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Abstract
Understanding the 3D cerebral vascular network is one of the pressing issues impacting the diagnostics of various systemic 
disorders and is helpful in clinical therapeutic strategies. Unfortunately, the existing software in the radiological workstation 
does not meet the expectations of radiologists who require a computerized system for detailed, quantitative analysis of the 
human cerebrovascular system in 3D and a standardized geometric description of its components. In this study, we show a 
method that uses 3D image data from magnetic resonance imaging with contrast to create a geometrical reconstruction of the 
vessels and a parametric description of the reconstructed segments of the vessels. First, the method isolates the vascular system 
using controlled morphological growing and performs skeleton extraction and optimization. Then, around the optimized skel-
eton branches, it creates tubular objects optimized for quality and accuracy of matching with the originally isolated vascular 
data. Finally, it optimizes the joints on n-furcating vessel segments. As a result, the algorithm gives a complete description of 
shape, position in space, position relative to other segments, and other anatomical structures of each cerebrovascular system 
segment. Our method is highly customizable and in principle allows reconstructing vascular structures from any 2D or 3D 
data. The algorithm solves shortcomings of currently available methods including failures to reconstruct the vessel mesh in 
the proximity of junctions and is free of mesh collisions in high curvature vessels. It also introduces a number of optimiza-
tions in the vessel skeletonization leading to a more smooth and more accurate model of the vessel network. We have tested 
the method on 20 datasets from the public magnetic resonance angiography image database and show that the method allows 
for repeatable and robust segmentation of the vessel network and allows to compute vascular lateralization indices.

Keywords  Computer-aided detection and diagnosis · Magnetic resonance imaging (MRI) · Cerebral vessels segmentation

1  Introduction

Identification of vascular structures is one of the most criti-
cal clinical targets in brain imaging. In clinical practice, the 
role of vascular imaging has been growing exponentially 
over the last 3 decades. The reason for this is the epidemic of 
brain diseases that are either directly or indirectly influenc-
ing the cerebral vessels. Ischemic stroke directly affects the 
cerebral vessels by mechanically occluding the vessels in the 
brain and impairs the flow, resulting in tissue death as well 
as clinical symptoms associated with the affected region of 
the brain. In 2016, it contributed to 5.5 million deaths and 
116.4 million disability-adjusted life years (DALY) world-
wide [22]. Stroke is often associated with an indirect vascu-
lar injury caused by diabetes in which a continued high con-
centration of blood glucose impairs the function of the small 
vessels, leading to an increase in the mortality and morbidity 
of all patients affected by this common condition. The steady 
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growth of cerebrovascular risk factors and the number of 
patients suffering from chronic diseases injuring cerebral 
vessels require the development of reliable and available 
methods for quantitative assessment of the vascular struc-
tures to be ideally performed in a fully automatic manner. 
The rise of mechanical thrombectomy shows how the stroke 
outcome caused by rapid identification of large cerebral ves-
sel occlusion (LVO) can improve by using novel therapeutic 
approaches that depend on precise image-based diagnosis 
[6]. LVO is identified in small hospitals that often do not 
have the expertise and experience to treat such patients. 
Remote and computer-assisted diagnosis systems enable 
physicians to quickly and safely diagnose based on imaging 
features derived from computed tomography angiography 
(CTA) and magnetic resonance angiography (MRA). Both 
methods enable visualization of the cerebral vessels. How-
ever, the basic form does not provide quantitative measures 
of the cerebral vascular network. We aim at providing a tool 
that enables automatic vessel segmentation, detects vessel 
divisions, and includes lumen quantification of the cerebral 
vascular system.

Vascular segmentation and reconstruction methods fall 
into two categories—voxel-based methods and machine-
learning methods. A comprehensive review of such tech-
niques has been performed [24]. Voxel-based methods are 
the most common. Antiga et al. generated patient-specific 
vessel meshes for computational fluid dynamics analysis by 
using a level set [1, 33]. Wang et al. proposed the integrated 
level set method for boundary detection using iteratively 
refining centerlines [43]. A different approach was presented 
by Shahzad et al. who segmented the lumen by combining 
graph cuts and kernel regression to detect stenosis accurately 
[37]. Reference [31] presented a method for the reconstruc-
tion of human cerebrovasculature based on 3D MR data. The 
technique used modeling of the vasculature based on tubular 
reconstruction using centerline detection, radius estimation, 
and bifurcation joints reconstruction. Several open-source 
libraries such as VMTK [33] and TubeTK [4] have been 
developed, and they provide API functions for implementing 
some vessel segmentations.

