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Glioblastoma is the most common primary malig-
nant brain tumor and the third most frequently re-
ported CNS tumor.1 Its annual age-adjusted inci-

dence rate of 3.21 per 100,000 person-years is the highest 
among patients with malignant brain and CNS tumors.1 

Patients suffering from glioblastoma face a poor survival 
prognosis with a 5-year survival rate of less than 10%.2 
Nonetheless, there is substantial interpatient variability 
in survival, which is partly due to differences in tumor 
biology.3

ABBREVIATIONS CI = confidence interval; EOR = extent of resection; GTR = gross-total resection; HR = hazard ratio; IDH = isocitrate dehydrogenase; KPS = Karnofsky 
Performance Status. 
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OBJECTIVE Prognostication of glioblastoma survival has become more refined due to the molecular reclassification of 
these tumors into isocitrate dehydrogenase (IDH) wild-type and IDH mutant. Since this molecular stratification, however, 
robust clinical prediction models relevant to the entire IDH wild-type glioblastoma patient population are lacking. This 
study aimed to provide an updated model that predicts individual survival prognosis in patients with IDH wild-type glio-
blastoma.
METHODS Databases from Germany and the Netherlands provided data on 1036 newly diagnosed glioblastoma pa-
tients treated between 2012 and 2018. A clinical prediction model for all-cause mortality was developed with Cox propor-
tional hazards regression. This model included recent glioblastoma-associated molecular markers in addition to well-
known classic prognostic variables, which were updated and refined with additional categories. Model performance was 
evaluated according to calibration (using calibration plots and calibration slope) and discrimination (using a C-statistic) in 
a cross-validation procedure by country to assess external validity.
RESULTS The German and Dutch patient cohorts consisted of 710 and 326 patients, respectively, of whom 511 (72%) 
and 308 (95%) had died. Three models were developed, each with increasing complexity. The final model considering 
age, sex, preoperative Karnofsky Performance Status, extent of resection, O6-methylguanine DNA methyltransferase 
(MGMT) promoter methylation status, and adjuvant therapeutic regimen showed an optimism-corrected C-statistic of 
0.73 (95% confidence interval 0.71–0.75). Cross-validation between the national cohorts yielded comparable results.
CONCLUSIONS This prediction model reliably predicts individual survival prognosis in patients with newly diagnosed 
IDH wild-type glioblastoma, although additional validation, especially for long-term survival, may be desired. The nomo-
gram and web application of this model may support shared decision-making if used properly.
https://thejns.org/doi/abs/10.3171/2021.10.JNS211261
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In 2016, the revised 4th edition of the WHO classifica-
tion of CNS tumors introduced two distinct glioblastoma 
entities according to isocitrate dehydrogenase (IDH) mu-
tation status.4 The vast majority of patients (> 90%) with 
glioblastoma harbor tumors with an IDH wild-type status 
and these patients have a median overall survival of 1.2 
years.3 In contrast, patients with glioblastoma molecularly 
labeled with an IDH mutation are less common (< 10%), 
reaching a favorable 3-fold longer median overall surviv-
al time when compared to patients with IDH wild-type 
glioblastoma.3 Despite this categorization, patient survival 
with IDH wild-type glioblastoma remains diverse. Prog-
nostication of individual patient survival times depends 
on a range of prognostic variables related to patient char-
acteristics, neurosurgical approach, glioblastoma biology, 
and adjuvant treatment strategies.5–10

Accurate prognostication is important, not only to 
counsel patients on their survival probability, but also to 
build strong clinical trial cohorts. Nowadays, it is impera-
tive to facilitate shared decision-making, i.e., to inform pa-
tients and their relatives so that they understand the risks 
when making joint decisions on possible choices. Conse-
quently, therapeutic regimens can be better tailored to the 
individual patient and clinical scenario.

Clinical prediction models and their visualization, es-
pecially nomograms, are powerful tools for individual-
ized estimation of patient survival times and for patient 
counseling. However, since the molecular stratification of 
glioblastoma,4 only a few reports have addressed the use 
of nomograms for patients with newly diagnosed glioblas-
toma.9,11 Furthermore, patients undergoing biopsy-only 
procedures, and patients treated with adjuvant therapy 
other than the standard radiotherapy with concurrent and 
maintenance temozolomide chemotherapy, are excluded. 
These restrictions may make clinical prediction models 
less relevant to the entire glioblastoma patient population. 
Therefore, we aimed to develop and externally validate an 
updated clinical prediction model to better predict survival 
in patients newly diagnosed with IDH wild-type glioblas-
toma, considering both traditional and modern predictors.

