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Multi-scale spatial modeling of immune cell
distributions enables survival prediction
in primary central nervous system lymphoma

Margaretha G.M. Roemer,1,7 Tim van de Brug,2,7 Erik Bosch,2,3 Daniella Berry,1 Nathalie Hijmering,1,4

Phylicia Stathi,1 Karin Weijers,1 Jeannette Doorduijn,5 Jacoline Bromberg,6 Mark van de Wiel,2 Bauke Ylstra,1

Daphne de Jong,1,* and Yongsoo Kim1,8,*

SUMMARY

To understand the clinical significance of the tumor microenvironment (TME), it is
essential to study the interactions between malignant and non-malignant cells in
clinical specimens. Here, we established a computational framework for a multi-
plex imaging system to comprehensively characterize spatial contexts of the
TME at multiple scales, including close and long-distance spatial interactions be-
tween cell type pairs. We applied this framework to a total of 1,393 multiplex im-
aging data newly generated from 88 primary central nervous system lymphomas
with complete follow-up data and identified significant prognostic subgroups
mainly shaped by the spatial context. A supervised analysis confirmed a signifi-
cant contribution of spatial context in predicting patient survival. In particular,
we found an opposite prognostic value of macrophage infiltration depending
on its proximity to specific cell types. Altogether, we provide a comprehensive
framework to analyze spatial cellular interaction that can be broadly applied to
other technologies and tumor contexts.

INTRODUCTION

The interaction between tumor cells and their surrounding non-malignant cell populations, the so-called

tumor microenvironment (TME), is considered one of the major drivers in oncogenesis and tumor evolution

of almost all malignancies.1 The TME consists of a wide variety of non-malignant cells, including various

classes of regulatory and effector lymphoid cells of T- and B-lineage, and various other non-hematological

cell populations such as accessory cells of fibroblastic, histiocytic, and dendritic nature. To adequately

determine single cells in the TME within their architectural context, various cutting-edge multidimensional

technologies have been developed, such as multiplex immunofluorescence (mIF) techniques (Vectra

Polaris)2,3 and more recently higher-throughput techniques including DNA-barcoded multiplex IHC

(CODEX)4 and imagingmass cytometry (Hyperion).5,6 Now that these technologies allow for accurate quan-

tification of TMEmarkers and record their spatial distribution, the challenge is to handle the vast amount of

information that is obtained from each experiment. Therefore, advanced computational frameworks for

spatial analysis are needed to translate complex cellular interplays into clinically relevant biomarkers.

Primary central nervous system lymphoma (PCNSL) is a very rare type of aggressive B cell lymphoma that

most frequently involves the brain parenchyma andmore rarely the spinal cord with or without involvement

of the vitreoretinal space of the eyes.7,8 Even though intensified treatment protocols have improved sur-

vival, 5-year survival has stagnated at only 30% which is obtained at the cost of severe medical and

neuro-psychological early and late side effects.9,10 PCNSL has a unique underlying biology characterized

by a defined genetic- and immunological context, in which immune evasion is a key mechanism.11 On the

one hand, immune evasion is mediated via genetic inactivation of antigen presentation molecules (Beta2-

microglobulin, MHC class I and II) by the tumor, with subsequent loss of expression of these proteins,

escaping recognition by cytotoxic CD8+ T cells.12,13 On the other hand, immune evasion is mediated by

immune checkpoint deregulation, most frequently by translocations and chromosomal copy number alter-

ations (CNAs) involving the PD-L1/PD-L2 locus at 9p24.1.13 Deregulation of the PD-1 pathway, by increased

expression of PD-L1/PD-L2 leads to reversible inhibition of T cell proliferation and activation. Studies
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focusing on the interactions between the malignant PCNSL cells with the intermingled immune TME

currently show conflicting results.14–17 In particular, the clinical impact of the mere quantitative presence

of macrophages is inconsistent in the current literature15,18 and comprehensive spatial analyses are lacking.

Therefore, PCNSL is a highly relevant model to explore the added value of novel computational frame-

works to study the TME in detail and define its correlation with survival.

Here, we propose a computational framework to comprehensively characterize the spatial context of the

TME based on multiplex immunofluorescence (mIF). Based on marked Poisson point process theory,19

this computational framework first captures spatial interactions between pairs of cells, such as frequent

co-localization or mutual exclusiveness appears at short and/or long distance. Subsequently, downstream

unsupervised- and supervised analyses were performed to identify prognostic features. We applied this

framework to a set of uniformly treated PCNSL patients of the HOVON105 clinical study20 and identified

key cellular spatial associations that distinguished PCNSL patients on outcome.

RESULTS

Characteristics of the PCNSL patients from the HOVON105 study

Of 134/202 registered patients in the HOVON 105/ALLGNHL24 clinical trial20 biopsymaterial was available

for pathology review and a diagnosis of PCNSL was confirmed. For the present study, for 88/134 patients

biopsy material of sufficient amount and quality was selected, and processed for PD-L1/PD-L2 fluorescence

in situ hybridization (FISH) analysis and mIF analysis. This patient cohort can be considered representative

of the entire cohort of patients included in the clinical trial with minor, non-significant enrichment of male

sex, worse performance status (WHO 3), and non-significant difference in survival (Table 1 and Figure S1).

