject of some recent
interest54 and is discussed further below.
Why have these methods had difficulty finding a place in

routine clinical practice? One obvious reason is that, while CAD on
Alzheimer’s is often studied in research settings, much of the
literature on neuroimaging in degenerative disorders is largely
inapplicable to clinical CAD models because so many of the
studies focus on average group differences, reporting the
significance of a particular statistical test, rather than single
subject classification55, which reports metrics such as sensitivity,
specificity, accuracy, and AUROC. For example, while there is an
average group difference between AD patients and controls in
hippocampal volume in large cohort studies, the inter-individual
variance in hippocampal volume renders that metric alone
insufficient for diagnostic utility. Thus, much of the research into
particular disorders, while insightful for understanding them
generally, is of limited utility when designing single-subject
diagnostic models.

The substantial corpus of literature reporting on single-subject
CAD models to detect Alzheimer’s disease demonstrates the
enthusiasm for this approach, even as success remains elusive.
Studies of Alzheimer’s detection in public datasets have reported
a very broad range of accuracies, ranging between 58% and 100%;
however, critical issues such as data leakage and cross-dataset
generalizability were unaddressed in many of these studies, which
could have led to poor outcomes22,56,57. Differences with respect
to the use of a single MRI sequence (e.g. T1-weighted structural
MRI) versus using multiple sequences and/or imaging modalities
have an impact on the CAD model outcomes, as does the
classification task (e.g. distinguishing between AD, different forms
of Mild Cognitive Impairment (MCI), control groups, or a
combination thereof). When considering only those studies that
compared AD to controls, did not have any detected data leakage,
and classified using a 3D CNN on a subject level, between 76%
and 90% classification accuracies were reported58–62, with the
average being 83.4%22, providing some confidence that this
approach is making a useful contribution to disease detection.
(Note, again, that sensitivity and specificity, or AUROC, are more
preferred performance metrics than accuracy37,38, though we
compare accuracies here since those are most commonly cited
across studies, especially those that are older).
An approach that might significantly speed the path to clinical

implementation would be the use of CAD models that use as
inputs more information about the patient than just the structural
brain image63. Such multi-input models have been studied64,65,
but they are relatively rare. This is likely due to both the lack of
detailed, structured, demographic, and clinical data in public
imaging databases and the fact that off-the-shelf, image-to-label
machine learning models are common in computer vision and
thus are easier to implement than multi-input models. Vinters
et al.47 noted five accepted methods of diagnosing Alzheimer’s
disease, with structural neuroimaging being only one; thus, the
very task of attempting to diagnose Alzheimer’s from structural
MRI immediately makes CAD models for radiology weaker than
the multi-input diagnoses that can be utilized by a clinician. This
suggests that in order to achieve clinically relevant performance,
multi-input diagnostic CAD models ought to be utilized; this is
discussed further below, in Section ‘Challenges in designing
robust CAD models for the clinic’.
Separating the current research perspective further from clinical

reality, differential diagnosis is also understudied in single-subject
classification, although notable exceptions exist66,67. Lack of
information about the potential of CAD models to contribute
meaningfully to a clinician who needs to formulate a differential
diagnosis for a patient presents another translational complica-
tion. Data in single-subject classification studies often come with
binary or categorical labels between healthy controls and different
stages of Alzheimer’s. However, the clinical question is less often
about whether a patient has Alzheimer’s or is cognitively normal,
but whether they have a prodromal stage of Alzheimer’s or
whether they have another, non-Alzheimer’s-related neurological
disease (e.g. vascular or frontotemporal degeneration).
Even with all these caveats, however, such models and methods

do show promise for eventual clinical translation, especially as
scientific studies using advanced neuroimaging technologies that
reveal the pathobiological mechanisms underlying disorders
become more relevant to day-to-day clinical practice.