Methods
Study Design and Population

Patients with glioblastoma from three university hospi-
tals were selected for model development and validation: 
University Medical Centers in Düsseldorf and Frankfurt, 
Germany, and Erasmus MC, the Netherlands. Patients 
were eligible for analysis if they were at least 18 years of 
age on the day of neurosurgical intervention and received 
a histopathological diagnosis of de novo IDH wild-type 
glioblastoma, according to the WHO 2016 classification 
of CNS tumors.4,9 Glioblastomas from patients diagnosed 
before 2016 were neuropathologically reevaluated and re-
classified according to the WHO 2016 criteria. IDH muta-
tion status was assessed using immunohistochemistry for 
analysis of IDH1-R132H as previously recommended.12,13 
Tumors of patients younger than 55 years of age were 
additionally investigated for less common mutations at 
codon 132 of IDH1 and codon 172 of IDH2 by Sanger 
sequencing or pyrosequencing.12 Patients were excluded 

from analysis if a resection was performed more than 4 
weeks after a biopsy procedure. The development data 
set included patients from the University Medical Center 
Düsseldorf (n = 279, treated from 2013 to 2018) and from 
the University Medical Center Frankfurt (n = 431, treated 
from 2012 to 2018). The validation data set was derived 
from Erasmus MC, including 326 patients treated from 
2012 to 2018.14

Ethics approval for the study was obtained from the 
IRBs at each center, i.e., the Medical Faculty of Heinrich 
Heine University Düsseldorf, the University Medical Cen-
ter Frankfurt, and Erasmus MC. In the German cohort, 
patients had provided informed consent for the use of their 
tissue samples and clinical data. In the Dutch cohort, writ-
ten informed consent from patients was waived by the eth-
ics committee.

Outcome Definition
Overall survival was assessed from the day of the first 

surgery until death or last follow-up. Patients were cen-
sored at the date of last follow-up.7

Candidate Prognostic Variables
Based on literature review and subject matter knowl-

edge, we considered predictor variables in the following 
categories: patient characteristics, surgical results, glio-
blastoma biology, and adjuvant treatment strategies.

Patient Characteristics
Data on sex, age, and preoperative performance status 

(Karnofsky Performance Status [KPS]) were collected by 
patient chart review. KPS score was assessed preopera-
tively on the day of admission. The KPS score was catego-
rized into four groups: ≤ 70, 80, 90, and 100.

Surgical Results
Extent of resection (EOR) was defined as gross-total 

resection (GTR), non-GTR, and biopsy.8 In the German 
cohort, GTR was defined as complete removal of contrast 
enhancement on early T1-weighted postoperative MRI 
(< 72 hours after surgery) by a neuroradiologist blinded 
to intraoperative and histopathological findings.8 In the 
Dutch cohort, glioblastoma segmentation was performed. 
Contrast-enhanced tumor volumes were quantitatively as-
sessed on pre- and postoperative MRI (< 72 hours after 
surgery) scans and EOR was calculated; GTR was defined 
as > 97% EOR.14 All tumor volumes were assessed while 
blinded to patient clinical outcomes.14

Glioblastoma Biology and Adjuvant Treatment Strategies
O6-methylguanine DNA methyltransferase (MGMT) 

promoter methylation status was determined by pyrose-
quencing of sodium bisulfite-treated DNA and/or meth-
ylation-specific polymerase chain reaction, as previously 
reported.6,15,16 Adjuvant therapeutic regimen was defined 
as Stupp, non-Stupp, and no therapy.8 The Stupp category 
consisted of radiotherapy plus concomitant and mainte-
nance temozolomide.5 The non-Stupp category consisted 
of subparts/modifications of the Stupp protocol and exper-
imental designs.8 The no-therapy group included patients 
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who were not assigned to postsurgical therapy. Decisions 
on therapy were rendered by the local multidisciplinary 
tumor boards and analyzed according to an intention-to-
treat principle.

Sample Size
Conventional sample size recommendations require 

at least 10–20 events per candidate prognostic variable, 
a target that was easily met.17 In addition, we performed a 
more advanced calculation.18 Using the observed C-statis-
tic from Gittleman et al. (C-statistic 0.76 with 163 events),9 
we would need more than 200 patients to ensure a heu-
ristic shrinkage slope > 0.9 for the prediction model. For 
models with a lower C-statistic, at least 300–500 patients 
would be required for reliable modeling.