In VMTK, centerlines are determined as the paths 
defined on Voronoi diagram sheets. The goal is to minimize 
the integral of the radius of maximal inscribed spheres 
along the path. Such an approach leads to finding the short-
est paths in the radius metric. Detailed problem-depend-
ent customization vascular tree, i.e., detection/removal of 
short leaves and inner segments and or segments defined 
by custom geometrical properties. VMTK operates in two 
modes—global reconstructing complete vascular tree using 
gradient-based 3D level set segmentation or interactive 
mode searching for the optimal path between two points 
(single vascular segment). TubeTK library enables tube 
segmentation based on centerline extraction with emphasis 

on image filtering and edge enhancement utilizing features 
of the ITK library [27].

The above voxel-based methods are capable of handling 
bifurcation geometry and constructing seamless modes. 
None of the above-mentioned libraries give a straightfor-
ward possibility for customization of skeleton optimiza-
tion/simplification, definition, and parameterization of joint 
segments.

The machine learning approach for the segmentation 
methods can be computationally more efficient and learn 
from manually labeled ground truth models. Reference [25] 
used the probabilistic boosting tree (PBT) to detect vessel 
lumen boundary by training the PBT classifier from manu-
ally labeled ground truths presented in [3]. As stated by 
[46], the mesh should be watertight, of high quality, and 
should have no mesh intersection. Fulfilling these criteria 
in machine learning approaches is still a challenging task. 
Zhou et al. presented a solution for coronary artery segmen-
tation [46]. The methods for automatic segmentation and 
labeling are mainly used for specific vascular segments and 
are limited to a set of a few simple bifurcations. Authors [8] 
generate tubular trees based on region-growing segmenta-
tion and thinning for skeletonization. The main goal of this 
work is the automation of the labeling process. In [35], the 
authors segment an image using the cascade of filters in a 
multiresolution manner, calculating probabilities of voxel 
belonging to the center of a vessel of a given radius. The 
method operates globally calculating probabilities in dif-
ferent image resolutions. A designed classifier based on all 
multiscale decisions generates final classification if source 
voxel belongs to a vessel. The last part searches for prob-
ability maximum values and forms the directed graph rep-
resenting vascular tree defined by skeletal segments and 
radius values. This method, like many others, does not treat 
separately volumetric joints of connecting tubes—they may 
overlap. The authors only mention the problem. The main 
focus in this work is on automatic labeling of reconstructed 
objects. In [39], the authors define prior shapes base model 
and neural networks for automatic generation of vascular 
reconstruction. Despite the advantage of automation, the 
method strongly relies on the initial shape database and can-
not be interactively customized. Such an approach can be 
crucial for pathology cases.

In this study, we focus on solving the problems that we 
encountered in our studies when using the abovementioned 
approaches. In particular, for vessel segmentation immune 
to local intensity fluctuations, we use a voxel-based approach 
based on the assumptions made by Nowinski et al. [31] that 
is combined with a number of novel solutions for (1) custom-
ized skeleton tracing and optimization, (2) optimized genera-
tion of tubular segments of vessels, (3) removal of collisions 
and self-collisions in the mesh of generated vessels, and (4) 
reconstruction of vessel mesh in the vessel joints, where 
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the vessel divides into n smaller vessels (n-furcations). An 
additional benefit of the method is the full control of the 
process of vessel network growth with a parametric selec-
tion of vessel properties entering the growth model and, as a 
consequence, access to predecessors and successors of each 
vessel segment allowing the quantitative analysis of the ves-
sel network as a graph with or without loops. This allows 
us to extract a number of simple and complex geometric 
descriptors of vessels without potential ambiguities resulting 
from erroneously detected vessel boundaries. The potential 
descriptors include, but are not limited to, the central line 
of the vessel (the skeleton), the diameters of the vessels at 
each point of the skeleton, volume, tubular area, and more 
complex descriptors of the vessel shape based on skeletal 
lines, i.e., tortuosity index, deviation index, and directional 
cosines of connected vascular segments [17].

Our proposed tubular reconstruction framework delivers 
several unique capabilities. It allows constraining volumetric 
trees to reduce areas of interest and final model complexity 
significantly. Skeletal optimizations proposed in this work 
apart from classical smoothing allow for user-dependent 
model complexity simplification. The final stage of tubular 
reconstruction introduces a new n-furcation model. Other 
stages of the data processing pipeline implemented in our 
framework deliver minor customizations and improvements 
also mentioned in this paper.

We apply the method for the evaluation of the physiologi-
cal variance of brain arteries detected on time-of-flight mag-
netic resonance imaging on three Tesla scanner in healthy 
volunteers. We also propose a systematic approach for the 
treatment of the tube overlapping problem by detecting the 

uncertain volume and defining it as a joint object. Our main 
goal is to develop a semi-automatic and fully interactive 
method. We introduced a significant number of parameters 
to define a scenario based on data modality, resolution, 
image properties, and texture features. We can prepare and 
fix a set of parameters to apply it for a database representing 
the same measurement scenario.