Neuroimaging CAD models with potential future applicability
We now consider neuroimaging CAD models that may have
potential future clinical use, but which for multiple reasons, need
further development. These are CAD models and techniques used
to analyze brain disorders for which there are not yet any
confirmed pathophysiological mechanisms or consistent imaging
biomarkers. Studies reporting on CAD models for these
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applications often use imaging techniques that, as a consequence
of this, are not a component of common clinical practice in the
care of these patients. This is the case for a wide range of
neuropsychiatric disorders that have been characterized in
research settings by evidence of both diffuse structural and
functional neuroimaging abnormalities. A huge body of neuroi-
maging research has focused on psychiatric disorders15,16, such as
autism17, schizophrenia68–70, autism spectrum disorder (ASD)71–75,
bipolar disorder and depression76,77, and attention deficit and
hyperactivity disorder78–83, to name just a few. Such disorders are
typically diagnosed using clinical interviews and behavioral
tests84, but these combined with neuroimaging-based and other
quantitative, objective biomarkers85 would help to make a more
objective assessment and inform classifications of particular
psychiatric disorders.
CAD models based on neuroimaging for the detection and

diagnosis of psychiatric disorders are promising, but the clinical
translation may be a long way off. Like neurological disorders,
literature on psychiatric disorders typically shows widespread
associations between brain structure75,86 and function, and they
are seldom completely characterized by localized structural
changes that would be readily identifiable by a practicing
radiologist or other clinicians. In addition, because the association
between brain structure and behavior is weaker due to limitations
in the sensitivity of the imaging techniques or a pathophysiolo-
gical mechanism that has no impact on brain structure, many
psychiatric disorders are primarily studied using modalities that
are not yet routinely acquired in clinical practice and which
themselves require unique technical analysis methods; in parti-
cular, functional brain activations, recorded with EEG or fMRI, are
more often collected for research studies than clinical diagnostics.
These are studied using the methods described in Section
‘Neuroimaging CAD models in active development and testing’,
but also a range of more complex data analytic techniques, such
as independent component analysis (ICA)87 and different forms of
brain connectivity88.
Another technical obstacle is that the models often require

imaging modalities that are not currently implemented in clinical
practice; this is not usually acknowledged in the literature
describing research aimed at elucidating disorder-specific brain
imaging biomarkers. Thus, single-subject diagnostic models for
psychiatric disorders developed in laboratory settings would not
be immediately translatable. The American Psychiatric Association
published a report concluding just as much in 201984, which
noted, in studies that attempted to find structural biomarkers for
single-subject classification, inconsistent regions of interest and a
requirement of at least 80% sensitivity and specificity for the
diagnosis or detection of adult mood and anxiety disorders,
psychotic disorders, cognitive disorders, substance use disorders,
and various childhood disorders, including attention deficit
hyperactivity disorder, childhood bipolar disorder, depression/
anxiety, and an autism spectrum disorder. Thus, for the clinical
implementation of CAD models to aid in the detection or
diagnosis of psychiatric disorders, either additional imaging
modalities would need to be clinically implemented, or CAD
models for structural neuroimages would need to significantly
improve.
Like the neurological disorders discussed above, clinical

applications of CAD models to assist with other tasks such as
the generation of differential diagnoses are not as often the focus
of single-subject neuroimaging CAD studies for psychiatric
disorders. There is ample room for expansion of the focus of
research to address unmet clinical needs. However, in the present,
a particularly potent clinical use case for the detection of
psychiatric disorders is neonate imaging, because behavior
assessment in the neonatal stage is challenging. Studies in CAD
models for neonate imaging have shown the ability to predict
arbitrary factors, such as brain age and myelination89, as well as

success in predicting familial risk for autism spectrum disorder90

and subtle brain injury91. While the acquisition and analysis of
neonate images present unique technical challenges92, the
genetic basis for many such disorders93 and the potentially huge
impact of very early intervention94–96 makes early detection a
strong use case for CAD algorithms for psychiatric disorders.