Statistical Analysis
For continuous data we show means, standard devia-

tions, and ranges. For categorical data we used counts and 
percentages. Generation of the clinical prediction model 
was performed in accordance with recent methodology17,19 
and reported according to the TRIPOD guidelines.20,21

Model Development
Cox regression analysis was used to develop a clini-

cal prediction model estimating survival. Age and pre-
operative KPS score were kept as continuous prognostic 
variables in the analysis to avoid loss of prognostic infor-
mation.22 In addition, we explored nonlinearity for the as-
sociation of age and preoperative KPS score with mortal-
ity, using restricted cubic splines.23 Missing values were 
assumed to be missing at random and multiple imputa-
tion was performed using the mice algorithm.24 Missing 
values were imputed 10 times. Statistical analyses were 
performed on the 10 imputed data sets and results were 
pooled using Rubin rules.25 The modeling procedure con-
sisted of three models of increasing complexity: 1) a clini-
cal model, including patient sex, age, and KPS score; 2) a 
surgical model, adding EOR to the clinical model; and 3) 
a treatment model, consisting of the surgical model plus 
MGMT promoter methylation status and adjuvant treat-
ment regimen. Hazard ratios (HRs) with 95% confidence 
intervals (95% CIs) were estimated as measures for asso-
ciation of the prognostic variables with survival.

Model Performance
We assessed the quality of the prediction model by eval-

uating calibration and discrimination measures.17 Model 
calibration gauges the agreement between the predictions 
of the model with the observed survival probability.17 
Model calibration was graphically assessed using calibra-
tion plots.26 Differences in baseline risk were studied by 
adding cohort as a factor in the model. Furthermore, the 
calibration slope was calculated.27

Harrell’s concordance statistic (C-statistic) was used 
to quantify discriminative ability.28 Model discrimination 
demonstrates how well the constructed prediction model 
identifies, for two randomly chosen patients, the patient 
who died first with a higher probability of dying. An un-
informative model will have a C-statistic of 0.5, whereas a 

model with perfect discrimination will have a C-statistic 
of 1.0.17 Furthermore, we quantified the heterogeneity in 
case-mix in the development and validation populations 
to aid the interpretation of the observed C-statistic at vali-
dation.29

Model Validation
We first developed models in the German cohort with 

validation in the Dutch cohort. We then reversed this pro-
cedure, conducting development in the Dutch cohort and 
validation in the German cohort. This cross-validation 
procedure between the national data sets shows the ex-
ternal validity of the prediction model.30 Subsequently, 
the final model was developed using the combined data 
from the cohorts, provided that no major between-cohort 
heterogeneity was found. The performance of this final 
model was estimated by a bootstrap (1000 samples) inter-
nal validation procedure.30

Model Presentation
Nomograms were created to define an individual pa-

tient’s anticipated 1-year, 2-year, and median predicted 
survival time. Descriptive analysis and prediction mod-
eling analysis were performed using R software (version 
3.5.2). The significance level was set at 5% for all analyses.

Results
Study Population

The combined German cohort consisted of data from 
713 patients. We excluded 3 patients in whom a resection 
was performed 4 weeks after the initial biopsy. Thus, af-
ter imputation, 710 complete cases were analyzed. The 
Dutch cohort did not have any missing values and con-
sisted of 326 patients. Overall survival as assessed by the 
Kaplan-Meier method is shown in Fig. 1. In both cohorts, 
age at diagnosis was comparable and more than half of 
the patients were male (Table 1). Eighty-five percent of 
the German cohort had a preoperative KPS score > 70, 
compared with 64% of the Dutch cohort. A minority of 
patients had GTR (approximately one-fifth in the Ger-
man cohort and one-tenth in the Dutch cohort), whereas 
most patients had non-GTR followed by the biopsy-only 
procedure. Approximately half of the patients had MGMT 
promoter-methylated tumors. The majority of the patients 
received the Stupp regimen as postsurgical therapy. How-
ever, in the German cohort more patients were assigned to 
a non-Stupp regimen (32% vs 17%). Nearly one-fifth of the 
patients were not assigned to postoperative therapy.

