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A B S T R A C T   

Air pollution exposure may affect child weight gain, but observational studies provide inconsistent evidence. 
Residential relocation can be leveraged as a natural experiment by studying changes in health outcomes after a 
sudden change in exposure within an individual. We aimed to evaluate whether changes in air pollution exposure 
due to residential relocation are associated with changes in body mass index (BMI) in children and adolescents in 
a natural experiment study. This population-based study included children and adolescents, between 2 and 17 
years, who moved during 2011–2018 and were registered in the primary healthcare in Catalonia, Spain (N =
46,644). Outdoor air pollutants (nitrogen dioxides (NO2), particulate matter <10 μm (PM10) and <2.5 μm 
(PM2.5)) were estimated at residential census tract level before and after relocation; tertile cut-offs were used to 
define changes in exposure. Routinely measured weight and height were used to calculate age-sex-specific BMI z- 
scores. A minimum of 180 days after moving was considered to observe zBMI changes according to changes in 
exposure using linear fixed effects regression. The majority of participants (60–67% depending on the pollutant) 
moved to areas with similar levels of air pollution, 15–49% to less polluted, and 14–31% to more polluted areas. 
Moving to areas with more air pollution was associated with zBMI increases for all air pollutants (β NO2 = 0.10 
(95%CI 0.09; 0.12), β PM2.5 0.06(0.04; 0.07), β PM10 0.08(0.06; 0.10)). Moving to similar air pollution areas was 
associated with decreases in zBMI for all pollutants. No associations were found for those moving to less polluted 
areas. Associations with moving to more polluted areas were stronger in preschool- and primary school-ages. 
Associations did not differ by area deprivation strata. This large, natural experiment study suggests that in-
creases in outdoor air pollution may be associated with child weight gain, supporting ongoing efforts to lower air 
pollution levels.   

1. Introduction 

Overweight and obesity in childhood and adolescence have serious 
social, economic and health implications in society, with various short- 
and long-term adverse health outcomes (Geserick et al., 2018; Kumar & 

Kelly, 2017). This chronic, multifactorial condition is a consequence of 
an interaction of genes, lifestyle behaviors, physiological and social 
determinants, and potentially environmental exposures, such as air 
pollution (González-Muniesa et al., 2017). Air pollution is one of the 
most harmful environmental and occupational risk factors, which 
contributed, according to the 2019 Global Burden of Disease study, to 
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6.67 million deaths worldwide (Murray et al., 2020). 
A growing body of evidence has linked exposure to outdoor, traffic- 

related, air pollution to increases in body mass index (BMI), overweight 
and obesity in childhood, but evidence is inconsistent and important 
questions remain about the causality of this association (An et al., 
2018a,b; Malacarne et al., 2022; Wang et al., 2021). Several longitudinal 
and cross-sectional studies have reported that greater levels of air 
pollution are associated with higher weight among children and ado-
lescents (Bloemsma et al., 2019; de Bont et al., 2019, 2021; Dong et al., 
2015; Huang et al., 2019; Jerrett et al., 2014; Zhang et al., 2021), but 
others have reported null associations (Alderete et al., 2017; Fioravanti 
et al., 2018; Frondelius et al., 2018). Observational studies may be prone 
to residential self-selection, where more health-conscious individuals 
may choose to live in healthier areas (de Bont et al., 2019; Dong et al., 
2015), and they may be prone to residential confounding by socioeco-
nomic status (Malacarne et al., 2022). For these reasons, they may have 
limited capability to establish causality. 

Natural experiments may offer a way to overcome some of the con-
cerns of observational studies. Of particular relevance to outdoor air 
pollution, residential relocation studies offer the opportunity to study 
changes in health outcomes after a sudden change in air pollution levels 
due to the move to a different address. The value of natural experiments 
in providing real-world conditions has increased interest in the area of 
obesity prevention in the past two decades, however the body of 
research remains small (Crane et al., 2020). Even though subjects may 
self-select whether and to which type of neighborhood they move based 
on multiple unmeasured social and economic factors (Drewnowski et al., 
2019), residential relocation experiments allow the consideration of 
changes in exposures and outcomes within individuals over a certain 
period (Braun et al., 2016). This improves the issue of residential 
self-selection and controls for time-invariant confounding. In this way, 
relocation studies have the potential to improve causal evidence. Resi-
dential relocation designs have been used in a small number of studies to 
evaluate the impact of changes in air pollution and traffic exposure on 
overall and specific causes of mortality, and myocardial infarction (Chen 
et al., 2021; Gan et al., 2010; Hart et al., 2013), but they have not been 
used to improve causal evidence for the association between air pollu-
tion and childhood obesity related outcomes. 