CHALLENGES IN DESIGNING ROBUST CAD MODELS FOR THE
CLINIC
As just reviewed, neuroimaging CAD models have seen some
successes in controlled laboratory settings, but unique technical
and disease-related challenges, often not reflected in the
laboratory studies, hamper their translatability. These are sum-
marized in the first two sections of Table 1 and are discussed in
greater detail here.
In current practice, neuroimaging CAD models are most often

tested on small datasets acquired for a specific research study or
large public neuroimaging benchmark datasets, both of which are
usually collected on a limited number of very similar sites with
consistent diagnostic techniques. However, this does not reflect
the substantial differences in manufacturer, quality, and clinical
practices often found in real-world hospitals. For instance, the UK
Biobank, a widely employed public imaging benchmark dataset
that includes brain MRI scans for what will be a total of 100,000
participants, restricts image acquisition to four scanning sites97,
each of which has identical scanner hardware and software, and
performs regular quality checks to ensure the harmonization of
the image data. In stark contrast, our large-scale study of brain MRI
data from of 37,311 patients extracted from the clinical archives of
a pair of academic healthcare centers over a 25-year period98 was
collected on 954 unique scanners, reflecting the much more
diverse array of technical confounds in real-world data.
These clinical site differences, a manifestation of the common

machine learning problem of dataset shift99, have significant
implications for CAD models, especially ones trained using
machine learning. Importantly, while machine learning models
have shown the ability to generalize across a complex dataset,
they fail to extrapolate even simple mathematical functions; thus,
an input much higher or lower than what is found in the training
set would break the model100. This would make CAD models
potentially unreliable if any single parameter that lies too far
outside the extremes of its training set is included. The same could
be true of a combination of specific parameters not seen in the
training set. This would also mean that rare diseases or images
acquired on new scanners may introduce wholly unseen variations
and thus make the models even more likely to fail. This issue has
even led the FDA to allow automatic updates of AI/ML products
for issues such as equipment upgrades and changes101,102.
A number of technical and strategic methods have been

proposed to overcome the site difference problem. It may be
mitigated, to an extent, by careful quality assurance and clinician
oversight of any new data, with human experts assuring that no
inputs to a CAD model are too flawed or different from the
training data. Given the busy environment and the amount of
required knowledge and tasks, however, this presents a logistical
barrier in itself. New sophisticated approaches for automatic
quality control strategies have been suggested103–105, and
leveraging them in parallel with expert review will make the
quality assessment process more efficient.
Further generalization of CAD models may also be achieved by

an expansion of the training set, but health privacy laws and the
expense of acquiring brain images limit the ability to use this
strategy. In healthcare particularly, federated learning106,107, in
which models are trained internally in several different sites for
generalizability, has great potential to be an effective method to
improve model robustness that also follows data privacy laws.
Recent advances are supporting and enabling this approach108,109.
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Table 1. A breakdown of the barriers towards clinical implementation of neuroimaging CAD models presented in this article.

Barrier type Reason Description Solution(s)

Technical Generalizability Failure of CAD models to generalize across
different scanner types and hospitals, as well as
different population subgroups, ethnicities, ages,
and genders

Federated learning, larger datasets, methods that
prevent overfitting, domain switching,
harmonization

Verifiability A general set of problems, including the black
box model, prevents users from knowing the
reasons for a CAD model’s decision.

Segmentation-based models explainable AI,
gradient class activations

Integration into workflow Translation of models from proof-of-concept to
usable software products

Investment in software engineering and user
experience, corporate partnerships

Incomplete and mislabeled
data

EHR data is often incomplete or mislabeled,
hampering the training of CAD models

More careful record keeping, translating clinician
notes, careful exclusion of data, and
development of methods that can handle such
incomplete data.

High computational
requirements

Computational requirements for medical image
computations are very high, which is expensive.

Cloud-based solutions; institutional investment
in servers

Disease-related Lack of biomarkers Lack of consistent physiological features
detectable in data that are consistently present
with a particular brain disorder

Dependent on the type of disorder studied, and
for some it may be insurmountable. However,
higher-resolution data, different modalities, and
more advanced analysis techniques may mitigate
the issue.

Lack of sufficient modalities Modality types used in the research world
(primarily to study psychiatric disorders) are
often not present in the clinic, curtailing the
implementation of neuroimaging for the
detection of such disorders

Inclusion of fMRI, EEG, etc. into clinical workflows

Disease differentiation Emphasis on causes of the disease (e.g. whether
dementia is caused by Alzheimer’s or
vascularization), which is often just as important
as the presence of a disease

More careful labeling of disorders and
confounders, further study of ML methods
beyond binary classification

Correlation with confounding
variables

Variables for which the disorder of interest is
systematically correlated with another variable
regardless of the dataset; similar to
generalizability (above), except different
methods are required to mitigate model bias

