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Abstract

Background: PTEN Hamartoma Tumor Syndrome (PHTS) is a rare syndrome with a broad phenotypic spectrum, including
increased risks of breast (BC, 67%-78% at age 60 years), endometrial (EC, 19%-28%), and thyroid cancer (TC, 6%-38%). Current risks are
likely overestimated due to ascertainment bias. We aimed to provide more accurate and personalized cancer risks.
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Methods: This was a European, adult PHTS cohort study with data from medical files, registries, and/or questionnaires. Cancer
risks and hazard ratios were assessed with Kaplan-Meier and Cox regression analyses, and standardized incidence ratios were calcu-
lated. Bias correction consisted of excluding cancer index cases and incident case analyses.
Results: A total of 455 patients were included, including 50.5% index cases, 372 with prospective follow-up (median 6 years, inter-
quartile range ¼ 3-10 years), and 159 of 281 females and 39 of 174 males with cancer. By age 60 years, PHTS-related cancer risk was
higher in females (68.4% to 86.3%) than males (16.4% to 20.8%). Female BC risks ranged from 54.3% (95% confidence interval [CI] ¼
43.0% to 66.4%) to 75.8% (95% CI ¼ 60.7% to 88.4%), with two- to threefold increased risks for PTEN truncating and approximately two-
fold for phosphatase domain variants. EC risks ranged from 6.4% (95% CI ¼ 2.1% to 18.6%) to 22.1% (95% CI ¼ 11.6% to 39.6%) and TC
risks from 8.9% (95% CI ¼ 5.1% to 15.3%) to 20.5% (95% CI ¼ 11.3% to 35.4%). Colorectal cancer, renal cancer, and melanoma risks were
each less than 10.0%.
Conclusions: Females have a different BC risk depending on their PTEN germline variant. PHTS patients are predominantly at risk
of BC (females), EC, and TC. This should be the main focus of surveillance. These lower, more unbiased and personalized risks pro-
vide guidance for optimized cancer risk management.

PTEN Hamartoma Tumor Syndrome (PHTS) is caused by patho-
genic germline variants in the tumor suppressor gene PTEN. The
estimated prevalence of 1:200 000 is likely higher because many
patients remain unrecognized (1,2). The phenotype is diverse and
includes increased risks for several cancer types and macroce-
phaly, developmental delay, cutaneous pathology, thyroid path-
ology, vascular malformations, and benign tumors (2). Cancer
management is hampered by uncertain, overestimated, and
population-averaged risks that do not consider the diverse phe-
notype and PTEN variant spectrum of PHTS.

Current PHTS population-averaged estimates indicate cancer
risks of 85%-90% in females and 54%-66% in males by age 60
years. In particular, increased risks for female breast (BC; 67%-
78%), endometrial (EC; 19%-28%), thyroid (TC; 6%-38%), colorec-
tal (CRC; 9%-20%), and renal cancer (RC; 2%-11%) and melano-
mas (0%-6%) are reported (3-6). These estimates are uncertain
and are probably overestimated due to ascertainment bias and
small cohorts with limited follow-up time. In addition, cancer
has been suggested to be more common in patients with truncat-
ing PTEN variants, though genotype-specific risks are lacking
(4,7). Various expert-opinion guidelines advise annual BC surveil-
lance from age 25 years or 30 years, and TC surveillance starting
during childhood or from age 18 years or PHTS diagnosis
onwards. Advice for EC, CRC, RC, and melanoma varies from no
surveillance to annual surveillance (8-12).

More accurate and personalized cancer risks are needed to
optimize cancer risk management. Therefore, the study aim was
to assess the cancer risks of PHTS patients per cancer type, sex,
and genotype in a large European cohort.

Methods
Patients
Adult patients were retrospectively recruited via genetic centers
and PHTS expert centers across Europe and via self-recruitment
(www.pten.eu) (13). Patients with a pathogenic or likely patho-
genic PTEN germline variant reported by the genetic center or
self-reported by the patient (n¼ 450), a PTEN germline variant of
unknown significance and clear PHTS phenotype (n¼ 1), or no
genetic test and clear PHTS phenotype and PTEN variant in first-
degree relatives (n¼ 4) were included.

The institutional ethics committees approved this study, and
written informed consent was obtained when indicated by the
ethical committee.

Clinical and genetic information
Data were obtained from medical files (n¼ 450), registries
(n¼ 235), and/or questionnaires (n¼ 128; Supplementary Figure

1, available online). Information on vital status, cancer, clinical
characteristics, surgeries, and genetic testing was collected from
medical files using a standardized data dictionary. Similar infor-
mation was collected from questionnaires completed by patients.
For Dutch patients, information on cancer diagnoses, precursor
lesions, and surgeries was additionally collected via the Dutch
Nationwide Pathology Databank (PALGA) (14). Ninety-eight per-
cent of patients had validated genetic test reports. Of primary
cancers, 75.0% were pathology confirmed, maximally 10.0% were
self-reported, and the remainder was based on clinical reports.

Primary cancers included the first primary cancer of that spe-
cific type. Moment of last contact included date of last clinical
follow-up, questionnaire completion, or last pathology report,
whichever came last. When moment of last contact was absent,
latest date of known phenotypic symptoms was used. Any cancer
included all cancers observed, and PHTS-related cancers included
BC, EC, TC, CRC, RC, and melanoma.

Variant coding effect was categorized as truncating (including
predicted truncating), missense, or other, and spatial categoriza-
tion was according to protein domains (Supplementary Tables 1
and 2, available online).

Statistical analyses
Descriptive statistics were performed using appropriate meas-
ures depending on data distribution. Cancer risks were calculated
using Kaplan-Meier Analyses. Standardized incidence ratios
(SIRs) were calculated using cancer, age, sex, birth cohort, and
country-specific population incidence data (15-17). Right-
censoring was applied at moment of site-relevant surgery, last
follow-up, age 70 years or death, whichever came first. Site-
relevant surgeries included bilateral mastectomy, hysterectomy,
total thyroidectomy, total colectomy, bilateral tubectomy, or
ovariectomy, irrespective of prophylactic or elective intent.
Relative risks associated with variant coding effect and domain
were analyzed using multivariable Cox regression. The propor-
tionality assumption was verified by assessing log-minus-log
plots and Schoenfeld residuals.