In this context, the present study aimed to evaluate the association 
between changes in exposure to air pollution due to residential reloca-
tion and BMI z-scores (zBMI) in children and adolescents in a large 
population-based cohort using a natural experiment study design. 

2. Methods 

2.1. Study design, setting and population 

This study used longitudinal retrospective data from the Information 
System for Research in Primary Care (SIDIAP) in Catalonia, Spain 
(Bolíbar et al., 2012). SIDIAP is an electronic health record dataset that 
contains pseudo-anonymized information of more than 6 million people 
from over 328 primary care centers, which represents around 75% of the 
population living in Catalonia. The SIDIAP dataset is highly 

representative of the entire Catalan region, according to sex, age and 
geographic distribution (Recalde et al., 2022). 

Overall, 46,644 children and adolescents aged 2–17 years, who 
moved once between January 2011 and December 2018, with at least 
one anthropometric measurement (i.e., weight and height) recorded at 
the same visit and with at least one air pollution and zBMI measurement 
before and after moving were included in the study (Fig. 1). Since 
changes of addresses were only registered at an annual basis in SIDIAP, 
the date of moving was considered to be the midpoint of the moving 
year, i.e., June 30th (Chen et al., 2021). The estimation of moving in the 
middle of the year corroborates with the seasonality of mobility, in 
which a higher proportion of individuals move during summer time in 
Europe, between June and September (Tucker et al., 1995). Childhood 
obesity community-based interventions have shown short-term post--
intervention effects on weight (Magarey et al., 2011; Smith et al., 2013), 
so a minimum time period of 180 days was considered to observe po-
tential effects on zBMI. The choice for this time period took into account 
the lack of residential relocation studies and effects of air pollution 
exposure on childhood zBMI and that the majority of relocation studies 
with lower risk of bias consider at least 180 days after moving, as 
described in a recent literature review on residential relocation studies 
and effects on various weight outcomes (Edwards et al., 2022). Current 
analyses were focused on one-time movers since the majority of movers 
only moved once during the study period and in order to ease inter-
pretability of results. 

Ethical approval was received by the Clinical Research Ethics Com-
mittee of the IDIAPJGol (project code: 22/019-P). 

2.2. Anthropometric assessment 

Weight (nearest of 100 g) and height (nearest 0.1 cm) were routinely 
measured following standard procedures in primary care centers (Gen-
eralitat de Catalunya, 2008). Age- and sex-specific zBMI were calculated 
and categories were described according to the World Health Organi-
zation (WHO) (de Onis, 2007; World Health Organization (WHO) Mul-
ticentre Growth Reference Study World Health Organization 
Multicentre Growth Reference Study Group, 2006): <5 years: Under-
weight < -2 standard deviations (SD), normal weight [− 2SD, 2SD], 
overweight ]2SD, 3SD] and obesity > 3SD; ≥5 and ≤ 17 years: Under-
weight <− 2SD, normal weight [− 2SD, 1SD], overweight ]1SD, 2SD] 
and obesity >2SD. Biologically implausible values of weight, height and 
zBMI were removed and continuous zBMI was considered as the main 
outcome of this study. 

2.3. Ambient air pollution assessment 

Since SIDIAP is a pseudo-anonymized database, it does not contain 
individual personal data (such as name and address) of individuals. 
Therefore, exposure to outdoor air pollution was estimated at residential 
census tract level. Annual residential levels of nitrogen dioxides (NO2), 
particulate matter (PM) < 10 μm (PM10) and <2.5 μm (PM2.5) were 
estimated using a land use regression model (LUR) developed within the 
ESCAPE framework for the whole of Catalonia (Beelen et al., 2013; 
Eeftens et al., 2012). LUR models have been increasingly used in 
epidemiological studies and enable the capture of within-city vari-
ability. PM2.5, PM10 and NO2 were the air pollutants of focus in this 
study, based on the WHO air quality guidelines from 2005 (World 
Health Organization (WHO). Regional Office for Europe, 2006) and 
2021 (World Health Organization (WHO), 2021) which have shown 
dramatical increases worldwide and a high percentage of population 
living in areas that exceeded the WHO air quality guidelines for these 
pollutants. The Catalonian LUR model predicted (R2) 62–76% of the 
variability in air pollution levels in 2009. To estimate exposure at census 
tract level, we created an artificial grid points data set with n random 
points within each census tract based on its area so increasing the 
density of points in smaller areas and reducing the number of points in 

Abbreviations 

BMI Body mass index 
NO2 Nitrogen dioxides 
PM10 Particulate matter <10 μm 
PM2.5 Particulate matter <2.5 μm 
SES Socioeconomic status 
SIDIAP Information System for Research in Primary Care 
zBMI Body mass index z-scores  
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larger areas. We ensured at least 5 observations predicted within each 
census area. Air pollution was then averaged by census area (Nieu-
wenhuijsen et al., 2018). Each study participant was assigned the level 
of air pollution at the residential census tract location before and after 
residential move. The measurement of air pollution concentrations at 
fixed location monitoring sites has been the most common and tradi-
tional approach used to assess air quality in cities, measure trends and 
estimate exposures in epidemiological studies. 