Data matching, machine-learning-based
regression methods

Lack of control group Clinical data often lacks a healthy control group,
against which to compare, to train CAD models

Careful data curation; reformulation of the
problem, such that a control group doesn’t have
to be healthy, but merely has to not have the
disease of interest

Institutional Separation of AI experts and
data scientists from clinicians

Data scientists and AI experts are most often
employed at sites other than hospitals, thus
being separated from real-world medical data,
while clinicians work in hospitals, leading to
incomplete understanding on both sides

Increased postdoctoral salaries in research
hospitals, stabilization of career tracks for junior
biomedical researchers, specialized fellowship
programs to partner AI experts with clinicians

Technical expertise of
clinicians/Usability of CAD
models

Clinicians are disinclined from using CAD models
and other automated tools due to the technical
skill required and the amount of time required
for use

Work more closely with data scientists/AI experts,
supplementary training courses; Prioritization of
usability in CAD models

Lack of funding for
implementation studies

Funding bodies are often more inclined to fund
novelty studies rather than implementation
studies

Different guidelines for funding bodies (e.g. NIH)

Disorganization of clinical
databases

Related to “incomplete and mislabeled data,"
above. Databases in hospitals are often
disorganized, hampering big-data machine-
learning studies and leading to mislabeled data.
Medical images are often duplicated and
identifiers are often missing or difficult to match
with medical images, leading to loss of clinical/
demographic information for medical images.

Institutional investment clinical databases, both
on the part of hospitals and vendors.

Federal approval processes Federal bodies are often disinclined from
approving CAD models, though much of this is a
result of the above issues

Addressing many of the above problems, leading
to greater confidence in the efficacy of CAD
models; clarification, on the part of FDA and
other regulatory bodies, of requirements for CAD
model implementation and approval
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Adversarial deep-learning regression methods110 as well as
simpler statistical regression methods such as ComBAT111,112 for
multi-site MRI harmonization have been shown to be effective
across public benchmark datasets like AIBL, ADNI, and ENIGMA.
Such methods, however, have not been rigorously tested in the
less-consistent environments of clinical neuroimaging. Keenan
et al.113 measured differences in T1 MRI scanner measurements
among 27 different configurations of manufacturer, software, and
field strengths on phantom data and found substantial and
inconsistent discrepancies between MRI scanners, suggesting site
difference regression would be more challenging across random
hospitals than across benchmark data. Some early attempts to
address this have relied on generalized domain-switching deep
learning models, namely SynthSeg114 with evidence that this
approach has meaningful clinical validity115.
Similar to site differences in their ability to disrupt the

effectiveness of CAD models are confounds systematically
associated with brain disorders. These are measurements in which
biomarkers are related to a given variable that ought not to be
associated with a certain disease. The most obvious example of
this is age and degenerative disorders, which would disrupt the
detection of rare early-onset cases. Methods that simply general-
ize a model across different sites and populations, such as
federated learning, would not sufficiently address such confounds.
However, other strategies, such as ComBAT, post-hoc dataset
matching98, and adversarial confound regression110,116 may still
aid with these issues.
Even with the above issues addressed, however, differences

between laboratory and clinical settings would further complicate,
if not inherently prevent, any models trained and validated on
research datasets from being deployed directly to hospitals.
Gollub et al.117 describe four key differences between data
acquired in laboratories and clinical settings: (1) acquisition
(standardized versus according to the needs of the patient); (2)
quality of data; (3) lack of a consistent control group in clinical
data; and (4) reporting methods (quantitative reporting in
research versus qualitative reporting in clinics). Many of these
differences could conceivably be addressed by careful analysis of
electronic healthcare record data by clinicians and data scientists.
A team of clinicians and data scientists could translate qualitative
reports to quantitative data on which to train CAD models,
carefully partition and analyze electronic health records to isolate
disease labels and associated training data, and so on. However,
the issue of data quality would necessitate the re-evaluation of
models entirely, since diagnostic results produced on high-
resolution structural neuroimaging data are not at all guaranteed
to replicate on low-resolution data. Lack of a healthy control group
and disease-based confounds, as well as incomplete data118 that
may fail to even note confounding pathologies and cause the
model to be completely wrong, are all further reasons that models
trained and validated on a research sample would need to be re-
trained and re-evaluated within the unique context of a hospital.