We found frequent genetic alterations of the 9p24.1 region that contains PD-L1/PD-L2 in tumor cells of

PCNSL, determined by FISH analysis. The types of alteration include polysomy (n = 3), copy number

gain (n = 33), amplification (n = 3), and rearrangement (n = 2) of the 9p24.1 region in a total of 41 out of

88 samples (47%; Figure S2). However, genetic deregulation of PD-L1 and PD-L2 as analyzed by FISH

was not significantly associated with outcome in PCNSL patients (log rank p value of 0.74; Figure S2E).

Table 1. Cohort overview

Reference cohort Study cohort p value

# samples 199 88 (44%)

Age 59.7 (26–70) 50.6 (26–70)

Gender

Male 90 (45%) 51 (57%)

Female 109 (55%) 37 (43%) p = 0.71

Treatment arm

MBVP 100 (50%) 47 (53%)

R-MBVP 99 (50%) 41 (47%) p = 0.72

WHO performance status

WHO-0 43 (22%) 16 (18%)

WHO-1 101 (51%) 44 (50%) p = 0.31

WHO-2 34 (17%) 12 (14%)

WHO-3 21 (11%) 16 (18%)

MSKCC prognostic score

1 28 (14%) 10 (11%)

2 122 (61%) 52 (59%) p = 0.62

3 49 (25%) 26 (30%)

Number of lesions 2.26 (1–9) 2.38 (1–9)

Clinical parameters of the entire HOVON 105 cohort (reference cohort; 199 samples) and the subset used in this study (study

cohort; 88 samples). Chi-square p-value is indicated for each clinical parameter.
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Immune-TME profiling by mIF of PCNSL cohort

Formalin-fixed, paraffin-embedded (FFPE) biopsy samples of 88 PCNSL patients were used for mIF analysis

using an optimized combination of primary antibody and fluorescent dyes as indicated in Table 2. From

each slide, on average 15 representative regions both within tumor areas (range 4–49, total tumor regions:

1,013) and at the interface between the infiltrating tumor border and the surrounding pre-existent cerebral

tissues (range 0–17, total border regions: 380; Figure 1A) were taken for multispectral imaging (MSI) anal-

ysis. For 21/88 patients, no obvious tumor border was present in the available biopsy material, and hence

only tumor regions were included. Detailed analysis to determine single cells was done using InForm soft-

ware (Figure 1). In brief, rawmIF images (Figure 1B) were segmented to identify single cells (Figure 1C), and

individual cells were phenotyped into the following 10 phenotypes (Figures 1D and 1E): Tumor cells (PAX5+

cells) with (1) and without (2) PD-L1 expression, T cells (CD3+ cells) and their subtypes classified by expres-

sion of CD8 and PD-1 (3–6), macrophages (CD163+ cells) with (7) and without (8) PD-L1 expression, and

other cell types with (9) and without (10) PD-L1 expression (Figure 1B). Cells that did not stain for any of

the markers in the panel were not included in the downstream analysis.

Extraction of multi-scale TME features from mIF data

In addition to the standard non-spatial metrics such as cell counts and densities, we extracted diverse types

of quantitative spatial features which collectively capture spatial characteristics of cells in PCNSL. See

feature extraction in STAR Methods for a detailed list of all spatial features. Among the spatial features,

the statistics that capture spatial associations between two cell types are illustrated in Figure 2A. We first

used standard local and global spatial features that summarize spatial characteristics focusing on adjacent

and all cells, includingmedian distance between two cell typesmeasured using only themost adjacent cells

(i.e., median of minimum distances; local spatial feature) or all possible pairs of cells (global spatial feature).

To further dissect spatial characteristics at multiple scales, we introduced radius-based features that

describe spatial patterns in the neighborhood within a specific radius around cells. These radius-based

spatial features are derived from marked Poisson point processes that enable us to calculate several sta-

tistics for (1) gaps between the cells, (2) clustering behavior of individual cell types, and (3) attraction or

repulsion between two cell types. An example is Ripley’s L function which measures the average amount

of one cell type within a specific radius from another cell type (Figure 2B). We calculated these features

based on small radii (5, 10, or 25 mm) and large radii (50, 75, or 100 mm) to cover both short- and long-

distance spatial interactions between cells. Representative examples of mIF images with no spatial asso-

ciation, attraction, and repulsion between macrophages and T cells as captured by Ripley’s L function

are presented in Figures 2C and 2D.

By extracting the aforementioned local, global, and radius-based spatial features together with the stan-

dard non-spatial features, we obtained a total of n = 4,494 TME features that comprehensively characterize

the TME of PCNSL patients. The high number of TME features is due to the inclusion of both coarse and

fine-grind classification of total of n = 13 cell types and all possible pairs among them which added up

to a total n = 58 cell type pairs (Figure 3A). Pairing a fine-grind rare cell type (e.g., PD-1+CD8+ T cells)

with an abundant coarse cell type (e.g., macrophage) makes it less prone tomissing observations than pair-

ing it with another rare cell type (e.g., PD-L1+ macrophage). To overcome persistent missing observations,

we imputed missing values by the median value per feature if the feature is observed in > 50% cases (> 44

samples), otherwise the observation was excluded (Figure S3). After filtering, we retained 2,980 TME fea-

tures for the downstream analysis. We managed to obtain more features for rare cell types, partly due to

more counterpart cell types available to be paired with (Figure 3B). The spatial features are more abundant

Table 2. mIF Panel description

Marker Clone (Company) Dilution Opal fluorophore

PD-1 EH33 (Cell signaling) 1:500 Opal520

CD8 C8/144B (Agilent) 1:1000 Opal620

CD3 CD3 (Agilent) 1:500 Opal690

PD-L1 22C3 (Agilent) 1:100 Opal650

PAX5 24/PAX-5 (BD Biosciences) 1:100 Opal570

CD163 10D6 (Novocastra) 1:500 Opal540
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than non-spatial features, particularly radius-based spatial features since they are obtained for all cell types

(n = 13), cell type pairs (n = 58 pairs), and all six radii (Figure 3C). Cumulatively, we comprehensively capture

each cell type in the TME of PCNSL patients and the interplay among these cell types at multiple scales.