Average annual concentrations of PM2.5, PM10 and NO2 were 
grouped in tertiles before residential relocation, since we were inter-
ested in substantial changes in air pollution levels, rather than small 
decreases/increases in air pollution levels. Tertile cut-offs were used to 
define changes in exposure before and after relocation, and the 
following categories of change were defined: “Moving to a less polluted 
area” included individuals for whom the air pollution tertile decreased 
after residential relocation, “Moving to a similar area” included in-
dividuals for whom the air pollution tertile did not change, and “Moving 
to a more polluted area” included individuals for whom the air pollution 
tertile increased after residential relocation. 

2.4. Covariates: socioeconomic and built environment characteristics 

Child and adolescent age were obtained through SIDIAP, besides sex 
and nationality (for descriptive purposes). As an indicator of area-SES, 
the Índice de privación 2011 de la Sociedad Española de Epidemiología 
(IP2011 deprivation index) (Duque et al., 2021), which is linked to each 
residential census area of the population in Spain (urban and rural 
areas), was used. The IP2011 deprivation index is based on six socio-
economic indicators, calculated for each census tract in 2011: Percent-
age of unemployment, manual and temporary workers, percentage of 

insufficient education (i.e., unable to read or write/incomplete primary 
studies) overall and among the younger population, and percentage of 
houses without internet access. Based on the distribution of our study 
population, the IP2011 deprivation index was categorized in quintiles, 
in which the 1st and the 5th quintile were the least and the most 
deprived areas, respectively. Finally, population density was calculated 
as the number of inhabitants divided by the census area (km2), obtained 
through the Spanish National Statistics Institute of 2011. 

2.5. Statistical analyses 

We explored the association between the PM2.5, PM10 and NO2 
exposure change categories and changes in child and adolescent zBMI 
using linear fixed effects regression models for panel data. Fixed effects 
models rely on within-person variation (Allison, 2005), allowing each 
individual to serve as his/her own control (Knuiman et al., 2014), be-
sides controlling for observed and unobserved time-invariant individual 
characteristics (Lovasi & Goldsmith, 2014), such as underlying prefer-
ences and behaviors. The choice for fixed effects models was based on 
the assumption that the change in exposure is under the control of the 
individual, and not that changes in exposure are a function of decisions 
made outside of the unit of observation (e.g., a state policy change), as is 
the case of difference-in-difference analysis (Strumpf et al., 2017). Fixed 
effects models take advantage of the panel data structure (repeated data 
in the same people over time), whereas the differences-in-differences 
approach is more often used in population level (different people can 
be included in the pre- and post-intervention groups) (Griffin et al., 
2021). The adjusted fixed effects models included mean-centered age, 
population density, the IP2011 deprivation index and an interaction 
term between mean-centered age and air pollution change. This 

Fig. 1. Study flowchart.  

S. Warkentin et al.                                                                                                                                                                                                                              



Environmental Pollution 334 (2023) 122217

4

interaction term was investigated based on the assumption that the ef-
fect of the exposure to air pollution on weight may differ/be dependent 
on child age. 

Sensitivity analyses were performed to explore robustness of results: 
i) Stratification by age-groups (at baseline age) (preschool-age (2–5 
years), primary school-age (6–11 years) and adolescence (12–17 years)); 
(ii) Inclusion of zBMI measurements taken at least 12 months of resi-
dential relocation (instead of 180 days in the main model); and iii) 
Stratification by the IP2011 deprivation index, focusing on the least and 
most deprived subpopulations. 

Statistical significance was set at 5%, and all tests were two-tailed. 
All analyses were conducted in R version 4.2.2 (R Core Team, Vienna, 
Austria) using the plm package for fixed effects analyses (Croissant & 
Millo, 2008). 

3. Results 

Movers had, at baseline, median age of 4 years (ranging from 2 to 16 
years); 19% were of foreigners, approximately 25% were in the most 
deprived areas at baseline. Compared to non-movers, movers had a 
higher proportion of foreigners and were more deprived at baseline 
(quintiles 4/5) (Supplementary Table 1). Between 59 and 67% moved to 
similar air pollution areas, 17–20% moved to less and 16–21% moved to 
more polluted areas (Table 1, Supplementary Table 2). For PM2.5 only, 
those moving to more polluted areas were more deprived (quintiles 4/5) 
at baseline (43.8%) compared to those moving to less polluted areas 
(quintiles 4/5: 38.4%) (Table 1); small differences were observed in the 
other two exposure change categories (Supplementary Table 2). Median 
increases in air pollution in those who relocated to more polluted areas 
were 1.5, 4.5, 16.4 μg/m3 for PM2.5, PM10, and NO2, respectively 
(Table 1, Supplementary Table 2). 