2 � Methods

The proposed approach for the reconstruction of the cere-
brovascular system performs several optimization steps on 
candidates for the initial vessels segmented from the raw 
MRI data. The goal is to obtain quantitative information 
on vessel orientation and radius and to assure the continu-
ity and smoothness of the reconstructed network at n-fur-
cations of the vascular system. The initial segmentation 
of the vessels is obtained with the morphological growing 
by exploiting the intensity remapping for the increased 
robustness and the insensitivity to intensity relationship 
between the desired and the unwanted voxels. Thereaf-
ter, the result is skeletonized; the obtained skeleton is 
smoothed, and the junctions of the skeleton are optimized. 
In the subsequent step, the tubular mesh is applied around 
the skeleton to encompass the segmented voxels. The col-
lisions inside the tubes are removed with both intratubular 
collisions and collisions at the n-furcations of the tubes. In 
the last step, the mesh at the n-furcations is generated to 
link the tubes. The overview of the algorithm is summed 
up in Algorithm 1.

Algorithm 1. Enhanced tubular system reconstruction

1. ALGORITHM 2. Initial vessel segmentation using 
morphological growing with intensity remapping 
(ALGORITHMS 3 & 4)

2. ALGORITHM 5. Skeleton tracing  
3. ALGORITHM 6. Skeleton optimization.
4. ALGORITHM 7. Generation of tubular mesh 

structures.
5. ALGORITHM 8. Optimization of tubular structures 

for collisions.
6. ALGORITHM 9. Joint mesh generation.

2.1 � Morphological growing with intensity 
remapping

In the initial step of the algorithm, an initial segmenta-
tion volume seed V  is placed manually by the user. When 
dealing with pathological cases or discontinuities in 

segmentation, the method can operate on multiple seed 
points. Thereafter, in an iterative manner, the neighbor-
ing similar pixels are incorporated into the initial vol-
ume as shown in Algorithm 2. In our case, the similar-
ity is defined by calculating the following probability 
proposed by [19].
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Here, the volume V with R voxels is bounded by the segmenta-
tion model Φ . The probability will be maximal when the intensity 
of the tested i-th voxel is equal to the expected value of intensity 
distribution of the voxels in the volume V . In such an approach, 
one can easily place the same thresholds for segmenting images 

(1)P(I(i) ∣ Φ) =
1

V(R) ∭
R

1√
2��

e
−(I(i)−I(r))2

2�2 dr
with different intensity distributions because the same probabili-
ties will be obtained for the voxels with intensity standardized 
with a standard deviation � of the intensity distribution of the 
voxels V . If the probability for a voxel is below a chosen prob-
ability threshold, it is rejected; however, if it is otherwise, it is 
added to the growing volume V and stored for further analysis. 
The idea is similar to the concept of the shape-based growing 
model introduced by Masutani et al. [26]. This is implemented 
using the morphological growth (morphological dilation) manner.

Algorithm 2. Vessel dilation using morphological growing

In one k-th iteration, all the voxels ΔΦk adjacent to Φk−1 
are tested using (1). The adjacency is calculated using full 

cubic 26 voxels neighborhood kernels. In this approach, the 
pixels belonging k are known as “wave-front.”

Algorithm 3. Propagation of wave-front in the vessel branch

In the described process, the segmentation is growing from 
the initial estimate and propagates through the anatomical 
structures of the vascular tree, defined as the graph of con-
nected branches. In each iteration, the voxels that are above 
the threshold value in the probability given by (1) form a new 

“wave-front” that is analyzed in terms of connectivity. The aim 
of this step is to check whether the growing volume enters the 
new vessels (new branches in the vascular tree), the existing 
“branches” cease to exist because of a lack of newly assigned 
voxels, or they are merging with the already assigned voxels. 
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In principle, when the volume enters the vessels, some of the 
newly added voxels lose connection to the rest of the wave-
front, and the wavefront is divided into separated “islands.” 
Each “island” is the beginning of a new “branch,” given a new 
unique label, and is propagated until no new voxels are pos-
sible to add, or a given “island” touches voxels from a different 
“branch.” This algorithm is shown in Algorithm 3.

In every iteration of the growing algorithm, we fully con-
trol the properties of the growing branches. We have informa-
tion on the volume size and the spatial extent of the current 
addition to a given branch. This gives the method the possi-
bility to control the kind of growth that is allowed. By setting 
the boundary condition for specific geometric properties for 
newly added voxels, we can block the detection of vascular 
structures of a certain thickness, or we can block the leakage 
of region-growing segmentation through small holes.