Unsupervized analysis of TME features identified subgroups of patients with distinct survival

outcome

To evaluate the clinical utility of the obtained TME features, we first performed clustering analysis based on

cell counts only and explored the added value of spatial TME features. Unsupervized clustering analysis of

immune cell counts revealed two clusters mainly separated by the presence of tumor cells, macrophages

and T cells with PD-L1 (tumor, macrophages) and PD-1 (T cells) expression, which can further be subdivided

into five clusters by the abundance of macrophages and T cells (Figure 4A). The clusters revealed a trend for

survival difference (p-value of 0.064 for two clusters and 0.1 for five clusters); with a better survival in the

group with higher expression of PD-1 and PD-L1 (Figure 4B). However, a better prognostication could

be achieved by abundance of either macrophages (p = 0.0041) or T cells (p = 0.008) without accounting

for the expression of PD-L1 and PD-1 (Figure S4). The clustering analysis of border regions yielded similar

results with two clusters by PD-1 and PD-L1 status, but the five clusters from the border regions were not

correlated with the five clusters from the tumor regions (Figure S5). There was no apparent correlation of

these clusters with the outcome of the patients (Figure S5). Therefore, clustering analysis based on cell

count alone, regardless of border and tumor regions, did not benefit from assessing PD-1/PD-L1 status.

Next, we explored the impact of spatial information in addition to cell counts and detailed immunopheno-

typic information using non-negative matrix factorization (NMF) clustering using the entire feature set. A

Figure 1. Overview of multiplex immunofluorescence (mIF) analysis of primary CNS lymphoma

(A) For each FFPE slide, several tumor-enriched (red rectangle) and border blue rectangle) regions were selected.

(B–E) The pre-processing pipeline based on InForm takes raw mIF images (B), identifies cells by segmentation (C), and classifies cells into ten fine and coarse

types (D), which are denoted by color defined in table (e; left column: cell type; middle column: phenotype based on the expression of six immune cell

markers; right column: colors).
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consensus clustering analysis with a diverse number of clusters (defined by parameter K) could identify up

to four stable clusters. Less stable results were obtained as of K = 5 (Figures 4C and S6). We noted that with

K = 2, both clusters identified non-spatial features as the top contributing feature. However, the majority of

the clusters derived with a higher K were exclusively defined by spatial features, particularly radius-based

spatial features (e.g., clusters 3–4 with K = 4; Figures 4D and S7 for K = 2 and K = 3). Significant survival dif-

ferences between the clusters were observed with clustering outcomes, particularly with higher K (p =

0.069, p = 0.019, p = 0.00086 for K = 2, K = 3, and K = 4, respectively; Figure 4E), suggesting that combined

spatial and to a lesser extent non-spatial information most adequately describes the biological impact of

the TME. On the contrary, NMF clustering analysis of the border regions yielded a less stable clustering

outcome with a less apparent correlation with the survival outcome. This may attribute to the higher het-

erogeneity of border regions as compared to the tumor regions (Figure S8). All in all, spatial TME features

play a prominent role in identification of prognostic subgroups in PCNSL.

Supervised analysis revealed the most predictive TME features on patient outcome

To identify which spatial TME features had themost significant impact on survival, we used supervised anal-

ysis. To this end, a Random Forest (RF) classifier was applied using the TME features from the tumor regions

Figure 2. Illustration of spatial features for different types of interaction between two cell types, taking Ripley’s L function as an example

(A) Short and long distance spatial interactions between two cell types are illustrated, categorized by attraction and repulsion at small- and large radii

(denoted in columns and rows).

(B) The plots denote Ripley’s K function (y axis) for diverse radii (x axis) that capture short distance spatial associations (radius of 5, 10, 25 micro meters; left

bottom x axis) and long distance spatial interactions (radius of 50, 75, 100 micro meters; right bottom y axis) for each type of spatial associations in (A). The

dispersion of Ripley’s L function (red dotted arrows) from the theoretical values without any spatial associations (red dotted vertical line) is measured at each

radius.

(C and D) Three example of processed mIF images where distinct types of spatial associations between (C) macrophages (blue) and T cells (red) were

captured by (D) Ripley’s L function.
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to predict 12-month event free survival (EFS) as the clinically most meaningful dichotomizing survival cut

point that is used in clinical practice. Thereby, the RF classifier achieved an out-of-bag AUC of 0.72 in

models including all local, global and radius-based spatial TME features (Figure 5A). The performance

declined by training the same model with non-spatial features only (cell counts and densities; AUC of

0.62), further substantiating the findings on the importance of spatial features. Limiting inclusion of classes

of spatial features did not improve the model (local and global spatial features only, AUC of 0.66).