Adjusted fixed effects analyses show that residential relocation to 
more polluted areas for PM2.5, PM10 and NO2 was associated with an 
increase in zBMI (e.g. for children of average age in the study: β NO2 =

0.10(95%CI 0.09; 0.12)). Moving to similar air pollution areas was 
associated with a reduced zBMI for all three pollutants (e.g. for children 
of average age in the study: β NO2 = − 0.03(95%CI -0.04; − 0.02)). 
Moving to areas with less air pollution levels did not show significant 
association with follow-up zBMI (Table 2). 

The interaction term between mean-centered age and air pollution 
area change was significant in all models. Associations were stronger for 
the younger ages compared to adolescence. For example, in children of 
primary school-age (6–11 years), increases in zBMI were observed 
among those moving to more polluted PM2.5, PM10 and NO2 areas (e.g. β 
NO2 = 0.12(95%CI 0.09; 0.14)) and decreases in zBMI were observed 
among those moving to areas with similar air pollution levels for all air 
pollutants. In preschool-age children (2–5 years), moving to more 
polluted PM10 and NO2 areas was associated with increases in zBMI, but 
no other associations were seen. No statistically significant associations 
were observed in adolescents (12–17 years) (Table 3). 

Sensitivity analyses considering zBMI measurements at least 12 
months after residential relocation showed that the previous associa-
tions of moving to more polluted areas with increases in zBMI were 
maintained for PM2.5 and PM10, but not for NO2. Moving to similar air 
pollution areas were also associated with decreases in zBMI after 12 
months for all air pollutants. For NO2, those moving to less polluted 
areas showed statistically significant decreases in zBMI, however sig-
nificant zBMI increases were observed for those moving to less polluted 
PM2.5 and PM10 areas (Supplementary Table 3). In Supplementary 
Table 4, stratified analyses by the deprivation index at baseline showed 
that moving to more polluted areas increased zBMI regardless of base-
line deprivation. 

4. Discussion 

In this large natural experiment study in Catalonia, we observed that 

Table 1 
Characteristics of the study population (total movers) and according to PM2.5 air 
pollution area changes after residential relocation (N = 46,644).   

Total 
moversa 

Air pollution area change 

PM2.5 

Moving to a 
less polluted 
area 

Moving to 
a similar 
area 

Moving to a 
more 
polluted 
area 

Sample size - n(%) 46,644 (100) 9,238 (19.8) 27,735 
(59.5) 

9,671 (20.7) 

Age at baseline 
(years) - Md 
[IQR] 

4.1 [2.4; 6.7] 4.1 [2.4; 
6.7] 

4.2 [2.5; 
6.7] 

4.2 [2.5; 
6.9] 

Sex - n(%) 
Female 22,576 

(48.4) 
4,484 (48.5) 13,404 

(48.3) 
4,688 (48.5) 

Male 24,068 
(51.6) 

4,754 (51.5) 14,331 
(51.7) 

4,983 (51.5) 

Nationality - n(%) 
Foreign 8,935 (19.2) 1,701 (18.4) 5,383 

(19.4) 
1,851 (19.1) 

Spain 37,709 
(80.8) 

7537 (81.6) 22,352 
(80.6) 

7,820 (80.9) 

Deprivation index at baselineb – n(%) 
Q1 (least 
deprived) 

7,726 (16.9) 1,899 (20.9) 5,669 
(20.8) 

1,607 (16.9) 

Q2 8,196 (17.9) 1,783 (19.6) 5,575 
(20.5) 

1,801 (18.9) 

Q3 8,664 (18.9) 1,921 (21.1) 5,304 
(19.5) 

1,942 (20.4) 

Q4 9,508 (20.7) 1,742 (19.1) 5,295 
(19.4) 

2,121 (22.3) 

Q5 (most 
deprived) 

11,750 
(25.6) 

1,752 (19.3) 5,390 
(19.8) 

2,043 (21.5) 

zBMI at baseline - 
Md[IQR] 

0.5 [-0.3; 
1.3] 

0.5 [-0.3; 
1.3] 

0.4 [-0.3; 
1.3] 

0.5 [-0.3; 
1.3] 