As discussed above, clinically implemented CAD models for
neuroimages, especially those targeted towards neurodegenera-
tive or psychiatric disorders, would most likely need to take as
input more information than just the brain image itself. The main
reason for this is labeling. While most machine learning models
were designed for tasks that require reliable, ground-truth labels,
labels for CAD models in healthcare, especially for brain disorders,
are often not obtained from the data themselves, but from other
sources, such as behavioral assessments, prescribed medications,
laboratory results, or other biomarker analyses, or even neuro-
pathology. This often causes labels found associated with the
medical image data alone to be wrong119, incomplete, or
unrelated to the underlying biology. While other machine learning
methods attempt to replicate the human performance, diagnostic
AI on a given brain image is thus attempting to perform tasks that
clinicians themselves do not perform (diagnosis from a structural
MRI or CT scan alone), and so there is no verification that such a
diagnostic task is even possible. This important difference
between general machine learning and CAD models can be
generalized to most psychiatric and neurodegenerative disorders
studied in the neuroimaging literature, favoring the implementa-
tion of multi-input CAD models for the majority of clinical use
cases64,65.

PATHWAYS TO CLINICAL IMPLEMENTATION AND
INSTITUTIONAL BARRIERS
Thus far, we have focused on purely technical barriers to
neuroimaging CAD model design and translation. We now turn
our attention to institutional, cultural, and sociological barriers
that impact the development of these tools and their translat-
ability to clinical practice. These challenges are summarized in the
bottom half of Table 1.
The bulk of research has been in the development of CAD

models in research settings, but in recent years, cohorts of
researchers around the world have been working to flesh out a full
pathway to clinical implementation. Goodkin et al.120 describe the
quantitative neuroradiology initiative (QNI) framework, a step-by-
step process for the validation of neuroradiology quantification
techniques for clinical practice, which is the most comprehensive
and general framework to date for doing so. Briefly, it consists of
six steps: (1) identify appropriate and proven imaging biomarkers
for the disease in question and establish a clinical need; (2)
develop and test an algorithm for automated analysis of these
biomarkers; (3) communicate results in a quantitative report; (4)
technically and clinically validate the algorithm; (5) integrate the
algorithm into the clinical workflow; and (6) perform the in-use
evaluation in the clinic.
A large number of studies attempt to achieve the biomarker

identification of step 1, though few have been consistent over
most brain disorders, as noted in First et al.84. Just as important
but less often discussed is the true clinical need, as discussed
extensively above, which is often unaddressed. Many studies have

Table 1 continued

Barrier type Reason Description Solution(s)

Underdeveloped business
model of medical AI

Lack of development of business model for
medical AI. Who does the value accrue to, and
who pays for it?

Development of AI business models in other
industries and in business schools, which will
likely inform the best practices for doing so in
medicine.

Lack of capabilities for post-
market surveillance

After an AI model is implemented in a hospital,
what mechanisms are available to monitor their
effectiveness on a large scale?

Centralized monitoring and reporting systems
that do not interface with patient data directly,
thus ensuring security.

Technical- and disease-related challenges are discussed in the section “Challenges in designing robust CAD models for the clinic”, and institutional challenges
are discussed in the section “Pathways to clinical implementation and institutional barriers”.
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achieved steps 2 and 3 and the technical validation of step 4,
showing highly effective CAD models in neuroimaging, but few of
these have even attempted the clinical validation and workflow
integration of steps 4 and 5, and even fewer have reached step 6.
This is partially because clinical validation requires a different set
of skills and resources than does purely technical development,
which may only require access to computing resources and a
public imaging dataset. Model robustness is difficult to prove
without access to clinical data or knowledge of clinical workflow.
Furthermore, in these studies, more thought is typically given to
model uniqueness and test set accuracy than is given to valid
clinical uses of the proposed model.
After all these steps are achieved, government approval, especially