To correct for ascertainment bias, we performed 1) prevalent
case analyses excluding index patients (ie, first identified patient
in a family) who had cancer before genetic testing (abbreviated as
ca-index patients); and 2) incident case analyses by prospective
analyses from the age of genetic testing onward (18).

Surveillance bias was addressed by composite endpoints com-
bining in situ with invasive BC and adenomatous polyps (APs)
with invasive CRC. CRC risk was also modelled by AP-to-CRC pro-
gression using 10% and 20% progression rates and 3-, 5-, and 10-
year dwell time (19-21). Survival bias was addressed by sensitivity
analyses per data source (data not shown).
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Analyses were performed using RStudio (V.3.6.2). A 2-sided P
value less than .05 was considered statistically significant.

Results
Patient population
A total of 455 adult PHTS patients, of whom 61.8% were female,
were included from 312 families, with 1 to 8 patients per family.
The cohort included 50.5% index cases, including 108 ca-index
patients (Table 1). Of non-index patients (n¼ 219), 18.7% had can-
cer before PHTS diagnosis. The median age of PHTS diagnosis
was 37 years (interquartile range [IQR] ¼ 29-49) in females and
39 years (IQR ¼ 28-46) in males, which was slightly lower in the
cohort excluding ca-index patients. Information after genetic
diagnosis was available for 81.8% of patients with a median
follow-up of 6 years (IQR ¼ 3-10). Overall, 33.0% of patients had
missense variants and 66.8% truncating variants, and 54.0% had
a variant located in the phosphatase domain (PD) and 24.8% in
domain C2 (Table 1; Supplementary Tables 1 and 2, available
online). Missense variants in C2 were rarely observed (n¼ 9). Data
sources and variant distributions were similar between sub-
groups.

Cancer description
Overall, 159 females (56.6%) and 39 males (22.4%) developed can-
cer, including 85 and 18 ca-index patients, respectively. Cancer
characteristics and ages are presented per cohort and sex in
Supplementary Table 3 (available online) and Figure 1. Females,
excluding ca-index patients, most often developed BC (n¼ 50,
25.6%), TC (n¼ 13, 6.7%), and EC (n¼ 13, 6.7%) and males TC
(n¼ 5, 3.3%). Among these, 23 (31.1%) females had multiple pri-
mary cancers, where BC cooccurred most often with TC or EC

when considering PHTS-related cancers (each n¼ 4). In males,

this was 19.0% (n¼ 4) and did CRC and TC cooccur when consid-

ering PHTS-related cancers (n¼ 1).

Risk-reducing surgeries
Among females, 10.4%-31.0% had surgery before primary cancer

development (Supplementary Table 4, available online). Females

more often had total thyroidectomy than males (13.3%-31.0% vs

12.9%-19.5%, respectively).

Cancer risks
All cancer
Of females, 74 (37.9%) developed cancer at a median age of

43 years (IQR ¼ 33-50 years) excluding ca-index patients, and 33

(13.8%) had an incident cancer at a median age of 43 years (IQR ¼
36-49 years). For males, this was 13.8% (n¼ 21) at a median age of

51 years (IQR ¼ 30-64 years) and 5.3% (n¼ 7) at a median age of

56 years (IQR ¼ 51-64 years), respectively.
Risks for PHTS-related and any cancer were similar. Risks for

PHTS-related cancers were 7.2% (95% CI ¼ 4.2% to 12.4%) at age

30 years, 68.4% (95% CI ¼ 57.0% to 79.2%) at age 60 years, and

88.4% (95% CI ¼ 72.5% to 97.2%) at age 70 years in females

excluding ca-index patients, and 21.8% (95% CI ¼ 9.7% to 44.7%),

86.3% (95% CI ¼ 72.9% to 95.1%), and 95.4% (95% CI ¼ 82.1% to

99.6%) in the prospective analyses, respectively. This was 16.4%

(95% CI ¼ 7.6% to 33.2%) at both ages 60 years and 70 years in

males excluding ca-index patients and 20.8% (95% CI ¼ 6.9% to

53.5%) and 36.6% (95% CI ¼ 13.6% to 75.9%) in the prospective

analyses, respectively. Cancer risks are presented per cohort and

sex in Table 2, Figure 2, and Supplementary Table 5 (available

online).

Table 1. Cohort baseline characteristics

Characteristics

Total Females Males

Including
ca-index
patients

Excluding
ca-index
patients

Including
ca-index
patients

Excluding
ca-index
patients

Including
ca-index
patients

Excluding
ca-index
patients

Population, No. (% of total)a 455 (100.0) 347 (76.3) 281 (61.8) 195 (56.2) 174 (38.2) 152 (43.8)
Index, No. (%) 230 (50.5) 122 (35.2) 149 (53.0) 63 (32.3) 81 (46.6) 59 (38.8)
Age at last follow-up, median (IQR)b 44 (33-55) 41 (29-51) 44 (34-55) 40 (30-51) 43 (30-53) 43 (28-50)
Follow-up after genetic testing

No. (%) 372 (81.8) 274 (79.0) 240 (85.4) 160 (82.1) 132 (75.9) 114 (75.0)
Years, median (IQR) 6 (3-10) 6 (3-10) 6 (3-10) 6 (3-10) 6 (3-10) 6 (3-10)

Data sources, No. (%)
Medical files 450 (98.9) 342 (98.6) 278 (98.9) 192 (98.5) 172 (98.9) 150 (98.7)
Pathology databank 235 (51.6) 184 (53.0) 146 (52.0) 102 (52.3) 89 (51.1) 82 (53.9)
Questionnaire 128 (28.1) 96 (27.7) 84 (29.9) 57 (29.2) 44 (25.3) 39 (25.7)