Weight status at baseline - n(%)c 

Underweight 571 (1.2) 100 (1.1) 364 (1.3) 107 (1.1) 
Normal weight 36,324 

(77.9) 
7,140 (77.3) 21,618 

(77.9) 
7,566 (78.2) 

Overweight 5,785 (12.4) 1,197 (13.0) 3,421 
(12.3) 

1,167 (12.1) 

Obesity 3,964 (8.5) 801 (8.7) 2,332 
(8.4) 

831 (8.6) 

Air pollution at 
baseline - Md 
[IQR]     
PM2.5, ug/m3 14.9 [13.8; 

15.4] 
15.2 [14.9; 
15.8] 

14.9 
[13.7; 
15.5] 

14.0 [12.5; 
14.8] 

PM10, ug/m3 34.3 [30.6; 
37.7] 

35.6 [32.8; 
38.4] 

34.7 
[30.7; 
38.3] 

32.2 [27.4; 
35.6] 

NO2, ug/m3 41.7 [26.2; 
51.4] 

44.3 [34.5; 
52.4] 

42.9 
[26.1; 
53.1] 

32.9 [19.0; 
45.4] 

Changes in air 
pollutiond – Md 
[IQR]  

− 1.5 [-3.3;- 
0.7] 

0.0 [-0.3; 
0.3] 

1.5 [0.7; 
3.2] 

Population 
density at 
baseline - Md 
[IQR] 

16,808.4 
[3,550.3; 
39,464.7] 

19,278 
[8,143; 
37,255] 

18,437 
[3,778; 
42,372] 

9,535 [965; 
33,598] 

Time before 
moving (years) - 
Md[IQR] 

2.7 [1.3; 5.2] 3.0 [1.5; 
5.5] 

2.5 [1.1; 
4.9] 

3.0 [1.5; 
5.6] 

Time after moving 
(years) - Md 
[IQR] 

3.4 [1.7; 5.9] 3.2 [1.6; 
5.7] 

3.6 [1.8; 
6.1] 

3.2 [1.6; 
5.6] 

PM: Particulate matter; PM2.5: PM < 2.5 μm; Md: Median, IQR: Interquartile 
range, zBMI: Body mass index z-scores, Q1-Q5: Deprivation index in quintiles 1 
to 5. a Only those who moved once in the study period 2011–2018; b Social 
deprivation index based on the IP2011 deprivation index; c zBMI cut-offs based 
on the WHO Growth Charts (de Onis, 2007; World Health Organization (WHO) 
Multicentre Growth Reference Study World Health Organization Multicentre 
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increases in PM2.5, PM10 and NO2 due to residential relocation were 
associated with increases in zBMI among children and adolescents aged 
2–17 years. We also found significant decreases in zBMI for those who 
moved to areas of similar air pollution, but not for those moving to less 

polluted areas. Associations were stronger in younger children than in 
adolescents. 

Evidence has been inconsistent on the association between air 
pollution and weight-related outcomes in children. A recent systematic 
review concluded that there is a strong evidence of association between 
NO2 and NOx and childhood obesity, but evidence is still weak for PM10 
and PM2.5 (Malacarne et al., 2022). Traffic-related air pollution (such as 
NO2 and NOx) seem to have a stronger impact on childhood overweight 
compared to particulate matter (PM2.5 and PM10), which are driven to a 
lesser degree by local traffic (Bloemsma et al., 2019; Malacarne et al., 
2022). 

The biological mechanisms that link air pollution to weight gain are 
not fully understood, since several direct and indirect mechanisms may 
explain the association between the exposure to air pollution and excess 
weight. Animal studies have described that air pollution leads to visceral 
adipose tissue inflammation, hepatic lipid accumulation, decreased 
glucose utilization by skeletal muscles (Liu et al., 2014), and insulin 
resistance (Sun et al., 2009) in mice, which could all increase obesity 
risk. In humans, air pollution leads to oxidative stress and adipose tissue 
inflammation (Daiber et al., 2020), decreased utilization of glucose in 
skeletal muscle (Toledo-Corral et al., 2018), disruption of the endocrine 
system (Darbre, 2018), respiratory diseases and decreased lung function 
(Wang et al., 2019), changes in basal metabolism and appetite control of 
the central nervous system (McConnell et al., 2016), a higher risk of 
cardiovascular diseases (Bourdrel et al., 2017), among other adverse 
health impacts. When traffic and air pollution levels rise, families may 
also increase their sense of danger, leading to behavior changes (e.g. 
decrease of outdoor physical activities), which may increase weight (An 
et al., 2018a,b; Tainio et al., 2021). Unfortunately, we were not able to 
account for the effect of residential relocation on those behaviors. More 
longitudinal studies that take into account direct and indirect factors 
that could mediate the relation between air pollution and excess weight 
are necessary aiming to confirm the long-term impacts of air pollution. 