The median duration of survivor follow-up was al-
most the same in both cohorts (0.89 vs 0.84 years; Table 
1). Three hundred eight patients died in the cohort from 
the Netherlands compared to 511 in the German cohorts. 
Univariable HRs between the predictors and mortality are 
shown in Table 2. Supplemental Table 1 lists more details 
on patient characteristics stratified according to the re-
spective academic center.

Model Development
Age and preoperative KPS score could be modeled 
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well assuming a linear association. Other than patient sex 
(HR 0.94, 95% CI 0.79–1.11), all candidate prognostic 
variables showed statistically significant associations with 
survival in the developed model (Fig. 2). Younger patients 
at diagnosis with a higher preoperative KPS score had bet-
ter survival (age per decade HR 1.32, 95% CI 1.22–1.42; 
preoperative KPS score HR 0.85, 95% CI 0.76–0.94). In-
complete tumor resection (partial resection HR 1.30, 95% 
CI 1.04–1.64; biopsy-only HR 1.95, 95% CI 1.52–2.49) 
and deviations from standard adjuvant therapy (non-Stupp 
HR 1.29, 95% CI 1.06–1.58; no therapy HR 2.38, 95% CI 
1.85–3.07) were statistically significantly associated with 
worse survival. Patients determined to have an MGMT 
promoter-methylated tumor confer a favorable survival 
prognosis compared to those with an MGMT promoter-
unmethylated tumor (HR 0.50, 95% CI 0.41–0.62; Supple-
mental Table 2).

The direction of the predictor effects was the same in 
both the German and Dutch cohorts (Fig. 2, Supplemental 
Table 2). The treatment model had somewhat larger re-
gression coefficients in the Dutch cohort (interaction by 
cohort: p < 0.001), but not for the clinical and surgical 
models (p = 0.068 and p = 0.248), without any obvious 
reason. The apparent C-statistic of the developed predic-
tion models in the development set (i.e., the German co-
hort) was promising: the treatment model had the highest 
discriminative ability (C-statistic 0.74, 95% CI 0.71–0.76; 
Supplemental Table 2).

Model Validation
At cross-validation by country, we confirmed an in-

creasing C-statistic with increasing model complexity 
(Table 3). The C-statistic for the treatment model was 0.70 

(95% CI 0.67–0.73). The calibration plots showed some 
miscalibration, especially for predicting long-term sur-
vival probabilities (Fig. 3). The calibration plots suggested 
that the clinical model underestimated survival while the 

FIG. 1. Kaplan-Meier estimate of survival. The red line is the Kaplan-
Meier estimate of survival probabilities of the cohort and the gray area is 
the associated 95% CI. Figure is available in color online only.

TABLE 1. Patient characteristics of the data used at model 
development

Variable German Cohort Dutch Cohort
p 

Value*

No. of patients 710 326
Median duration of survi-
vor follow-up (IQR), yrs

0.89 (0.37–1.49) 0.84 (0.37–1.43) 0.684

Died, n (%) 511 (72.0) 308 (94.5) <0.001
Median age (IQR), yrs 64 (55–73) 65 (57–72) 0.862
Male sex, n (%) 385 (54.2) 206 (63.2) 0.008
Preop KPS score, n (%) <0.001
 ≤70 88 (15.1) 119 (36.5)
 80 93 (16.0) 92 (28.2)
 90 218 (37.4) 85 (26.1)
 100 184 (31.6) 30 (9.2)
EOR, n (%) <0.001
 GTR 158 (22.4) 34 (10.4)
 Non-GTR 321 (45.5) 214 (65.6)
 Biopsy 227 (32.2) 78 (23.9)
MGMT promoter-methyl-
ated, n (%)

291 (47.2) 177 (54.3) 0.044

Adjuvant therapy, n (%) <0.001
 No therapy 117 (16.8) 61 (18.7)
 Non-Stupp 220 (31.6) 56 (17.2)
 Stupp 360 (51.6) 209 (64.1)

IQR = interquartile range.
* Calculated using the t-test, Mann-Whitney U-test, or chi-square test.