Age at genetic diagnosis of PHTS
No. (%) 437 (96.0) 329 (94.8) 274 (97.5) 188 (96.4) 163 (93.7) 141 (92.8)
Age, median (IQR) 38 (28-47) 36 (25-44) 37 (29-49) 35 (24-43) 39 (28-46) 38 (26-44)

Coding effect, No. (%) 443 (97.4) 335 (96.5) 276 (98.2) 190 (97.4) 167 (96.0) 145 (95.4)
Missense 146 (33.0) 116 (34.6) 86 (31.2) 63 (33.2) 60 (35.9) 53 (36.6)
Truncating 296 (66.8) 219 (65.4) 189 (68.5) 127 (66.8) 107 (64.1) 92 (63.4)
Other 1 (0.2) 0 (0.0) 1 (0.4) 0 (0.0) 0 (0.0) 0 (0.0)

Domain location, No. (%) 443 (97.4) 335 (96.5) 276 (98.2) 190 (97.4) 167 (96.0) 145 (95.4)
C2 110 (24.8) 78 (23.3) 61 (22.1) 34 (17.9) 49 (29.3) 44 (30.3)
Phosphatase 239 (54.0) 189 (56.4) 148 (53.6) 110 (57.9) 91 (54.5) 79 (54.5)
Other 94 (21.2) 68 (20.3) 67 (24.3) 46 (24.2) 27 (16.2) 22 (15.2)

a Percentage of total corresponding cohort. ca-index patients ¼ index patients who had cancer before genetic testing; PHTS ¼ PTEN Hamartoma Tumor
Syndrome.

b Interquartile range, that is, quantile 1 to quantile 3.
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Breast cancer
Fifty (25.6%) females, excluding ca-index patients, developed

invasive or in situ BC at a median age of 43 years (IQR ¼ 38-50

years), and 30 (12.5%) females had an incident BC at a median

age of 42 years (IQR ¼ 37-48 years). No males were diagnosed

with BC.
BC risk in females excluding ca-index patients was 2.7% (95%

CI ¼ 1.0% to 6.9%), 54.3% (95% CI ¼ 43.0% to 66.4%), and 59.5%

(95% CI ¼ 47.4% to 72.0%) at ages 30 years, 60 years, and 70 years,

respectively. Risks for incident BC were consistently higher but

more uncertain, with 10.1% (95% CI ¼ 2.6% to 34.7%), 75.8% (95%

CI ¼ 60.7% to 88.4%), and 79.8% (95% CI ¼ 64.6% to 91.5%),

respectively. BC risk was strongly increased compared to the gen-

eral population (SIR¼ 15.1, 95% CI ¼ 11.1 to 19.9 and SIR¼ 25.3,

95% CI ¼ 17.0 to 36.1, respectively). The highest statistically sig-

nificant increase was observed between ages 30 years and 40

years (SIR¼ 23.6, 95% CI ¼ 13.5 to 38.4 and SIR¼ 57.4, 95% CI 29.6

to 100.4, respectively). Risks after age 60 years were 4 to 6 times

increased though not statistically significant.

Endometrial cancer
In females excluding ca-index patients, 13 (6.7%) developed EC at

a median age of 49 years (IQR ¼ 47-60 years). In total, 3 females

(1.3%) had incident EC (ages 40 years, 42 years, and 50 years).

EC risk in females excluding ca-index patients was 1.2% (95%
CI ¼ 0.3% to 4.7%), 22.1% (95% CI ¼ 11.6% to 39.6%), and 33.2%
(95% CI ¼ 15.6% to 61.7%) at ages 30 years, 60 years, and 70 years,
respectively. Risk for incident EC was 6.4% (95% CI ¼ 2.1% to
18.6%) from age 50 years onwards. SIRs were 48.4 (95% CI ¼ 25.0
to 84.5) and 20.0 (95% CI ¼ 4.0 to 58.4) respectively, with highest
risk increases between ages 40 years and 50 years.

Thyroid cancer
In patients excluding ca-index patients, 13 (6.7%) females and 5
(3.3%) males developed TC. Incident TC was observed in 9 (3.8%)
females and 3 (2.3%) males. The overall median ages were 42
years (IQR ¼ 30-48 years) and 43 years (IQR ¼ 39-48 years), respec-
tively.

TC risk in patients excluding ca-index patients was 1.6% (95%
CI ¼ 0.7% to 3.8%), 8.9% (95% CI ¼ 5.1% to 15.3%), and 16.5% (95%
CI ¼ 8.1% to 32.0%) at ages 30 years, 60 years, and 70 years. Risks
for incident TC were 6.0% (95% CI ¼ 1.5% to 22.3%), 20.5% (95% CI
¼ 11.3% to 35.4%), and 29.3% (95% CI ¼ 14.5% to 53.4%), respec-
tively. Sex-specific risks at age 60 years were similar. TC risk was
strongly increased compared to the general population
(SIR¼ 42.9, 95% CI ¼ 23.4 to 72.0 and SIR¼ 78.9, 95% CI ¼ 36.0 to
149.7, respectively). TC risk was already statistically significantly
increased compared to the general population between ages 10
years and 20 years (SIR¼ 90.3, 95% CI ¼ 10.1 to 326.0 [2 events]
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Figure 1. Cancer prevalence and age in the prevalent cohort excluding ca-index patients. For the prevalent cohort excluding index patients who had
cancer before genetic testing (ca-index patients), the prevalence is presented in percentages (%) on the y-axis for females (left bars) and males (right
bars) for different cancer types in the upper panel. The exact number of diagnoses is presented above each bar. In the lower panel is the age at
diagnosis in years presented for the different cancer types in a boxplot for females (left bars) and males (right bars). “Breast” includes in situ
carcinomas as well. Any ¼ any cancer; AP ¼ adenomatous polyps; BCC ¼ basal cell carcinoma.
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Table 2. Cancer risks per sex and analyses strategya

Prevalent cases in cohort excluding ca-index patients Incident cases in cohort including ca-index patients

Cumulative risk Standardized incidence ratio Cumulative risk Standardized incidence ratio