To our knowledge, this is one of the first studies that used a “moving 
to health” (Drewnowski et al., 2019) natural experiment study design to 
explore effects of the environment on weight in a large longitudinal 
sample. Braun and colleagues used this study design to explore effects of 
moving on changes in walking, BMI and cardiometabolic risk in a 
sample of 1,000 middle-aged adults in the US, and have found that 
adults who moved to more walkable areas showed decreases in blood 
pressure and higher C-reactive protein, however not in BMI (Braun et al., 
2016). Others have, nevertheless, found significant decreases in BMI of 
700 adults who moved to more walkable US neighborhoods (Hirsch 
et al., 2014). Our study adds to this body of evidence examining the 
effects of air pollution on weight gain, with the focus on younger ages, 
using a natural experiment approach. We found that increases in air 
pollution exposure increased zBMI, however, we did not see significant 
decreases in zBMI after moving to less polluted areas. We suggest that 
this might be related to the baseline air pollution exposure. Reductions 
in air pollution levels seem to be less relevant for those who were 
already exposed to higher levels of air pollution, compared to those who 
were exposed to lower levels. As we have observed previously, the 
dose-response levels seem to be steeper at lower levels, so the sudden 
increase in those children moving to a higher air pollution level may 
have a much larger effect than the among children moving to a cleaner 
environment. Besides, we found that moving to similar air pollution 
areas was associated with decreases in zBMI. In our sample, the majority 
moved to similar air pollution areas, and a lower proportion moved to 
less/more polluted areas, as also seen in other European cohorts (Saucy 
et al., 2023). Also, it might be that these areas with similar air pollution 
levels are greener, more walkable and with greater availability of play 
areas for children. Lastly, the mere act of moving may be a stressful 
event and this might have affected child weight as well (Jelleyman & 
Spencer, 2008). There might be other weight-related factors (e.g. 
walkability, behavior change) that might explain the effects of moving 
to similar air pollution areas and that were not captured in the current 

Growth Reference Study Group, 2006); d After-before moving difference in 
μg/m3. 

Table 2 
Associations between air pollution change after residential relocation and child/ 
adolescent zBMI change at the average age in the study (N = 46,644).  

Air pollution change (No. (%)) Adj. Model 

β (95%CI) 

PM2.5 

Moving to a less polluted area (9,238 (19.8)) 0.009 (− 0.006; 0.024) 
Moving to a similar area (27,735 (59.5)) ¡0.030 (-0.041; -0.019) 
Moving to a more polluted area (9,671 (20.7)) 0.059 (0.044; 0.074) 
PM10 

Moving to a less polluted area (7,982 (17.1)) 0.007 (− 0.008; 0.023) 
Moving to a similar area (31,362 (67.2)) ¡0.027 (-0.037; -0.016) 
Moving to a more polluted area (7,300 (15.7)) 0.078 (0.061; 0.095) 
NO2 

Moving to a less polluted area (8,082 (17.3)) − 0.006 (− 0.022; 0.010) 
Moving to a similar area (30,980 (66.4)) ¡0.031 (-0.041; -0.020) 
Moving to a more polluted area (7,582 (16.1)) 0.103 (0.087; 0.120) 

PM: Particulate matter, PM10: PM < 10 μm, PM2.5: PM < 2.5 μm, NO2: Nitrogen 
dioxides, CI: Confidence intervals. Adj. model included population density, 
deprivation index IP2011, mean-centered age, plus an interaction term between 
mean-centered age*air pollution area change. Reported values represent the 
estimated effect of residential relocation for children of mean age. Bold high-
lights statistical significance (p < 0.05). 

Table 3 
Associations between air pollution change after residential relocation and child/ 
adolescent zBMI, stratified by age-groups.  

Air pollution 
change 

Preschool-age (2- 
5 y) (N = 29,730) 

School-aged (6- 
11 y) (N =
15,782) 

Adolescence (12-17 
y) (N = 1,082) 

β (95%CI) 

PM2.5 

Moving to a less 
polluted area 

− 0.001 (− 0.021; 
0.018) 

0.004 (− 0.019; 
0.026) 

− 0.078 (− 0.169; 
0.013) 

Moving to a 
similar area 

− 0.005 (− 0.019; 
0.009) 

¡0.048 (-0.064; 
-0.032) 

0.062 (− 0.003; 
0.127) 

Moving to a 
more polluted 
area 

0.011 (− 0.009; 
0.032) 

0.067 (0.044; 
0.090) 

− 0.000 (− 0.096; 
0.096) 

PM10 

Moving to a less 
polluted area 

− 0.020 (− 0.042; 
0.001) 