TABLE 2. Univariable association between predictors and 
mortality (n = 1036)

Predictor HR (95% CI)

Age per decade 1.33 (1.25–1.41)
Male vs female 1.10 (0.96–1.26)
Preop KPS score per 10-point increase 0.75 (0.70–0.80)
EOR
 GTR Ref
 Non-GTR 1.50 (1.24–1.81)
 Biopsy 2.38 (1.94–2.92)
MGMT promoter status, unmethylated vs 
methylated

0.65 (0.56–0.75)

Adjuvant therapy
 Stupp Ref
 Non-Stupp 1.48 (1.26–1.73)
 No therapy 3.90 (3.23–4.71)

Ref = reference.
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surgical and treatment model overestimated survival (Fig. 
3). More specifically, beyond 1 year of survival follow-
up, the predicted curve deviated more from the observed 
curve. The calibration slope was approximately 1 for all 
models: < 1 for the clinical and surgical models, and > 1 
for the treatment model (Table 3).

After refitting the models in the Dutch cohort, the ap-
parent C-statistics were 0.62, 0.64, and 0.73, respectively 
(Supplemental Table 2). When we reversed the validation 
procedure, the validated C-statistics in the German cohort 
were 0.65 (95% CI 0.62–0.67), 0.68 (95% CI 0.66–0.71), 
and 0.72 (95% CI 0.69–0.74) for the clinical, surgical, and 
treatment models, respectively (Table 3). The calibration 
plot for the clinical model showed an excellent agreement 
between observed and survival probability (Fig. 3). The 
surgical and treatment models again overestimated sur-
vival, this time even more pronounced, especially for pre-
dicting long-term survival (Fig. 3).

The spread between the predictions (standard devia-
tion of the linear predictor) increased with model com-
plexity and was smaller in the Dutch cohort for all models 
(Supplemental Table 3). This indicates that the decrease in 
C-statistic was partly due to a decrease in case-mix het-
erogeneity from the German to the Dutch cohort.

Model Presentation
The final model combined all data from the German 

and Dutch cohorts, yielding comparable associations of 
the prognostic variables with survival (Table 4, Fig. 2). 
The C-statistic was 0.73 (95% CI 0.71–0.75). We devel-
oped nomograms to predict an individual patient’s surviv-
al for several time periods (Fig. 4). In addition, an online 
prognostic calculator based on the model algorithms and 
including error margins (95% CI for prediction) is accessi-
ble at https://www.evidencio.com/models/show/2384 and 
shown in the box in Supplemental Fig. 1. Supplemental 

FIG. 2. Association of the prognostic variables with survival in each model. Figure is available in color online only.

TABLE 3. Performance of the developed prediction models at 
external validation

Model
Performance Measure (95% CI)

Calibration Slope C-Statistic

Clinical
 Netherlands 0.73 (0.43–1.03) 0.61 (0.58–0.65)
 Germany 1.02 (0.78–1.26) 0.65 (0.62–0.67)
Surgical
 Netherlands 0.81 (0.52–1.09) 0.62 (0.59–0.66)
 Germany 1.01 (0.82–1.20) 0.68 (0.66–0.71)
Treatment
 Netherlands 1.12 (0.87–1.36) 0.70 (0.67–0.73)
 Germany 0.67 (0.57–0.76) 0.72 (0.69–0.74)
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Table 4 provides the baseline hazard and predictor coef-
ficients for the different models to allow for independent 
external validation studies by independent researchers.

Discussion
Individualized estimates of survival time can be ob-

tained with reasonable accuracy from the proposed clini-
cal prediction model in patients newly diagnosed with IDH 
wild-type glioblastoma. The model is cross-validated in 
large institutional patient cohorts from Germany and the 
Netherlands. Considering updated conventional predictors 
and new predictor variables including current relevant mo-
lecular biomarkers, our prediction model reached a prom-
ising discriminative model performance (C-statistic 0.73). 
The web-based prognostic calculator will help to facilitate 
clinical implementation.

Before publication of the revised 4th edition of the 
WHO classification of CNS tumors in 2016, most literature 
reporting on prediction models for patients with glioblas-
toma was confounded by omitting information on prog-
nostically important molecular biomarkers in the analyses, 
particularly IDH mutation status and MGMT promoter 
methylation status.7,31 Recently, Gittleman et al. developed 
and validated a clinical prediction model in IDH wild-
type glioblastoma in an American population that does 
take into account these biomarkers.9 We found similar 
predictor effects for age at diagnosis, patient sex, and pre-