Population and cancer type
Age,

y Risk (95% CI)
Age

category, y Ratio (95% CI)
Age,

y Risk (95% CI)
Age

category, y Ratio (95% CI)

Total
Any cancer 20 1.2 (0.4 to 3.1) — — 20 2.5 (0.4 to 16.5) — —

30 6.7 (4.4 to 10.2) 20-29 — 30 13.3 (5.1 to 32.2) 20-29 —
40 15.5 (11.6 to 20.7) 30-39 — 40 32.9 (20.6 to 49.9) 30-39 —
50 33.1 (26.4 to 40.9) 40-49 — 50 53.1 (40.3 to 67.2) 40-49 —
60 52.2 (43.2 to 61.8) 50-59 — 60 72.2 (58.7 to 84.3) 50-59 —
70 70.0 (57.2 to 81.9) 60-69 — 70 83.3 (68.9 to 93.6) 60-69 —
— — 20-69 — — — 20-69 —

PHTS-related
cancer

20 0.9 (0.3 to 2.7) — — 20 2.4 (0.3 to 16.1) – —
30 5.1 (3.1 to 8.4) 20-29 — 30 16.1 (6.9 to 34.8) 20-29 —
40 13.5 (9.8 to 18.5) 30-39 — 40 35.5 (23.1 to 51.8) 30-39 —
50 30.8 (24.2 to 38.8) 40-49 — 50 54.5 (41.9 to 68.1) 40-49 —
60 47.4 (38.4 to 57.3) 50-59 — 60 67.8 (54.7 to 80.2) 50-59 —
70 60.4 (48.0 to 73.1) 60-69 — 70 78.3 (64.1 to 89.8) 60-69 —
— — 20-69 — — — 20-69 —

Thyroid cancer 20 0.6 (0.1 to 2.3) — — 20 2.5 (0.4 to 16.5) — —
30 1.6 (0.7 to 3.8) 20-29 41.3 (8.3 to 120.7) 30 6.0 (1.5 to 22.3) 20-29 103.3 (1.3 to 574.6)
40 3.6 (1.8 to 6.9) 30-39 26.4 (5.3 to 77.2) 40 9.9 (3.7 to 25.0) 30-39 29.3 (0.4 to 162.7)
50 7.6 (4.4 to 13.0) 40-49 74.5 (27.2 to 162.2) 50 17.8 (9.5 to 32.1) 40-49 145.1 (53.0 to 315.9)
60 8.9 (5.1 to 15.3) 50-59 25.5 (0.3 to 142.0) 60 20.5 (11.3 to 35.4) 50-59 49.3 (0.6 to 274.1)
70 16.5 (8.1 to 32.0) 60-69 48.7 (0.6 to 271.2) 70 29.3 (14.5 to 53.4) 60-69 0.0 (0.0 to 0.0)
— — 20-69 42.9 (23.4 to 72.0) — — 20-69 78.9 (36.0 to 149.7)

Colorectal cancer 20 0.0 (0.0 to 0.0) — — 20 0.0 (0.0 to 0.0) — —
30 0.0 (0.0 to 0.0) 20-29 0.0 (0.0 to 0.0) 30 0.0 (0.0 to 0.0) 20-29 0.0 (0.0 to 0.0)
40 0.0 (0.0 to 0.0) 30-39 0.0 (0.0 to 0.0) 40 0.0 (0.0 to 0.0) 30-39 0.0 (0.0 to 0.0)
50 0.6 (0.1 to 4.4) 40-49 4.0 (0.1 to 22.1) 50 0.0 (0.0 to 0.0) 40-49 0.0 (0.0 to 0.0)
60 2.2 (0.5 to 9.8) 50-59 2.2 (0.0 to 12.2) 60 5.2 (1.3 to 19.2) 50-59 7.1 (0.8 to 25.6)
70 4.5 (1.3 to 14.8) 60-69 2.0 (0.0 to 11.1) 70 15.2 (5.4 to 38.6) 60-69 7.3 (0.8 to 26.4)
— — 20-69 2.2 (0.4 to 6.5) — — 20-69 5.6 (1.5 to 14.2)

Colorectal
cancer or AP

20 0.0 (0.0 to 0.0) — — 20 0.0 (0.0 to 0.0) — —
30 0.7 (0.2 to 2.6) 20-29 — 30 3.0 (0.4 to 19.6) 20-29 —
40 3.8 (2.0 to 7.3) 30-39 — 40 12.6 (6.1 to 25.3) 30-39 —
50 13.4 (8.9 to 19.7) 40-49 — 50 31.2 (21.3 to 44.2) 40-49 —
60 29.8 (21.7 to 40.2) 50-59 — 60 52.2 (39.9 to 65.8) 50-59 —
70 48.0 (35.1 to 62.7) 60-69 — 70 72.4 (57.3 to 85.8) 60-69 —
— — 20-69 — — — 20-69 —

Renal cancer 20 0.0 (0.0 to 0.0) — — 20 0.0 (0.0 to 0.0) —– —
30 0.0 (0.0 to 0.0) 20-29 0.0 (0.0 to 0.0) 30 0.0 (0.0 to 0.0) 20-29 0.0 (0.0 to 0.0)
40 0.4 (0.1 to 2.9) 30-39 28.0 (0.4 to 156.1) 40 2.1 (0.3 to 14.2) 30-39 100.5 (1.3 to 559.3)
50 0.4 (0.1 to 2.9) 40-49 0.0 (0.0 to 0.0) 50 3.7 (0.9 to 14.1) 40-49 22.5 (0.3 to 125.0)
60 3.3 (0.9 to 11.1) 50-59 17.6 (2.0 to 63.5) 60 8.6 (3.3 to 21.6) 50-59 27.0 (3.0 to 97.4)
70 3.3 (0.9 to 11.1) 60-69 0.0 (0.0 to 0.0) 70 8.6 (3.3 to 21.6) 60-69 0.0 (0.0 to 0.0)
— — 20-69 8.8 (1.8 to 25.6) — — 20-69 21.2 (5.7 to 54.3)