0.022 (− 0.001; 
0.045) 

− 0.009 (− 0.105; 
0.086) 

Moving to a 
similar area 

− 0.002 (− 0.016; 
0.011) 

¡0.050 (-0.066; 
-0.034) 

0.047 (− 0.017; 
0.110) 

Moving to a 
more polluted 
area 

0.026 (0.002; 
0.048) 

0.084 (0.059; 
0.109) 

− 0.014 (− 0.121; 
0.093) 

NO2 

Moving to a less 
polluted area 

− 0.021 (− 0.042; 
0.000) 

− 0.011 (− 0.034; 
0.013) 

− 0.085 (− 0.184; 
0.014) 

Moving to a 
similar area 

− 0.008 (− 0.021; 
0.006) 

¡0.048 (-0.064; 
-0.033) 

0.047 (− 0.016; 
0.110) 

Moving to a 
more polluted 
area 

0.048 (0.025; 
0.070) 

0.117 (0.092; 
0.143) 

0.019 (− 0.085; 
0.123) 

PM10: PM < 10 μm, PM2.5: PM < 2.5 μm, NO2: Nitrogen dioxides, PM: Particulate 
matter, CI: Confidence intervals, y: years. Model adjusted for population density, 
IP2011 deprivation index, mean-centered age, plus an interaction term between 
mean-centered age*air pollution area change. Reported values represent the 
estimated effect of residential relocation for children of mean age in each group. 
Bold highlights statistical significance (p < 0.05). 
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study. 
Age was found to modify associations between air pollution change 

and zBMI, with associations seen in younger age-groups (pre-school and 
primary school-age) and no statistically significant associations seen in 
adolescence. Children have a peak prevalence in overweight/obesity at 
school age (De Bont et al., 2020), including the “adiposity rebound” 
period at ages 5–6 (Koyama et al., 2014), which might also explain the 
age effect observed. In a recent systematic review, age also showed to 
play an important role in associations between road traffic noise, 
exposure to green spaces and urbanization and weight outcomes in 
children and adolescents (Malacarne et al., 2022). In addition, other 
studies have observed that the strength of association between air 
pollution exposures and weight varies along the different types of pol-
lutants and ages (Shi et al., 2022), so in-depth studies need to be per-
formed aiming to better comprehend this effect. 

Even though the magnitude of the observed associations is small, 
impacts on global public health could be high. Based on the fact that the 
exposure to air pollution is very widespread and 56% of world’s popu-
lation live in urban, more polluted, areas (approximately 4.45 billion 
people in 2021) (Worldbank, 2022), and childhood BMI is an important 
predictor of health consequences later in life (Geserick et al., 2018; 
Kumar & Kelly, 2017), even small associations between air pollution and 
child weight gain outcomes may have important consequences for 
population’s health (de Bont et al., 2021). The rate of urban population 
is expected to double by 2050, at which point nearly 7 out of 10 people 
will live in cities (Worldbank, 2022). This increase in urbanization 
means that more people will live in more polluted and less green envi-
ronments, warranting the need to deepen the knowledge on how the 
urban environment affects population’s health. In addition, it is not clear 
how reversable are the effects of air pollution on health, since this de-
pends on several factors, including the duration and intensity of expo-
sure, individual susceptibility, and the specific health effects involved. 
Acute health effects of air pollution may be reversible, such as throat 
irritation, cough and nasal congestion, however air pollution can have 
long-lasting or even permanent consequences (Edwards et al., 2022). 

Air pollution has been described in some studies to have enhanced 
effects in more deprived populations (Cakmak et al., 2016; de Bont et al., 
2021), who may be more susceptible to the adverse health outcomes of 
such exposure, due to poverty, inadequate health access, poorer nutri-
tion and inadequate life conditions (Adler & Stewart, 2010; Peled, 
2011). However, in our study we did not find a greater effect on weight 
among the more deprived. The confounding role of socioeconomic status 
in the relation between air pollution and health outcomes is still unclear 
in Europe (Hajat et al., 2015; Saucy et al., 2023), where more deprived 
areas do not necessarily mean that these are also more polluted, as seen 
in the US (Hajat et al., 2015), for example. Is it important to consider the 
confounding effect of socioeconomic status when investigating the 
relation between air pollution and health, since it may affect individual 
exposure mitigation resources/capabilities, besides being a predictor of 
residential relocation in Europe (Saucy et al., 2023). Besides, the degree 
of exposure to air pollution and the impact of the built environment on 
one’s health may deepen health disparities, inequality and economic 
development of societies (Hajat et al., 2015). 