in the United States121, is a difficult process. Goodkin et al.120 note
the difference between the rollout of such a model at a particular
institution (which may be sufficient for QNI steps 4–6) and general
approval of the medical product for all institutions in a given country.
While models may be tested internally at a single institution11, in the
United States, the Food and Drug Administration is the body
responsible for the approval of such models prior to general use. The
FDA’s own caution around CAD models was confirmed in a 2012
report, in which they considered computer-aided diagnosis to be
higher risk than computer-aided detection6,24,122. A recent review by
Khunte et al.24 reported that, of the more than 150 medical-imaging-
related AI algorithms approved by the FDA to date, only three were
related to brain MRI, and those applications were not CAD models,
but, rather, were for perfusion quantification and segmentation; a
more comprehensive database is maintained at https://
aicentral.acrdsi.org/23. To date, the only truly diagnostic CAD
algorithms (i.e., which output an estimated diagnosis) for neuroi-
mages that have been approved by the FDA rely on similar local area
detection for ICH and LVO identification3–5,24, after its unique success
in single-institution clinical validation11, discussed in Section
‘Neuroimaging CAD models with current clinical applicability’ above.
This abundance of caution on a federal level may be one of the
impediments to the general rollout of CAD models (in U.S. hospitals
particularly), but it is more likely a reflection of the difficulty of
designing and validating effective CAD models, especially for brain
images.
Even after government approval, continued monitoring of AI

algorithms in the clinic is necessary, since changing clinical
conditions or device upgrades may cause them to operate
unpredictably in the future (as mentioned in Section ‘Challenges
in designing robust CAD models for the clinic’, this motivated the
FDA to update its AI/ML device guidelines to allow automated
model updates101,102). Daye et al.123 recommended internal
institutional governance committees that would both approve
and require continual oversight of such algorithms throughout
their lifespan.
Specific standards for CAD adoption and implementation vary

widely from country to country. For a few examples, among digital
health products, China considers those that rely on AI to be the
highest-risk class124 and specifies that applicants must carry out a
number of risk-management tasks to validate their AI algorithms
prior to implementation. In India, comprehensive digital health
laws are lacking, and the question of health AI models is generally
unaddressed by their government125,126. Europe, despite not
having a single regulatory agency across the continent, seems to
have produced the most comprehensive academic thought
surrounding CAD implementation, given its invention of QNI120.
While the primary reason for the lack of clinical adoption of CAD

models is the lack of evidence that they can address key unmet
clinical needs, it is not the only reason. The lack of progress in the
rollout of neuroimaging CAD models is partially due to a lack of
incentive to adopt them on the part of clinicians, which is both
related to the usability of common tools and simple time constraints.
One area where this has been studied is dementia diagnosis,
specifically in memory clinics in Europe, where medical devices are

not regulated by a single regulatory agency121. Few groups have
published the results of the clinical implementation of tools validated
under the QNI framework in clinical practice127. Vernooij et al.54

surveyed typical clinical practice in diagnostic radiology from 193
European academic and non-academic institutions, with 90% stating
that they acquired some form of MRI for dementia diagnostics; 75%
of centers used visual rating scales (i.e., in which radiologists analyzed
the MRIs themselves), though only 5.7% regularly used volumetric
data in their analysis. The most commonly cited reasons for their
non-use were lack of access to algorithms and the additional time
required to use them (a sentiment echoed in computer detection
systems for mammogram diagnostics128).
Other impediments are related to market forces that affect

health AI in general and are not specific to neuroimaging CAD
models. Large, private tech companies that hire skilled engineers
capable of designing these diagnostic AI algorithms have
attempted to translate their health AI work into a clinical setting.
To date, no major breakthroughs have been shared and a few of
these high-profile projects have ended with little more than poor
publicity, discouraging future endeavors. Concerns with data
privacy and insufficient communication with regulatory bodies
derailed Google’s Project Nightingale129 as well as DeepMind’s
kidney injury detection algorithm130 with the NHS in Great Britain,
while algorithmic efficacy, stemming from a lack of data, led IBM
to close IBM Watson Health131. While these failures have not
stopped tech companies from continuing to pursue health-tech
projects132, they are often initiatives that more closely model
partnerships with research institutions that do not attempt to
access clinical data133 or have a direct effect on patients.
This would beg the question of why the design and