Melanoma 20 0.3 (0.0 to 2.1) — — 20 0.0 (0.0 to 0.0) — —
30 1.8 (0.7 to 4.2) 20-29 20.5 (5.5 to 52.5) 30 3.2 (0.5 to 20.8) 20-29 36.4 (0.5 to 202.4)
40 2.6 (1.3 to 5.5) 30-39 9.0 (1.8 to 26.3) 40 3.2 (0.5 to 20.8) 30-39 0.0 (0.0 to 0.0)
50 3.7 (1.7 to 7.9) 40-49 0.0 (0.0 to 0.0) 50 4.8 (1.1 to 19.1) 40-49 0.0 (0.0 to 0.0)
60 5.5 (2.4 to 12.1) 50-59 8.6 (1.0 to 31.2) 60 7.3 (2.3 to 21.6) 50-59 11.5 (1.3 to 41.6)
70 5.5 (2.4 to 12.1) 60-69 0.0 (0.0 to 0.0) 70 11.7 (4.3 to 29.8) 60-69 11.0 (0.1 to 61.3)
— — 20-69 7.3 (3.3 to 13.9) — — 20-69 6.6 (1.8 to 16.9)

Female
Any cancer 20 1.0 (0.3 to 4.0) — — 20 5.6 (0.8 to 33.4) — —

30 8.3 (5.0 to 13.6) 20-29 — 30 22.6 (10.1 to 46.0) 20-29 —
40 23.1 (16.9 to 31.1) 30-39 — 40 45.2 (30.0 to 63.9) 30-39 —
50 52.1 (42.1 to 63.0) 40-49 — 50 75.4 (60.9 to 87.6) 40-49 —
60 70.5 (59.4 to 80.9) 50-59 — 60 88.5 (74.9 to 96.6) 50-59 —
70 89.2 (74.2 to 97.4) 60-69 — 70 96.2 (84.1 to 99.7) 60-69 —
— — 20-69 — – – 20-69 —

PHTS-related
cancer

20 0.5 (0.1 to 3.6) — — 20 5.3 (0.8 to 31.9) – —
30 7.2 (4.2 to 12.4) 20-29 — 30 21.8 (9.7 to 44.7) 20-29 —
40 21.3 (15.3 to 29.2) 30-39 — 40 45.5 (30.5 to 63.5) 30-39 —
50 49.5 (39.4 to 60.5) 40-49 — 50 74.2 (60.0 to 86.6) 40-49 —
60 68.4 (57.0 to 79.2) 50-59 — 60 86.3 (72.9 to 95.1) 50-59 —
70 88.4 (72.5 to 97.2) 60-69 — 70 95.4 (82.1 to 99.6) 60-69 —
— — 20-69 — — — 20-69 —

(continued)
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and SIR¼ 365.3, 95% CI ¼ 4.8 to 2032.5 [1 event], respectively). In

both females and males, the highest risk increase was between

ages 40 years and 50 years.

Colorectal cancer
In both cohorts, 4 patients (1.2% and 1.1%, respectively) devel-

oped CRC at a median age of 59 years (IQR ¼ 53-64 years) and

60 years (IQR ¼ 58-62 years), respectively.
In patients excluding ca-index patients, the CRC risk was 2.2%

(95% CI ¼ 0.5% to 9.8%) at age 60 years and 4.5% (95% CI ¼ 1.3%

to 14.8%) at age 70 years. Risks for incident CRC were 5.2% (95%

CI ¼ 1.3% to 19.2%) and 15.2% (95% CI ¼ 5.4% to 38.6%), respec-
tively. Risks were not statistically significantly increased com-
pared to the general population when excluding ca-index
patients (SIR¼ 2.2, 95% CI ¼ 0.4 to 6.5) and slightly increased for
incident cases (SIR¼ 5.6, 95% CI ¼ 1.5 to 14.2).

In both cohorts, the risk for CRC and APs combined was
approximately 10 times higher, with 29.8% (95% CI ¼ 21.7% to
40.2%) and 52.2% (95% CI ¼ 39.9% to 65.8%) at age 60 years,
respectively. Based on modelled AP progression, risks at age 60
years ranged from 2.4% to 6.5% and from 5.5% to 16.6%, respec-

tively.

Table 2. (continued)

Prevalent cases in cohort excluding ca-index patients Incident cases in cohort including ca-index patients

Cumulative risk Standardized incidence ratio Cumulative risk Standardized incidence ratio

Population and cancer type
Age,

y Risk (95% CI)
Age

category, y Ratio (95% CI)
Age,

y Risk (95% CI)
Age

category, y Ratio (95% CI)

Breast cancer
(including in
situ carcinoma)

20 0.0 (0.0 to 0.0) — — 20 0.0 (0.0 to 0.0) — —
30 2.7 (1.0 to 6.9) 20-29 20.9 (2.4 to 75.6) 30 10.1 (2.6 to 34.7) 20-29 58.3 (0.8 to 324.7)
40 16.4 (11.0 to 24.2) 30-39 23.6 (13.5 to 38.4) 40 38.4 (24.4 to 56.8) 30-39 57.4 (29.6 to 100.4)
50 38.5 (29.1 to 49.7) 40-49 16.2 (9.6 to 25.7) 50 63.3 (48.5 to 77.9) 40-49 21.2 (10.1 to 39.0)
60 54.3 (43.0 to 66.4) 50-59 12.5 (6.2 to 22.3) 60 75.8 (60.7 to 88.4) 50-59 19.5 (7.1 to 42.4)
70 59.5 (47.4 to 72.0) 60-69 4.1 (0.5 to 14.8) 70 79.8 (64.6 to 91.5) 60-69 5.5 (0.1 to 30.7)
— — 20-69 15.1 (11.1 to 19.9) — — 20-69 25.3 (17.0 to 36.1)