Study strengths include the use of a natural experiment study design. 
Since changes in the urban environment often take place in a slow pace 
and incrementally (e.g. with increases in population density, build 
environment, etc.), the focus on subjects that change residential location 
and, in this sense, experience an environmental change in a short period 
of time, helps to provide evidence on the association between air 
pollution exposure and health outcomes. Also, the use of residential 
relocation is a way of exposure randomization, as individuals are un-
aware of the air pollution levels they are moving out or into (Edwards 
et al., 2022) and protects against bias due to unmeasured time-invariant 
confounders, as long as these have a constant effect over time (Knuiman 
et al., 2014). However, it is worth mentioning that if major changes 
occur due to residential relocation, with subjects moving to much less 

polluted and greener neighborhoods, behavioral risk factors may also 
change (such as outdoor physical activity) and these potential changes 
were not measured in the current study. The large sample size of movers 
and long follow-up period are also major strengths of this study. Besides, 
the repeated anthropometric measurements were performed using the 
same protocol by pediatric health professionals. Lastly, according to the 
Spanish National Statistics Institute, geographic mobility in Spain is 
frequent (Instituto Nacional de Estadística, 2022). The access to longi-
tudinal data of health care users, like SIDIAP, enables the implementa-
tion of natural experiment study designs to study the impact of the 
environment on health (Drewnowski et al., 2019). 

Our study also has some limitations. First, we may not have captured 
the total number of movers in the SIDIAP population, since some par-
ticipants may not have notified the residential relocation to the health 
care centre. Second, the focus on residential relocation may be chal-
lenging, since moving may be a substantial and stressful event, affecting 
health and behaviors (Jelleyman & Spencer, 2008). Third, approxi-
mately 46% of movers were of the most deprived areas at baseline in this 
sample, which may have enhanced the risk of developing adverse health 
outcomes due to air pollution exposure in the first place. It is also worth 
mentioning that residential relocation may also lead to food environ-
ment changes and a greater availability of unhealthy food outlets are 
usually found in city centers, where also air pollution levels are higher. 
Furthermore, the use of electronic health records does not provide data 
on motivations for moving, which could reflect a shift in individual 
deprivation level, for which we could not control (Drewnowski et al., 
2019). While our approach limits the impact of inter-individual differ-
ences in relocation trajectories, unmeasured time-varying confounding 
due to other factors, e.g. changes in behavioral preferences and attitudes 
in response to the new environment, could also still be present (Braun 
et al., 2016). Children who move, for example, to more walkable and 
safe neighborhoods, may have changed their physical activity habits. 
Many are the possible determinants of residential relocation; a recent 
study (Saucy et al., 2023) showed that in two European birth cohorts, 
families who moved had higher parental education and household so-
cioeconomic status, and also tended to move to greener and less urban 
areas. Obesity is a multifactorial condition, with several biological and 
environmental factors with significant effects on energy intake and 
expenditure (González-Muniesa et al., 2017). The current study relied 
on available data registered in primary health care centers in Catalonia 
and these did not permit us to explore on within-person changes in 
weight-related behaviors, such as diet and physical activity. 
Within-person variability is accounted for in our models; however, these 
do not account for changes in behavior as a result of moving to the new 
environment. Regarding the assessment of air pollution levels, the LUR 
models were performed in 2009, and the study period was from 2011 to 
2018. However, according to European studies, the spatial variation in 
air pollution remains stable over several years (Cesaroni et al., 2012; 
Fecht et al., 2016). Finally, it is important to mention that both indoor 
and outdoor air pollution have important health effects in the popula-
tion, leading to millions of preventable deaths worldwide. In the current 
study, we did not have data on ambient air pollution of these children, so 
we had to rely on data of outdoor air pollution measured in each census 
tract. It is also important to highlight that a considerable proportion of 
indoor air pollution comes from outdoors (Amato et al., 2014). In 
addition to the assessment of air pollution at census tract level, the 
measurement of indoor air pollution, such as at schools where children 
spend most of the time (de Bont et al., 2019), would have increased the 
robustness of the estimations. 

5. Conclusions 

In the search for preventive solutions for child excess weight, re-
searchers have focused on modifiable environmental characteristics. 
Changes in individual behaviors, in the community structure, lifestyle 
and built environment (Malacarne et al., 2022; Yang et al., 2021), and 
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the exposure to certain chemicals, including air pollutants, have shown 
to be associated with childhood weight (de Bont et al., 2021; Wang et al., 
2021) and should, in this sense, be the focus of community-level pre-
vention strategies. This natural experiment focused on residential relo-
cation suggest that increased levels of air pollution after residential 
relocation may lead to child weight gain and provides more evidence to 
support ongoing efforts to lower air pollution levels as well as 
community-level prevention strategies on childhood overweight and 
obesity. 
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