For the interpretation of the RF classifier, we next analyzed the group feature importance per feature cate-

gory classified by type of statistics (Figures 5B and 5C) and cell types (Figure 5D). Among the types of sta-

tistics, radius-based spatial features with a small radius up to 25 micro-meters were identified as the most

important, followed by local spatial features (Figure 5B). Among those features, median minimum distance

was the most important, followed by L statistics with radius of 10 micro-meters (Figure 5C). In general, most

of the small radius-based features were important, except for the F function that measures empty space

between cells. These findings indicate that close interactions between cell types are the most informative

to predict patient outcome. Overall, interactions between tumor cells and non-malignant TME cell types

were associated with a good outcome, except for the interaction between PD-L1+ tumors with (PD-L1+)

macrophages (Figure 5D). Furthermore, it was apparent that macrophage content was associated with

both good and poor outcomes, depending on its interaction partner. Patients had a poor outcome

when the macrophages in the TME interact with T cells, and a good outcome when (PD-L1-) macrophages

interact with tumor cells).

From the RF classifier, we identified the top features with the highest importance for a subset of cell type

pairs. First, top features for interactions between PD-L1+ tumors and PD-L1+ macrophage were mostly en-

riched with radius-based features with radius of 5 and are high in poor outcome patients (Figures 5D and

5E). In the NMF clustering results with K = 2 and K = 4, these features were also identified as the top features

Figure 3. An overview of the TME features generated in this study

(A) Pairs of cell types considered in this study. Given multiple levels of classification of T cells (left), macrophages (top right), and tumor cells (bottom right),

we considered all possible combinations of cell type pairs, denoted by green edge.

(B) The number of features per cell type in the bar plot, where colors indicate the major cell type classification. Note that the features are counted twice when

two cell types are involved at the same time.

(C) Distribution of the features by their statistics in bar plots, where different types of statistics are color-coded. Radius-based spatial features are further

broken down to local (r = 5, 10 and 25) and global (r = 50, 75, 100) features.
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in the clusters with poor survival (Cluster 2, Cluster 1, and Cluster 3 from NMF clustering with K = 2, K = 3,

and K = 4, respectively; Figure S9). The top image according to the G function with radius of 5 shows a tight

interaction between PD-L1+ tumors and PD-L1+ macrophages (Figure 6A). The top features for interaction

between T cells and tumors, specifically PD-L1- tumors andCD8� T cells, reflected close interactions (radius

of 5) and were high in good outcome patients (Figures 5D, 5F, and 6B). In particular, these features may

explain the survival difference of Cluster 3 and Cluster 4 from NMF clustering with K = 4, which are mostly

derived from the poor surviving group from NMF clustering with K = 2 (Figures 4E and S9). However, these

features individually were not predictive of patient outcome (Figure S10).

Of interest, we identified important roles of the spatial context of T cells and macrophages to predict pa-

tient outcome. First, spatial features reflecting close interactions between CD8+ T cells and macrophages

are high in poor outcome patients, among which median minimum distance being most important

Figure 4. Unsupervised analysis of spatial and non-spatial TME features extracted from the PCNSL mIF data

(A) Hierarchical clustering of PCNSL samples using the counts of six non-tumor cell types. The color bars at the top provide annotations for the samples,

including the normalized counts of PD-L1+ and PD-L1- tumors (first two rows), two and five clustering outcomes (third and fourth rows), and outcome

classification with a 12-month threshold (bottom row).

(B) Kaplan-Meier plots with log rank p-values comparing two (left) and five (right) clusters generated in (A). The numbers at risk are denoted below.

(C) Consensus clustering analysis of the entire TME features using NMF with an a priori choice for different number of clusters: K = 2 (left), K = 3 (middle), and

K = 4 (right). The color denotes the frequency of NMF clustering outcome that clusters each sample pair to the same cluster. Consensus clustering outcome

determined by hierarchical clustering is denoted by color bar at the top and dendrograms in rows and columns.

(D) Normalized frequency of top features (y axis) for each of the three clusters (three panels) derived from the NMF clustering. The number of top features is

normalized by the number of total features for each category and statistics. Bar colors denote the feature types.

(E) Kaplan-Meier plots comparing the survival of the subgroups derived from the NMF clustering. The number at risk and log rank p-value are shown.
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according to RF (Figures 5G and 6C). Furthermore, interaction between CD8+ and CD8� T cells as deter-

mined by the L function with a radius of 10 was associated with poor outcome (Figures 5H and 6D). These

features individually were not predictive of survival, unlike multivariate classification by RF (Figure S10).

Finally, the distribution of macrophages is an important predictor for patient survival (Figures 5H and

6E). A high interaction between macrophages determined by L statistics with radius of 25, suggesting clus-

tering of this cell type, was the most important according to RF and was significantly associated with a poor

outcome (p value of 0.00069 and FDR of 0.048; Figures 5H, 6E, and S10). In contrast, a similarly high abun-

dance of macrophages is not associated with a poor survival, when their interaction is low and thus presents

a diffuse distribution (example in Figure S11). Taken together, a multi-scale computational framework

combining frequency, architectural and spatial interaction parameters is optimal to determine the prog-

nostic impact of TME characteristics in PCNSL.

Figure 5. Prediction of outcome based on spatial and non-spatial TME features extracted from the PCNSL mIF data

(A) Performance in AUC (y axis) of RF models, respectively, trained by non-spatial, non-spatial combined with local/global spatial features, and entire

features (x axis).

(B and C) Importance of feature type (y axis) in the RF model trained with the entire features classified by the type of statistics in general (B) and detailed

(C) classification of feature types. The color of bars denotes the general feature type classification.