Breast in situ
carcinoma only

20 0.0 (0.0 to 0.0) — — 20 0.0 (0.0 to 0.0) —
30 0.6 (0.1 to 4.3) 20-29 — 30 4.5 (0.7 to 28.1) 20-29 —
40 9.6 (5.5 to 16.4) 30-39 — 40 29.0 (16.9 to 46.8) 30-39 —
50 18.0 (11.4 to 27.7) 40-49 — 50 41.4 (27.6 to 58.7) 40-49 —
60 22.0 (14.2 to 33.1) 50-59 — 60 50.0 (34.0 to 68.6) 50-59 —
70 22.0 (14.2 to 33.1) 60-69 — 70 50.0 (34.0 to 68.6) 60-69 —
— — 20-69 — — — 20-69 —

Endometrial
cancer

20 0.0 (0.0 to 0.0) — — 20 0.0 (0.0 to 0.0) — —
30 1.2 (0.3 to 4.7) 20-29 941.8 (105.8 to 3400.5) 30 0.0 (0.0 to 0.0) 20-29 0.0 (0.0 to 0.0)
40 2.1 (0.7 to 6.7) 30-39 0.0 (0.0 to 0.0) 40 2.0 (0.3 to 13.1) 30-39 0.0 (0.0 to 0.0)
50 9.0 (4.1 to 18.9) 40-49 107.6 (34.7 to 251.1) 50 6.4 (2.1 to 18.6) 40-49 80.3 (9.0 to 289.8)
60 22.1 (11.6 to 39.6) 50-59 17.9 (2.0 to 64.8) 60 6.4 (2.1 to 18.6) 50-59 14.5 (0.2 to 80.6)
70 33.2 (15.6 to 61.7) 60-69 41.3 (8.3 to 120.5) 70 6.4 (2.1 to 18.6) 60-69 0.0 (0.0 to 0.0)
— — 20-69 48.4 (25.0 to 84.5) — — 20-69 20.0 (4.0 to 58.4)

Thyroid cancer 20 0.5 (0.1 to 3.6) — — 20 5.6 (0.8 to 33.4) — —
30 2.3 (0.9 to 6.1) 20-29 50.2 (10.1 to 146.8) 30 10.8 (2.8 to 36.7) 20-29 117.7 (1.5 to 655.1)
40 5.1 (2.4 to 10.6) 30-39 21.4 (2.4 to 77.2) 40 15.7 (5.9 to 38.3) 30-39 31.2 (0.4 to 173.9)
50 9.9 (5.1 to 18.8) 40-49 65.2 (17.5 to 166.9) 50 23.0 (11.2 to 43.7) 40-49 119.4 (32.1 to 305.7)
60 9.9 (5.1 to 18.8) 50-59 0.0 (0.0 to 0.0) 60 23.0 (11.2 to 43.7) 50-59 0.0 (0.0 to 0.0)
70 24.1 (10.1 to 51.3) 60-69 65.1 (0.9 to 362.1) 70 42.2 (16.7 to 80.7) 60-69 0.0 (0.0 to 0.0)
— — 20-69 38.9 (18.6 to 71.5) — — 20-69 64.0 (23.4 to 139.2)

Male
Any cancer 20 1.3 (0.3 to 5.2) — — 20 0.0 (0.0 to 0.0) — —

30 4.6 (2.1 to 10.0) 20-29 — 30 0.0 (0.0 to 0.0) 20-29 —
40 5.5 (2.7 to 11.4) 30-39 — 40 0.0 (0.0 to 0.0) 30-39 —
50 8.1 (4.2 to 15.3) 40-49 — 50 4.2 (0.6 to 26.1) 40-49 —
60 26.2 (15.1 to 43.0) 50-59 — 60 36.1 (16.2 to 68.0) 50-59 —
70 41.8 (23.5 to 66.6) 60-69 — 70 52.1 (24.6 to 85.2) 60-69 —
— — 20-69 — — — 20-69 —

PHTS-related
cancer

20 1.3 (0.3 to 5.2) — — 20 0.0 (0.0 to 0.0) — —
30 2.2 (0.7 to 6.8) 20-29 — 30 0.0 (0.0 to 0.0) 20-29 —
40 3.2 (1.2 to 8.4) 30-39 — 40 0.0 (0.0 to 0.0) 30-39 —
50 5.8 (2.6 to 12.9) 40-49 — 50 4.2 (0.6 to 26.1) 40-49 —
60 16.4 (7.6 to 33.2) 50-59 — 60 20.8 (6.9 to 53.5) 50-59 —
70 16.4 (7.6 to 33.2) 60-69 — 70 36.6 (13.6 to 75.9) 60-69 —
— — 20-69 — — — 20-69 —

Thyroid cancer 20 0.7 (0.1 to 4.6) — — 20 0.0 (0.0 to 0.0) — —
30 0.7 (0.1 to 4.6) 20-29 0.0 (0.0 to 0.0) 30 0.0 (0.0 to 0.0) 20-29 0.0 (0.0 to 0.0)
40 1.7 (0.4 to 6.8) 30-39 49.9 (0.7 to 277.6) 40 0.0 (0.0 to 0.0) 30-39 0.0 (0.0 to 0.0)
50 4.8 (1.7 to 12.8) 40-49 104.4 (11.7 to 377.0) 50 8.7 (2.2 to 30.5) 40-49 255.0 (28.6 to 920.8)
60 7.8 (3.0 to 19.9) 50-59 84.2 (1.1 to 468.7) 60 17.8 (5.6 to 49.0) 50-59 160.1 (2.1 to 890.6)
70 7.8 (3.0 to 19.9) 60-69 0.0 (0.0 to 0.0) 70 17.8 (5.6 to 49.0) 60-69 0.0 (0.0 to 0.0)
— — 20-69 57.9 (15.6 to 148.2) — — 20-69 147.7 (29.7 to 431.7)

