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Abstract
Purpose Our aim is to automatically align digital subtraction angiography (DSA) series, recorded before and after endovas-
cular thrombectomy. Such alignment may enable quantification of procedural success.
Methods Firstly, we examine the inherent limitations for image registration, caused by the projective characteristics of DSA
imaging, in a representative set of image pairs from thrombectomy procedures. Secondly, we develop and assess various
image registration methods (SIFT, ORB). We assess these methods using manually annotated point correspondences for
thrombectomy image pairs.
Results Linear transformations that account for scale differences are effective in aligning DSA sequences. Two anatomical
landmarks can be reliably identified for registration using a U-net. Point-based registration using SIFT and ORB proves to
be most effective for DSA registration and are applicable to recordings for all patient sub-types. Image-based techniques are
less effective and did not refine the results of the best point-based registration method.
Conclusion We developed and assessed an automated image registration approach for cerebral DSA sequences, recorded
before and after endovascular thrombectomy. Accurate results were obtained for approximately 85% of our image pairs.
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Introduction

Ischemic stroke is the most common type of stroke (71%),
a leading cause of disability and death [1]. Endovascu-
lar thrombectomy (EVT) aims to restore blood flow by
mechanical removal of the thrombus. Intermittently, digital
subtraction angiography (DSA) is used to visualize and study
[2] the vessels.

A quantitative comparison of the vessels (or perfusion)
before and after the intervention may lead to a better under-
standing of the result of the intervention and may also permit
prediction of outcome [3, 4]. Such a comparison of DSA
series is currently hampered by the lack of an accurate spa-
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tial alignment [5] for series obtained before and after the
treatment.

Automating such alignment is challenging, as there
may be new arteries visualized after a (partially) success-
ful thrombus removal. Additionally, spatial correspondence
likely requires a nonlinear deformation, even for subsequent
frames, as is indicated by early work [6] on DSA image pro-
cessing. Finally, the orientation of the imaging setup, with
respect to the patient, can vary significantly during a pro-
cedure, as the ischemic stroke patient will move during the
procedure. Additionally, the radiologist changes the orien-
tation intermittently for anterior–posterior (AP) or lateral
views.

In this work, we aim to develop and assess an image reg-
istration strategy on a large set of images using a quantitative
metric.We will first investigate which type of transformation
is effective in aligning different DSA series. Subsequently,
traditional registration methods and a deep learning method
are adapted and assessed for automated alignment.
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Fig. 1 DSA images of an ischemic stroke patient, including annotated point-correspondences for pre-/post-EVT (red/blue) minIPs for AP and
lateral views (left/right)

Fig. 2 Average residual error distributions of optimized transformations for AP image pairs

Methods

The effects of patient movement and differences in C-arm
orientation, inherently present in DSA data, may require
additional transformation complexity for effective align-
ment. Ultimately, it is not apparent what transformation type
is suitable tomodel the projection of 3Dmotion.We therefore
empirically investigate what transformation type is suited for
spatial alignment by fitting different 2D transformations to
manually annotated point correspondences.

Subsequently, we assess automatic registration tech-
niques. We first develop a neural network to identify two
cerebral artery landmarks, which will provide point cor-
respondences for all DSA sequences. For more accurate
alignment of sequences pre- and post-EVT images of the
same patient, point correspondences from traditional meth-
ods, SIFT (scale-invariant feature transform) [7] and ORB
(Oriented FAST and Rotated BRIEF) [8], are used.

The neural network uses theU-net architecture [9] to com-
pute the probability distributions of the location of the two
landmarks (see Fig. 3). The final sigmoid activation function
enforces the lower and upper bounds of the probability val-
ues. At inference, the landmark positions are determined by
the highest probability (argmax) or expectation (centre of
mass). Kullback–Leibler (KL) divergence [10] and Jensen–
Shannon (JS) divergence [11] are used as loss functions w.r.t
Gaussian distributions centred on manual annotations.

Data

In this work, we use imaging data from theMRCLEANReg-
istry [12], a registry of consecutive stroke patients treated
with EVT in the Netherlands. An initial selection of pre-
and post-EVT sequences from the MR CLEAN Registry is
adopted from a previous study [4]. A subsequent selection is
done to reduce annotation time while retaining a representa-
tive view of clinical variability. This resulted in 104 patients
to be included, of which the pre-/post-EVT AP and lateral
DSA series are evaluated. Figure1 is one such patient record.
During the U-net model training and validation, procedural
recordings of other patients were used: 1716 AP and 1472
lateral series in total.

Experiments and results

Intra-patient manual transformation assessment

To assess the impact of additional degrees of freedom on
alignment accuracy, global transformations are optimized for
manually annotated pre- and post-EVT recordings of 104
patients. Image pairs with fewer than six point correspon-
dences are excluded to prevent overfitting. The resulting error
distributions per transformation type are shown in Fig. 2.
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Fig. 3 ICA and M1 landmark predictions for A AP and B lateral MinIPs. C AP landmark prediction error distributions for the three data splits for
the best-performing configuration

Landmark detection

For the assessment of the U-net-based landmark detection,
we performed a threefold cross-validation. In this cross-
validation, the data are randomly split based on patient id,
thereby preventing validation and training on images from
the same patient. Models were trained using different loss
functions and the Adam optimizer until convergence was
achieved. Weights were saved for the epoch with the best
centre-of-mass prediction error on the validation set. The
results are shown in Fig. 3.

Point-based registration

We examined transformations computed with automatically
identified point-correspondences using the landmark model,
SIFT, and ORB. The success rate of finding sufficient inliers
(≥ 5) for combinations of these methods is summarised in
Table 1.

Accuracy distributions of the methods, excluding the
invalid solutions, are shown in Fig. 4. The range of the
registration error is equivalent to Fig. 2. Each distribution rep-
resents a different image subset, i.e. the valid solutions of the
method. For an unbiased method comparison, see Appendix
B.7.

Discussion and conclusion

We have investigated approaches to automatically align cere-
bralDSAseries. Transformations that account for differences
in scale are capable of aligning cerebral DSA sequences.
Transformations with additional degrees of freedom are

Table 1 Number of solutions (TP+FP) and invalid solutions (FP) found
using automatically identified point correspondences for 104 image
pairs

Methods AP Lateral

SIFT ORB LM TP+FP FP TP+FP FP

� × × 58 0 65 2

× � × 101 23 103 21

� � × 101 19 104 16

� × � 67 1 76 1

× � � 102 23 104 19

� � � 101 20 103 16

Bold values indicate the solution with most successful registrations
Solutions with an average error greater than 10px are classified as
invalid, based on Fig. 2

marginally more accurate. Although this could be attributed
to improved modelling of projection of 3Dmotion, it is more
likely a consequence of overfitting.

A deep-learning strategy using the U-net architecture
proved capable of identifying cerebral artery landmarks to
4px accuracy. Performing image registration using the two
landmarks proved limited, only yielding improved transla-
tion. Automatic image registration of pre-/post-EVT DSA
sequences can, however, be performed using traditional
point-based methods. SIFT produces negligible outliers with
a lower success rate than ORB, which finds more solu-
tions (+40%) at the cost of an increased false discovery
rate (+20%). The accuracy of the point-based methods
approaches the residual alignment error of manual annota-
tions.

Combined, an 85% success rate is achieved with compa-
rable performance for various types of stroke patients and
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Fig. 4 Registration error for least-squares similarity transformations using automatically identified point correspondences for lateral DSA images

procedural outcomes. This will enable further automation of
DSA image analysis and procedure evaluation, contributing
to outcome prediction and procedural decision-making for
EVT.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-023-02999-
8.
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