(D) Signed importance of features (color) categorized by cell types (pairs; x and y axis). Red and blue represent high and low in poor outcome patients,

respectively.

(E–I) Importance (y axis) of top five features in each of feature categories with the highest/lowest importance. The top feature categories by cell types (pairs)

include (1) PD-L1+ tumors vs. PD-L1+ macrophage (E); (2) PD-L1- tumors vs. CD8� T-cells (F); (3) CD8+ T-cells vs. macrophage (G); (4) CD8�and CD8+ T-cells

(H); and (4) macrophages (I). The blue and red dotted lines in bar plots denote the 95 percentile and 99 percentile importance, and the color of bars denotes

the sign of importance.
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DISCUSSION

We established a comprehensive computational framework based on marked Poisson point processes to

characterize cellular interactions in the TME by their spatial interactions at multiple scales, encompassing

general and detailed classification of cell types. Application of this framework to a well-documented cohort

of PCNSL resulted in a large number of features (2,980 features extracted from 13 cell types) that subse-

quently required robust techniques like NMF and RF, to analyze and interpret. We identified prognostic

Figure 6. Representative images of the most important features in RF models

(A–D) The top rawmIF images according to each of themost important features in RF (from Figures 5E–5I; left) and their processed images show all cell types

(middle) and cell types (pairs) used by the corresponding feature (right). The colored dots denote individual cells and their classification, defined by each

row. The cell-type classification was done differently per row according to the classification used in the corresponding feature.
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subgroups that were specifically dictated by spatial TME characteristics rather than mere cell abundance.

The high concordance between the top features from independent analysis by NMF and RF underpinned

the robust prognostic value of TME characteristics. Particularly, the most important features for predicting

patients’ outcomes were close spatial interactions within a radius of 25 mm (Figure 5B), but we identified

varied importance between different scales. For instance, G and K functions were the most important at

a radius of 5 and 25, whereas the L function was the most important at a radius of 10 (Figure 5C). This obser-

vation confirms the complementary roles of the features at diverse scales, which overall improved the per-

formance of the RF model (Figure 5A).

Previous studies on the TME of PCNSL have been mostly based on non-spatial techniques, such as tran-

scriptome analysis16 or counts of single- or multiple markers by immunohistochemistry of single or few

markers.17,18,21–23 These studies suggested that a high number of PD-L1 positive macrophages may be

associated with a better overall survival,16,21,22 while the presence of tumor-associated macrophages over-

all rather contribute to a worse survival.15 Furthermore, presence of perivascular and central tumor T cell

infiltrates may be predictive for a favorable outcome, although the implication of their interaction with

other cell types are largely unresolved.17,23 In the present study, we confirmed significantly worse survival

in patients with a high number of macrophages and found a trend for worse prognosis in patients with a low

number of T cells. However, we showed that spatial context matters more than the abundance of these cell

types. For instance, the abundance of macrophages overall was deemed a poor prognostic characteristic,

but this impact did not apply in a spatial context with close spatial interaction between macrophages and

T cells. In fact, our RF model showed that the top features to predict clinical outcome were close spatial

interaction of tumor cells and PD-L1+ macrophages for a good clinical outcome and close spatial interac-

tion of macrophages and T cells for a poor patient outcome. Importantly, we showed that close spatial in-

teractions between different cell types were most predictive for clinical outcome in this dataset, while

spatial interactions at large distances (e.g., global spatial feature and radius-based spatial features with

a large radius) between cells and non-spatial features (counts and densities) were less predictive and

thus not selected in the RF model. These results underscore the importance for taking spatial characteris-

tics into account when studying the TME, not readily feasible by standard histopathological evaluation.

Although our method was developed in a very specific type of malignant lymphoma, spatial omics has a

much broader interest and is currently a major focus of attention in the field of solid oncology. For instance,

in melanoma, the close proximity of specific interacting myeloid cell populations24 and specific CD8+ T cell

subset of tumor-infiltrating lymphocytes (TIL) were highly predictive of response to immune checkpoint in-

hibition.25 Furthermore, studies in gastric and colorectal carcinoma have shown that spatial architecture at

the tumor/stromal interface as well as specific cellular interactions at the interface is associated with met-

astatic behavior.26–28 And indeed, such parameters may be predictive of outcome.29,30 Further machine-

learning-based integration of spatial context with other clinical information has shown to be able to predict

prognosis, for instance, in colorectal cancer, breast cancer,31 and muscle-invasive bladder cancer.32 These

examples underpin the significance and broad applicability of developing dedicated algorithms for spatial

analysis of TME to support designing cutting-edge personalized therapeutic strategies.

The sequential steps of extracting a large number of TME features at multiple scales followed by collapsing

information by unsupervised/supervised analysis to reveal the key TME features with the highest biological

or clinical impact may provide a basis for focused functional studies. The computational framework pre-

sented can also be applied to more immune cell populations, such as CODEX and mass-tag based ap-

proaches that can profile more immune cell populations.33 These imaging-based technologies provide

an integral method to deepen our understanding on complex cellular interplays within the TME of malig-

nancies of various nature, including malignant lymphoma.