a � ¼ not assessed; AP ¼ adenomatous polyps; CI¼ confidence interval. ca-index patients ¼ index patients who had cancer before genetic testing.
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Figure 2. Cumulative cancer risks by cancer type and sex. Per cancer type, age- and sex-specific cumulative cancer risks in percentages (%) are
presented for the prevalent cohort excluding index patients who had cancer before genetic testing (ca-index patients) (left graphs) and incident cases in
the prospective analyses (right graphs). Dashed lines represent 95% confidence intervals. In risk tables, the number of patients at risk (Nrisk) and the
cumulative number of events (Nevent) is presented from age 10 years onward. Nrisk and Nevent for age 0 is for all groups the same as for age 10 years.
Cumulative cancer risks are presented for A) any cancer for females and males; B) PTEN Hamartoma Tumor Syndrome (PHTS)-related cancers for
females and males (including breast [including in situ carcinomas], endometrium, thyroid, colorectal, and renal cancer and melanoma); C) breast
cancer for females and males (including in situ carcinomas); D) endometrium cancer for females; E) thyroid cancer for females and males; F) colorectal
cancer for the total population; G) colorectal cancer or adenomatous polyps (AP) together for the total population; H) renal cancer for the total
population; and I) melanoma for the total population.
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Renal Cancer
In patients excluding ca-index patients, 3 (0.9%) developed RC
(ages 33 years, 51 years, and 57 years), and 4 (1.1%) had incident
RC at a median age of 53 years (IQR ¼ 45-57 years).

In patients excluding ca-index patients, the RC risk was 3.3%
(95% CI ¼ 0.9% to 11.1%) from age 60 years onwards and 8.6%
(95% CI ¼ 3.3% to 21.6%) in the prospective analyses. RC risk was
9 to 21 times increased compared to the general population
(SIR¼ 8.8, 95% CI ¼ 1.8 to 25.6 and SIR¼ 21.2, 95% CI ¼ 5.7 to 54.3,
respectively).

Melanoma
In patients excluding ca-index patients, 9 (2.6%) developed mela-
noma at a median age of 30 years (IQR ¼ 27-39 years), and 4
(1.1%) had incident melanoma at a median age of 53 years (IQR ¼
45-58 years).

Excluding ca-index patients, the risk of melanoma was 5.5%
(95% CI ¼ 2.4% to 12.1%) from age 60 years onwards. In the pro-
spective analyses, risks were 7.3% (95% CI ¼ 2.3% to 21.6%) and
11.7% (95% CI ¼ 4.3% to 29.8%) by age 60 years and 70 years.
Melanoma risk was approximately 7 times higher compared to
the general population (SIR¼ 7.3, 95% CI ¼ 3.3 to 13.9 and
SIR¼ 6.6, 95% CI ¼ 1.8 to 16.9, respectively).

Relative Cancer Risks by Variant Coding Effect and Domain
Female BC risk was consistently 2 to 3 times higher for truncating
compared to missense variants (patients excluding ca-index
patients: hazard ratio [HR] ¼ 2.65, 95% CI ¼ 1.29 to 5.48;

prospective analyses: HR¼ 3.08, 95% CI ¼ 1.16 to 8.17) in patients
with a variant in the same domain and approximately 2 times for
variants in PD compared to C2 in patients with the same type of
variant (HR¼ 2.26, 95% CI ¼ 0.89 to 5.73 and HR¼ 1.46, 95% CI ¼
0.45 to 4.70, respectively; Figure 3). This means that females with
a PD truncating variant have the highest BC risk, those with a C2
missense variant have the lowest risk, and other groups have a
more similar risk. Figure 4 shows these risks with the stratified
BC risk curves by variant type and location.

For PHTS-related cancers, truncating variants were associated
with a statistically non-significant, 1.5-times increased risk. In
females, a stronger, potentially BC-driven, statistically non-
significant effect was observed with 2-times higher risks in those
with truncating compared to missense variants and of PD com-
pared to C2 (Figure 3).

For TC, a statistically non-significant effect of up to 2-times
increased risk was observed in those with truncating compared
to missense variants.

The number of EC, CRC, RC, and melanoma events in the var-
iant subgroups was too low for analysis.

Discussion
This large, European cohort study resulted in lower, more bias-
corrected cancer risks than previously reported, with a predomi-
nant risk for female PHTS patients. Females were most at risk for
BC (54.3% to 75.8%), EC (6.4% to 22.1%), and TC (9.9% to 23.0%)
and males for TC (7.8% to 17.8%). CRC, RC, and melanoma risks
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Figure 3. Relative risk for cancer per coding effect and domain. Hazard ratios (HRs) are presented with corresponding 95% confidence intervals (95%
CIs) for the multivariable Cox regression, including coding effect and domain. For coding effect, missense was the reference category, and for domain,
C2 was the reference category. The vertical dashed line indicates hazard ratio¼ 1.00, meaning no risk difference. For each group, the number of
patients with the corresponding cancer type (n) and the total number of patients with the genotypic characteristics (N) are presented (n/N). The coding
effect category “other” was not taken into account in Cox regression analyses (N¼ 1). Hazard ratios are presented for the prevalent cohort including
index patients who had cancer before genetic testing (ca-index patients) (left), the prevalent cohort excluding ca-index patients (middle), and the
incident cases including index patients (right) for the total population (upper 2 rows), females (third and fourth rows), and males (bottom row). Breast
¼ breast cancer; C2¼C2 domain; other ¼ other domain location than C2 or PD alone; PD ¼ phosphatase domain; PHTS ¼ PTEN Hamartoma Tumor
Syndrome–related cancers; thyroid ¼ thyroid cancer; Trunc.¼ truncating variants.
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were all less than 10.0% by age 60 years. Importantly, truncating
variants were associated with 2 to 3 times higher BC risk com-
pared to missense variants, with an additional approximately 2
times increased risk for variants in PD compared to domain C2.
Despite that underlying mechanisms remain to be elucidated,
these statistically significant genotype-specific BC risks warrant
evaluation of genotype-related surveillance, especially evalua-
tion of reduced BC surveillance for patients with missense var-
iants in domain C2 because these variants are often observed in
patients with (mild) developmental delay (22).