implementation of effective CAD models cannot occur internally
in large research hospitals. While this is a possible route, studies
that seek to implement previous research, with a large engineer-
ing component, are far less likely to be funded than those that
promise novelty134. Academic-quality code is also written to be a
prototype rather than an end product for users, and so best
software engineerings practices, such as version control, doc-
umentation, scalability, maintenance, and QA testing, are rarely
practiced, though frameworks135 and checklists (like the Checklist
for Artificial Intelligence in Medical Imaging136) for the develop-
ment and rollout of such products in a clinical environment have
been proposed. This would make any academic product built in a
hospital potentially unreliable in practice, both from a user
experience standpoint and algorithmically, which would only
harm clinician trust in the long term.
Additionally, junior AI researchers are in high demand else-

where137, and both market incentives and long-term career
prospects of junior biomedical researchers138 tend to drive such
talent away from these institutions. Large research hospitals,
which have positions often funded by federal grants, limit the
amounts they pay junior researchers, while tech companies self-
fund such positions and are thus able to pay true market rates for
top talent. Lack of a centralized database would prevent an
objective analysis of this issue139, but even a cursory look at
salaries in the United States reveals large disparities between tech
companies and research hospitals. Base pay of a postdoctoral
researcher in AI at Google, Meta, and Microsoft was reported to be
$146,787140, $140,007141, and $148,472142, respectively, while the
postdoctoral salaries at major research hospitals in the U.S.,
including Massachusetts General Hospital, the Mayo Clinic, and
Johns Hopkins, are based on the NIH stipend guidelines and were
reported to be $53,760143, $57,923144, and $56,369145, respec-
tively. This feeds into indirect problems as well, such as poor IT
infrastructure at such institutions to support researchers in big
data projects, with EHR databases for secondary research access
typically designed with small-scale clinical studies in mind146,
causing researchers to spend time on workarounds to access this
data147. These forces essentially incentivize AI expertise to move
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away from workplaces in which real-world medical data is most
readily available, hamstring efforts at true translational research.
The resultant lack of day-to-day interaction between AI talent and
clinicians acts as an additional barrier to implementation.

FUTURE PERSPECTIVES
Widespread implementation of neuroimaging CAD models may
begin with the limited rolling out of models for the identification
of localized structural disorders within large and mid-sized
research hospitals, trained only on local data11,148. This is a
favorable place to start with the deployment of neuroimaging
CAD models for three reasons: (1) segmentation-based models are
easier to verify by humans than end-to-end diagnostic models,
thus helping to catch problems with the models early on; (2)
because they make a segmentation rather than a certain
diagnosis, they do not need to operate perfectly and thus avert
the risk of patient harm due to a false diagnosis, but may be used
to notify clinicians to possible high-risk cases in routinely collected
data earlier than normal (or, such models may be used to inform a
clinician in a diagnosis, e.g. by detecting a rare type of lesion); and
(3) by operating within a single institution, they avoid many of the
problems associated with site differences.
The rolling out of models on a gradual scale is also important

because it would provide clinicians and local technicians with
essential training in the use of such models, providing a possible
pathway to the future rolling out of neuroimaging CAD models for
neurological and, possibly, psychiatric disorders, across many such
hospitals. Frequent communication between data scientists and
software engineers developing such models and radiologists and
other clinicians using them would also encourage a development
loop that is useful for creating strong software products149. This may
happen in the context of either close partnerships between
research institutions and tech companies, or within research
institutions if internal software development teams could be grown.
This would also help in creating a foundation for more complex

CAD models. The implementation of CAD models for psychiatric
diagnoses and very early detection in neonates has huge
potential, but it would require significantly more investment from
hospitals (i.e., in more hardware, data collection procedures, and
analysis methods) than those described above. On the side of CAD
model development, researchers ought to be incentivized to focus
on clinical need, translation, and usefulness rather than the
novelty and technical complexity of their methods.
In conclusion, the implementation of CAD models for neuroi-

maging is hampered by technical, disease-oriented, and institu-
tional challenges, as well as mixed incentives in research and the
broader workforce. The likeliest route to the clinical translation of
CAD models is the local rolling out of AI that practically aids the
workflow of radiologists, in environments in which data scientists
and researchers can closely collaborate with clinicians.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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