Limitations of the study

Our study has several technical limitations, including manual steps involved in image analysis, a limited

number of cell types analyzed, and the analysis of only small regions of the tissue section instead of the

entire tissue.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Yongsoo Kim (yo.kim@amsterdamumc.nl).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Processed multiplex images has been deposited at Zenodo and is publicly available as of the date of

publication. DOIs are listed in the key resources table.

d All orignal code has been deposted at Github and is publicly available as of the date of publication. The

link to the repository is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Patients sample collection

Formalin-fixed paraffin-embedded (FFPE) tumor samples and clinical data were obtained from PCNSL pa-

tients enrolled in the HOVON105/ALLG NHL 24 intergroup, multicenter, open-label, randomized phase 3

study (NTR2437 and ACTRN12610000908033)20 through the HOVON Pathology Facility and Biobank. The

pathology on all cases was reviewed according to HOVON guidelines (see Table 1). The HOVON105/ALLG

NHL 24 study was conducted in accordance with the Declaration of Helsinki andGoodClinical Practice, and

approved by all relevant institutional review boards. Written informed consent was obtained from all pa-

tients, including use of biopsy material for research purposes.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PD-1 Cell signaling RRID:AB_2728836

CD8 Agilent RRID:AB_2075537

CD3 Agilent RRID:AB_2631163

PD-L1 Agilent RRID: AB_2861298

PAX5 BD Biosciences RRID:AB_398182

CD163 Leica Biosystems RRID:AB_2756375

Deposited data

Processed mIF images Zenodo https://doi.org/10.5281/zenodo.7895745

Custom R scripts created for feature extraction Github https://github.com/tgac-vumc/spatstat_vectra

Software and algorithms

Inform Akoya biosciences 4.2.2

R CRAN v3.6.1

NMF (R package) CRAN v0.21.0

randomForestSRC (R package) CRAN v2.9.3

survminer (R package) CRAN v0.4.9

survival (R package) CRAN v3.4
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Fluorescence in situ hybridization for 9p24.1/PD-L1/PD-L2

Fluorescence in situ hybridization (FISH) for 9p24.1/PD-L1/PD-L2 alterations (copy number alterations,

translocations) in tumor cells was performed as previously described (Roemer et al. JCO 2016). Specifically,

DNA of bacterial artificial chromosome (BAC) clones (Source Bioscience, Nottingham, UK) was extracted

from Luria broth cultures with the Qiagen Maxi-prep kit (Hilden, Germany). The DNA was repeatedly

depleted using Kreatech’s proprietary Repeat-Free technology and labeled using Kreatech’s (Leica Bio-

systems) proprietary ULS� labeling. PlatinumBright�495 (green) probe targeting the 9p24.1 locus which

encompassed CD274/PD-L1, PlatinumBright�550 (red) probe also targeting 9p24.1 and encompassing

PDCD1LG2/PD-L2 and a blue probe labeled with PlatinumBright�415 that targeted the SE9 (D9Z4) centro-

meric region. Approximately 100 tumor cells were analyzed for each patient manually on a Leica Biosystems

DM5500B microscope, equipped with a DFC365FX camera.

Multiplex immunofluorescence (mIF)

Multiplex immunofluorescence was performed on 4-mm-thick formalin-fixed, paraffin-embedded whole tis-

sue sections using the Opal 7-color fluorescence immunohistochemistry (IHC) kit (Akoya biosciences, USA),

as previously described.34 Specifically, slides were deparaffinized and rehydrated, followed by a blocking

step for endogenous peroxidase using 0.3% H2O2/methanol and fixation with 10% neutral buffered

formalin (Leica Biosystems, Germany). Slides were washed in Milli-Q water and 0.05% Tween20 in 1x

Tris-Buffered Saline (TBS-T). Antigen retrieval was done by placing the slides in 0.05% ProClin300/Tris–

EDTA buffer pH 9.0 in a microwave at 100% power until boiling, followed by 15 min at 30% power. Slides

were cooled in Milli-Q water, washed in 1x TBS-T and blocked with Antibody Diluent (Agilent, USA). The

slides were then incubated with primary antibody diluted in Normal Antibody Diluent, followed by incuba-

tion with the broad spectrum HRP from the SuperPicture Polymer Detection Kit (Life Technologies, USA).

Next, the slides were incubated with Opal TSA fluorochromes diluted in an amplification buffer (Akoya bio-

sciences, USA). The primary and secondary antibody complex was stripped by microwave treatment with

0.05% ProClin300/Tris–EDTA buffer at pH 9.0. The combination of primary antibody and fluorescent dyes is

indicated in Table 2, in order of staining. Finally, DAPI working solution (Akoya biosciences, USA) was

applied and the slides were mounted with Prolong Diamond Anti-fade mounting medium (#P36965; Life

Technologies).

Image acquisition and quantification

Stained slides were scanned using the Vectra Polaris Automated Quantitative Pathology Imaging System

(Akoya biosciences, USA). From each slide, representative tumor regions and regions at the junction of

tumor and surrounding cerebral tissue were selected and multispectral imaging (MSI) images were ac-

quired at 40x resolution (Figure 1A). After image capture, the images were spectrally unmixed (Figure 1B)

and analyzed, using supervised machine learning algorithms within Inform 4.2.2. (Akoya biosciences). In

brief, the Tissue Finder software integrated within inForm utilizes automated segmentation to identify

and locate individual cells. This is followed by quantification of labels and stains (Figure 1C) and

eventually allows for phenotyping on a per-cell basis (Figure 1D). Cells were assigned into ten

different phenotype categories: ‘‘PAX5+PD-L1-’’, ‘‘PAX5+PD-L1+’’, ‘‘CD163+PD-L1-’’, ‘‘CD163+PD-