operative KPS score, although we avoided dichotomizing 
preoperative KPS score to prevent loss of data. About half 
of the patients had MGMT promoter-methylated tumors, 
consistent with previous evidence.6 The predictor effect of 
MGMT promoter methylation status was also consistent 
with the work by Gittleman et al.9 Furthermore, as recently 
recommended, we expanded and updated the model with 
an additional surgical intervention (the biopsy-only group) 
and an additional adjuvant treatment option (the non-Stupp 
alternative). As expected, patients undergoing a biopsy-
only procedure had a worse prognosis. Patients allocated 
to the non-Stupp treatment confer a favorable survival 
prognosis compared to patients without adjuvant thera-
py. To address the addition of multiple parameters to the 
model, a more robust effective sample size was achieved 
to provide accurate predictions. Nonetheless, the work by 
Gittleman et al. presented a higher C-statistic of 0.76.9 This 
difference could be due to a lower case-mix heterogene-
ity in the present Dutch cohort. The lower C-statistic may 
also be explained by measurement error that might have 
emerged in the present study. The assessment of EOR dif-
fered between the German and Dutch cohorts. In the for-
mer cohort, EOR was defined by a qualitative approach,8 
whereas in the latter, a quantitative approach (volumetric 
segmentation analysis) was used.14 Consequently, the mea-
surement error in the Dutch cohort is likely lower, pos-
sibly resulting in a different association between EOR and 

FIG. 3. Calibration plots of the developed models (A–F) at cross-validation. The black line denotes the average of the predicted 
survival probabilities of all patients. The solid red line is the Kaplan-Meier estimate of survival probabilities of the validation cohort, 
and the dashed red lines are the associated 95% CIs. Figure is available in color online only.
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mortality. Furthermore, we found a stronger effect of the 
adjuvant treatment on patient survival in the Dutch cohort 
compared to the patients from the German cohort, which 
was a puzzling result. Local patient allocation to the ad-
juvant treatment groups according to local principles and 
the non-Stupp option might have introduced heterogeneity 
between the data sets in the adjuvant treatment variable. 
Other unknown factors not captured in this study might 
have affected patient allocation to adjuvant treatment.

Implications for Patient Management
Patients newly diagnosed with IDH wild-type glioblas-

toma need to be well informed about the prognosis of this 
devastating disease, as do their families and significant 
others. To participate adequately in shared decision-mak-
ing, patients and their relatives need to understand their 
prognosis to make preference-sensitive decisions. Since 
the 2016 WHO classification, an updated prediction tool 
is inevitable for providing reliable predictions within the 
group of patients with IDH wild-type glioblastoma. The 
proposed prediction model is particularly useful for shared 
decision-making. The nomograms and online calculator 
presented here are intuitive and freely available to facili-
tate shared decision-making in the clinical setting. The 
different models can be used pre- and postoperatively by 
health care professionals to explain the anticipated out-
come of treatment. Consequently, patient-tailored treat-
ment guidance and future planning become more feasible. 
For example, addressing existential distress (fear of dying 
or disease recurrence) may be an important upcoming is-
sue for these patients.32 Also, the plight of advanced can-
cer patients puts family members at risk for psychological 
morbidity.33 Based on anticipated patient survival time, 
adequate (dyadic) coping strategies can be planned in time 
for the individual patient and/or their spouse/caregivers. It 
is recommended to include couples interventions if possi-
ble, to treat the hidden psychological morbidity in spouses/
caregivers in time.33

Implications for Future Work
Although the presented model addresses glioblastoma 

as a molecular heterogeneous entity, future model updat-
ing is likely necessary. These updates will need to take 
into account newly defined molecular subgroups of IDH 
wild-type glioblastoma characterized by distinct DNA 
methylome profiles, or other potential biomarkers such as 
tumor mutation burden or total copy number aberration.34 
Along with this basic scientific research, ensuing clinical 
therapies are designed and tested. Tumor-treating fields 
concurrent with temozolomide have been suggested to be 
effective.35 Immunotherapies and precision oncological 
approaches have so far not been shown to increase surviv-
al.36 If those therapies become standard care, model updat-
ing will likely further increase the predictive performance 
of the model. Furthermore, the presented model enables 
the identification of specific patients for enrollment in a 
clinical trial. Strong clinical trial cohorts can subsequently 
be built; for example, selecting high-risk patients who may 
potentially benefit most from experimental treatment be-
comes feasible.

Strengths and Limitations
A strength of the current study is the development and 

validation in geographically distinct settings. Other cen-
ters may have different case-mix and different local care 
pathways, which may threaten external validity of the re-
sults. The generalizability of the model to nonacademic 
centers needs to be tested in future work. 