Female BC risks (54.3% to 75.8%, SIR ¼ 15.1 to 25.3) were lower
than in the literature (67%-78%, SIR ¼ 22-39) (3), with a similar
median age of 42-43 years (5,6,23). Overall BC risks are compara-
ble with BRCA1/2 (24,25). Previous case-control studies showed
no to moderately increased PTEN-associated BC risks (26-29).
However, cohort studies would be more informative for rare syn-
dromic conditions, especially because these patients are likely
underrepresented in case-control studies (30). Current BC surveil-
lance advice starting from age 25-30 years onward is supported
by the youngest incident BC at 26 years and the statistically sig-
nificant increased risk from age 20-30 years until age 50-60 years
(8-11). From age 60 years onward, numbers were too small to
reach statistical significance, though they indicate a four- to six-
fold risk increase, which is similar to BRCA1/2-associated risk.
This supports surveillance continuation outside population
screening after age 60 years (24,31).

EC risks (6.4% to 22.1%) were lower than previous estimates
(19%-28%) (3), with similar median ages of diagnosis (6). The EC
risk was strongly increased (20 to 48 times) compared to the gen-
eral population. This was more pronounced in the cohort exclud-
ing ca-index patients, being similar to previous findings (SIR ¼ 48
vs 43-49) (6,23). Because both bias-corrected results indicated
high increased risks, our study supports investigation of EC sur-
veillance efficacy, especially because guidelines differ at this
point (8-11).

TC risks (8.9% to 20.5%) were lower than previous estimates
(6%-38%) (5,6,23). The youngest age was similar to that was found
in the literature (9 years vs 7-16 years), and median ages were
somewhat higher (42-43 years vs 31-37 years) (5,6,23,32). In con-
trast to other guidelines, European guidelines do not advise sur-
veillance initiation in childhood (8-12). The pediatric-onset and
statistically significantly increased risk between ages 10 years
and 20 years in our analyses support surveillance initiation from
age 10 years, with additional investigation of surveillance efficacy
in childhood.

CRC risks (2.2% to 5.2% at age 60 years, SIR ¼ 2.2 to 5.6) were
lower than previously reported (9%-20%, SIR ¼ 10-224), with a
somewhat higher median age of diagnosis (59-60 years vs 46-
58 years) (4-6,23,33). When modeling AP-to-CRC progression, risk
at age 60 years remained low, with 2.4%-6.5% in the cohort
excluding ca-index patients and 5.5%-16.6% in the prospective
analyses. Because the risk is only slightly increased compared to
the general population, a baseline colonoscopy around age 45
years might suffice (8) instead of regular colonoscopy for all PHTS
patients (9-11).

RC risks (3.3% to 8.6% at age 60 years, SIR ¼ 8.8 to 21.2) were
lower (2%-11%, SIR ¼ 11-49), and median age of diagnosis was
similar compared to the literature (51 and 53 years vs 49-55 years)
(4-6,23,34). Current recommendations vary between no surveil-
lance and repeated surveillance starting at age 40 years (8-11).
Our lower risks only support investigation of a baseline RC
examination around age 45 years.

Melanoma was not often observed, and risks were similar to
those found in the literature (5.5% to 7.3% at age 60 years vs 0%-
6%), with somewhat lower SIRs (6.6 to 7.3 vs 9-39). Median ages at
diagnosis were both lower and higher compared to the literature
(30 and 53 years vs 40 years) (4,6,23). These risks and youngest
diagnoses (20 and 28 years in respective cohorts) support baseline
skin examination before age 30 years as stated in European and
UK guidelines (8,11).
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Figure 4. Genotype-specific cumulative breast cancer risks. For female breast cancer, the genotype-specific cumulative cancer risk by variant coding
effect and domain is presented for the prevalent cohort excluding index patients who had cancer before genetic testing (ca-index patients). Per age
category, the number of females at risk and cumulative number of breast cancer events are presented. At the end, the cumulative number of breast
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variants; other ¼ other domain location than C2 or PD alone; PD ¼ phosphatase domain; truncating ¼ truncating variants.
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The numbers of non–PHTS-related cancers was low, and sur-
veillance measures are not advised. Besides a few brain and hae-
matological cancers, the spectrum of non–PHTS-related cancers
was similar to the literature (3).

This is the largest cohort to date to our knowledge, with a
median prospective follow-up of 6 years. Nevertheless, the num-
ber of patients at an older age (60þ years) and prospective follow-
up remain limited, especially for subgroup evaluations and less
prevalent cancers. Therefore, overall conclusions were based on
risks at age 60 years, and continuous patient follow-up is needed
for further risk evaluation and stratification. Risks for PHTS-
related cancer and female BC by age 70 years are based on larger
numbers and can be used for counseling.

In the prospective analyses, we observed higher BC, TC, and
CRC cumulative risk and SIR estimates than in the cohort exclud-
ing ca-index patients. This could not be explained by differences
in genotype, birth cohort, country of origin, or data sources (data
not shown) and might be an effect of surveillance programs.
Genetic testing bias likely hardly affects the results excluding ca-
index patients, because only 18.7% of non-index patients had
cancer at genetic testing, and other phenotypes may contribute
to testing. Cancer risks from this large cohort can be used to
counsel both selected and unselected patients; however, ethnic-
ity should be considered because this cohort was mainly
European, and risks between ethnicities may differ (35,36).

In addition to accurate cancer risk estimates, studies concern-
ing the yield of surveillance programs are needed, in particular to
define surveillance intervals and modules. Furthermore, evalua-
tion of other risk factors and phenotypic clustering is needed to
improve personalized risk stratification and our understanding of
the PHTS cancer spectrum.

Taken together, females have a different BC risk depending on
their PTEN germline variant, with additive two- to threefold risk
increases for truncating variants and variants in PD, providing
direction for more personalized cancer risk surveillance. We
determined lower, more unbiased, and more personalized risks in
PHTS for BC, EC, and TC than previously reported. CRC, RC, and
melanoma risks were only slightly increased and should not be
the main focus of attention in surveillance. Our study provides
guidance for optimized cancer risk management in PHTS
patients.
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