L1+’’, ‘‘CD3+CD8-PD-1-’’, ‘‘CD3+CD8+PD-1-’’, ‘‘CD3+CD8-PD-1+’’, ‘‘CD3+CD8+PD-1+’’, ‘‘other PD-

L1+’’ or ‘‘other’’, based on the size of the cells and positivity of markers in the panel (Figures 1D and

1E). In the training phase, cells representative for each category were manually selected after which

the InForm software predicts the phenotype for all remaining cells. The InForm software utilizes a multi-

onomial logistic regression classifier with softmax output35 for training purposes. To increase the accu-

racy, the phenotypes were verified manually, and adjustments were made to the training process by

feeding additional cells with given phenotypes into the training process. This algorithm was trained using

one image per sample and subsequently applied to all images within that same sample. Data tables for

each patient were exported for subsequent analyses.

Feature extraction

For each cell type (pair) several features were calculated which represent different aspects of the non-

spatial or spatial distribution of the cells. Marked Poisson point processes in two-dimensional space

were used for these calculations, where points represent the cells and marks the phenotypes.
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Non-spatial features

Non-spatial features count the number of cells of a specific cell type (Macrophage, PDL1- Macrophage,

PDL1+ Macrophage, Tcell, CD8- Tcell, CD8+ Tcell, CD3+CD8-PD1- Tcell, CD3+CD8-PD1+ Tcell, CD3+

CD8+PD1- Tcell, CD3+CD8+PD1+ Tcell, Tumor, PDL1- Tumor, PDL1+ Tumor), normalized either by the

total number of cells in the MSI or by the area of the MSI.

Normalized counts. For each cell type i, define the normalized count by

~Ni = Ni=total number of cells in MSI

where Ni is the number of cells of type i.

Density. For each cell type i, define the density by

li = Ni=area of MSI

Local spatial features

Local spatial features describe spatial patterns in the data in terms of distances between adjacent cells.

Median minimal distance. Let i; j be a pair of cell types (possibly i = j). For each cell of type i, calculate

the distance to the nearest cell of type j. If i = j then calculate the distance to the nearest other cell of type i,

so that the distance is always strictly larger than 0. Let dij1;.;dijNi
denote these distances, where Ni is the

number of cells of type i. For each pair of cell types i; j, define the median minimal distance by

MMDij = median dij1;.;dijNi

Median absolute deviation of minimal distances. For each pair of cell types i; j (possibly i = j), define

the median absolute deviation of minimal distances by

MADMDij = median absolute deviation dij1;.;dijNi

Spatial score. A previously described distance score, desfined as the distance between tumor cells and

the nearest T-cell divided by the distance between that T-cell and the nearest macrophage.4

Median spatial score. For each Tumor cell, calculate the spatial score, i.e. the distance to the nearest

Tcell divided by the distance from that Tcell to the Macrophage that is nearest to that Tcell. Let s1;.; sN
denote these spatial scores, where N is the number of Tumor cells. Define the median spatial score by

MSS = median s1;.; sN

Median absolute deviation of spatial scores. Define the median absolute deviation of spatial scores by

MADSS = median absolute deviation s1;.; sN

Radius based spatial features

Radius based spatial features describe spatial patterns in the data at a specific spatial scale, i.e. a specific

radius around cells. In each of the following subsections we define a function which is evaluated at 6

different radii (r = 5, 10, 25, 50, 75, 100 micro-meters) yielding 6 features per function per cell type

(pair). We refer to radii r = 5, 10, 25 as small radii, and to radii r = 50, 75, 100 as large radii. Four distinct

functions were evaluated at each of six radii, yielding 24 features per cell type (pair).

Empty space function (F function). The empty space function quantifies the amount of disk-shaped

empty space between cells of a certain type. Define a grid of evenly spaced points (not necessarily cells)

in the MSI. For a grid point x and a cell type i, let diðxÞ be the distance from x to the nearest cell of type

i. For each cell type i and radius r,

FiðrÞ = mean 1ðdiðxÞ % rÞ
where themean is over all grid points x. If the cells of type i are distributed as a homogeneous Poisson point

process with density li and we have a very fine grid of grid points x, then the theoretical expected value of

FiðrÞ equals
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Ftheo
i ðrÞ = 1 � exp

� � lipr
2
�

For each cell type i and radius r, define the empty space function by

~FiðrÞ =
FiðrÞ � Ftheo

i ðrÞ
s
�
Ftheo
i ðrÞ

�

where sðFtheo
i ðrÞÞ is the theoretical standard deviation as calculated in Baddeley et al.19

Nearest neighbor function (G function). The nearest neighbor function is closely related to the empty

space function. The difference is that the nearest neighbor function looks for disk-shaped empty space

centered at a cell of a certain type, while the empty space function looks for disk-shaped empty space in

general. For each pair of cell types i; j (possibly i = j) and a point x in the MSI, let djðxÞ be the distance

from x to the nearest cell of type j. For each pair of cell types i; j and radius r,

GijðrÞ = meani 1
�
djðxÞ % r

�

where the mean is over all cells x of type i. If i = j then djðxÞ is the distance from x to the nearest cell of type i

not equal to x, so that djðxÞ is always strictly larger than 0. If the cells of type i and the cells of type j are

distributed as two independent Poisson point processes with densities li and lj, respectively, then the

theoretical expected value of GijðrÞ equals

Gtheo
ij ðrÞ = 1 � exp

� � ljpr
2
�

For each pair of cell types i; j and radius r, define the nearest neighbor function by

~GijðrÞ =
GijðrÞ � Gtheo

ij ðrÞ
s
�
Gtheo

ij ðrÞ
�

where sðGtheo
ij ðrÞÞ is the theoretical standard deviation as calculated in Baddeley et al.19 In addition, we

calculate ~Gi�ðrÞ for each cell type i, radius r, and cell type j replaced by all cells of type unequal to i.