Second, although the present model updated some con-
ventional prognostic variables and did consider relevant 
molecular biomarkers, the model performance was not 
perfect. Other predictors may need to be considered such 
as corticosteroid use, seizures, and hospital complications, 
including venous thromboembolism.37–39 These events may 
be associated with outcome and hence affect the accuracy 
of the presented models. However, including such events 
may make a clinical prediction very difficult to apply be-

TABLE 4. Hazard ratios and associated 95% CIs in the final prediction models (n = 1036) including the discriminative ability

Predictor
Model

Clinical Surgical Treatment

Age per decade 1.29 (1.21–1.37) 1.28 (1.20–1.37) 1.27 (1.19–1.35)
Male vs female 1.11 (0.97–1.27) 1.08 (0.94–1.24) 1.02 (0.89–1.18)
Preop KPS score per 10-point increase 0.78 (0.72–0.83) 0.79 (0.74–0.85) 0.82 (0.76–0.89)
EOR
 GTR Ref Ref
 Non-GTR 1.34 (1.11–1.62) 1.38 (1.14–1.68)
 Biopsy 2.11 (1.71–2.59) 1.84 (1.48–2.27)
MGMT promoter status, unmethylated vs methylated 0.55 (0.47–0.65)
Adjuvant therapy
 Stupp Ref
 Non-Stupp 1.39 (1.18–1.64)
 No therapy 2.92 (2.39–3.55)
C-statistic 0.66 (0.64–0.68) 0.68 (0.66–0.70) 0.73 (0.71–0.75)
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cause these data are generally not available at baseline. 
Adding more variables such as patient morbidity and de-
tails on tumor location might increase the performance of 
the proposed models. These variables may be considered 
surrogate markers for treatment decisions, e.g., perform-
ing a biopsy in a deeply located tumor and the no-therapy 
regimen for a patient with multiple comorbidities and poor 
neurological status. We refrained from putting these sur-
rogate markers into the clinical model because of model 
complexity and sample size considerations. Furthermore, 
we aimed to use clearly defined variables that are easily 
accessible and measurable with a low probability for error. 

Third, we cannot rule out the possibility of information 
bias because some variables were collected retrospectively. 
Machine-learning techniques were not explored, assuming 
that the limited predictors in our model could adequately 
be modeled by regression techniques.40–42 Fourth, a causal 
relationship between treatment and prediction cannot be 
shown due to a lack of a comparative design in the data 
sets. Therefore, the model should not be used for treatment 
decision-making. However, the model should be used for 
patient, family, and significant other clarification on the 
anticipated survival given that a particular treatment is 
chosen. Therefore, this work is especially useful for shared 

FIG. 4. Nomograms for the clinical (A), surgical (B), and treatment models (C). To use the nomograms, locate the patient’s 
preoperative KPS score on the KPS axis. Draw a line straight upward to the Points axis to determine how many points the patient 
obtains. Repeat this for each prognostic variable, then sum the achieved points. Locate the final sum of the points on the Total 
Points axis. Draw a line straight down to find the patient’s anticipated 1-year, 2-year, and median predicted survival time. The 
median predicted survival time denotes the time at which there is a 50% probability that the patient will survive until this time.
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decision-making and has the potential to be a basis for im-
pactful studies on personalized decision-making. 

Fifth, the Dutch cohort did not have any missing data, 
and the German cohort was nearly complete for all cases. 
Multiple imputation is advisable to prevent loss of prog-
nostic information.19 Nevertheless, some level of inac-
curacy of the imputed data cannot be ruled out. Finally, 
the model was developed and validated within a large 
sample size. However, internal-external validation of the 
developed model in Germany and the Netherlands showed 
some miscalibration of prediction for long-term survival 
probabilities, especially beyond the 1st year of survival. 
This may be due to a drop in the sample size as a sub-
stantial number of patients died during the 1st year after 
diagnosis, given the median survival time of < 12 months. 
Long-term predictions made by the model should be used 
with caution.

Conclusions
The proposed clinical prediction model reliably pre-

dicts individual survival prognosis in patients with newly 
diagnosed IDH wild-type glioblastoma. The model may 
support shared decision-making if used properly and may 
be used to select patients for enrollment in a clinical trial. 
In addition, it provides a framework that can be used for 
future updating. For clinical implementation, free soft-
ware is available at https://www.evidencio.com/models/
show/2384.
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