Ripley’s K function. Ripley’s K function measures the average amount of cells of type j in the neighbor-

hood of (i.e. less than a certain radius from) cells of type i. A normalization is applied to make the value in-

dependent of the density of the cells. High values of Ripley’s K function indicate attraction between cells,

while low values indicate repulsion. For a pair of cell types i; j (possibly i = j) and radius r,

KijðrÞ = l� 1
j meani NjðBðx; rÞÞ

where lj is the density of cells of type j, the mean is over all cells x of type i, and NjðBðx; rÞÞ is the number of

cells of type j that are at distance less than r from the cell x. If i = j then the cell x itself is excluded from the

calculation ofNjðBðx;rÞÞ. If the cells of type i and the cells of type j are distributed as two independent Pois-

son point processes with densities li and lj, respectively, then the theoretical expected value of KijðrÞ
equals

Ktheo
ij ðrÞ = pr2

For each pair of cell types i; j and radius r, define Ripley’s K function by

~KijðrÞ =
KijðrÞ � Ktheo

ij ðrÞ
s
�
Ktheo
ij ðrÞ

�

where sðKtheo
ij ðrÞÞ is the theoretical standard deviation. In addition, we calculate ~Ki�ðrÞ for each cell type i,

radius r, and cell type j replaced by all cells of type unequal to i.

Ripley’s L function. Ripley’s L function is a normalization of Ripley’s K function, in such a way that

the theoretical expected value is a linear function of the radius. For each pair of cell types i; j (possibly

i = j) and radius r,

LijðrÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KijðrÞ

�
p

q
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where KijðrÞ is the unnormalized version of Ripley’s K function as defined above. The theoretical expected

value is

Ltheoij ðrÞ = r

Define Ripley’s L function by

~LijðrÞ =
LijðrÞ � Ltheoij ðrÞ
s
�
Ltheoij ðrÞ

�

Also, ~Li�ðrÞ is calculated.

Global spatial features

Chi-squared statistic. The Chi-squared statistic measures how the cells are distributed over the MSI.

Low values indicate a homogeneous distribution, while high values indicate an inhomogeneous pattern.

Divide the MSI in 5 x 5 rectangles of equal size. For a cell type i and a rectangle R, let liðRÞ be the number

of cells of type i in rectangle R divided by the area of R. Define the Chi-squared statistics by

X2
i =

X
R

ðliðRÞ � liÞ2
li

where li is the density of cell type i, and the sum is over all rectangles R.

Median distance. Let i; j be a pair of cell types (possibly i = j). For each cell of type i, calculate the dis-

tance to each cell of type j. Let Dij be the Ni3Nj matrix of these distances. Define the median distance by

MDij = median Dij

where the median is calculated over all entries ofDij . If i = j then the diagonal ofDij (which contains zeros) is

excluded from the calculation.

Median absolute deviation of distances. Define the median absolute deviation of distances by

MADDij = median absolute deviation Dij

If i = j then the diagonal of Dij (which contains zeros) is excluded from the calculation.

Finally, average feature values per patient for tumor and border regions were obtained for the extracted

features while ignoring missing values when taking the average. Features with more than 50% cases of per-

sisting missing values were excluded, while the rest of the missing values were imputed by the median

value per feature. Median imputation is a simple and effective method that has little impact on downstream

clustering and classification analyses. The feature extraction script was written in R and is available on

GitHub (https://github.com/tgac-vumc/spatstat_vectra). Part of the script uses the package spatstat.19

Unsupervized analysis

Hierarchical clustering analysis was performed using the R packages pheatmap (v1.0.12) with Pearson cor-

relation distance measure and Ward linkage. Consensus NMF clustering was performed using the R pack-

age NMF (v0.21.0) using Brunet update rules, with 20 iterations to determine a consensus adherence of

samples per cluster and the number of clusters between 2 and 5. Top contributing features per cluster

are selected by those with relative basis contribution above 0.8 compared to the maximum contributing

feature (also implemented in the NMF R package).

Supervised analysis

Supervised analysis using random forest (RF) was performed in R (v3.6.1) using the package randomFor-

estSRC (v2.9.3). The number of trees was set to 100,000. Standard settings were used for the number of

variables randomly selected as candidates for splitting a node (square root of number of features), and

for the average number of unique data points in a terminal node (1). Predictive performance was measured

by the area under the receiver operating characteristic curve (AUC) based on out-of-bag predictions. The

importance of individual features and groups of features was determined by calculating (joint) permutation

variable importance.36
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QUANTIFICATION AND STATISTICAL ANALYSIS

Survival analysis was performed throughout the manuscript using the Kaplan-Meier curve, and log-rank

p-values were calculated using the survminer and survival R packages. Significance was defined as a p-value

below 0.05, which was denoted by an asterisk.

ADDITIONAL RESOURCES

Details of the clincal trial HOVON105/ALLG NHL 24 can be found: https://hovon.nl/nl/trials/ho105.
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