This property is an essential feature of our segmentation 
method, making it more versatile. Figure 1 presents a 2D 
version of the implemented algorithm. Wave-fronts ΔΦk 
from all the iterations are presented with distinct colors in 
Fig. 1a. Figure 1b and c show the boundary condition effects 
applied to minimum diameters of new branches with 5mm 
and 7mm . Several vessels are not detected as the algorithm 

checks the diameter of every island and stops the propaga-
tion of the branch if the diameter of the island is below the 
threshold. For all labeled branches, we keep the information 
on its parent branches to be used later in the skeleton tracing 
process. There are many methods for dealing with segmen-
tation leakage through small holes. The simplest solutions 
would involve image Gaussian smoothing to soften image 
gradients or applying grayscale morphology to fill holes by 
surrounding edge values. Our work extends the holes detec-
tion task by controlling the wave propagation properties and 
their variability. Keeping the wave propagation historical fea-
tures like its spatial extent or simple volume can be treated 
for automatic detection of stenosis. Such elements form a 
data sequence that is a profile of vessel thickness variability.

The essential moment of processing the wave-front ΔΦ 
in each iteration is an analysis of the possible division or 
junction of the separated islands and their assignment to 
proper branches. This part of the algorithm is presented 
in Algorithm 4. with an example presented in Fig. 2a. Fig-
ure 2b–e presents the visualization of branch continuation 
in Fig. 2b; the branch division is in Fig. 2c, and the branch 
junctions are in Fig. 2d–e with arrows representing the 
direction of the wave-front propagation.

Algorithm 4. Analysis of islands’ connectivity

Our skeletonization procedure (described in detail later) 
requires that the segmented and labeled vascular structures 
are formed as a tree with no loops. In order to achieve this, 
we need to apply a procedure to remove the connection 
between the colliding wave-fronts.

There are two main cases we need to consider to detect 
and mark junction barriers:

•	 when two or more wavefronts merge and further propaga-
tion is possible, as shown in Fig. 2d,
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•	 when merged wavefronts have no further continuation, 
as demonstrated in Fig. 2e.

Figure 2e presents the most common case—all voxels 
detected and marked as junctions are marked as barri-
ers that will block the skeleton tracing. The first case 
can be more complex. In general, when m wave-fronts 
coincide and they have to be merged into a new branch, 

the group with the largest number of voxels (the thickest 
one) is propagated, and the rest ( m − 1 groups of voxels 
of a current growth) is labeled as barriers. Such a solu-
tion transforms the graph into a tree with no loops. It 
has to be emphasized, however, that the information 
on the colliding branches is preserved, and the vascu-
lar loops can be accessed during the vascular network 
analysis.

Fig. 1   Results of the growing 
algorithm. a Advancing wave-
front values marked inside the 
obtained final segmentation. 
b–c Final segmentations with 
colored branches and boundary 
conditions on minimal artery 
diameters (b) 5mm , (c) 7mm

Fig. 2   a Illustration of the labeling procedure. b If one new island 
connects to one island from a previous iteration, the label propa-
gated as two islands are part of the same branch (vessel). c If several 
new islands emerge from one island from a previous iteration, new 

branches are created (one vessel divides into more new vessels). d If 
one island links to several islands from previous iterations, one new 
branch is created (a number of vessels merge into one). e If branches 
collide and no propagation is possible, the algorithm stops

Fig. 3   Initial skeleton for data 
from Fig. 3 traced from wave-
front endpoints (red spheres) 
and branch merging points 
(green spheres)
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As the final result of this step, we obtain a labeled geo-
metrical voxel tree in 3D as shown in Fig. 3a, and the “merge 
barriers” and “endpoints” in Fig. 3b are the input points for the 
subsequent skeletonization procedure. Additionally, each voxel 
has two more values assigned: Euclidean distance [13] from 
the boundaries and the propagation distance from the seed vox-
els. The Euclidean distance maps were generated using the 
algorithm described by [23].

2.2 � Skeletonization

Skeletonization can be defined as a process of reducing binary 
volumetric objects into a curve skeleton with the preservation 
of its form and topology. It allows a synthetic representation 
of three-dimensional objects that can be used for simplified 
shape descriptions based on the extracted centerline and the 
geometric property analysis. Using skeletonization for vascu-
lar, reconstruction is an essential process that needs to be auto-
mated. Skelton extraction, when combined with local radius 
information, allows a synthetic description of vascular details 
and the detection of possible pathologies. The object centerline 
extraction methods can be divided into two main groups:

•	 approaches that are based on thinning volumetric objects 
using an iterative process of removing external voxels.

•	 methods that search for the optimal path between selected points.

A wide group of thinning algorithms consists of sequential 
detection and voxel removal one by one [2, 30]. This approach 
has a major disadvantage; they rely on an arbitrary choice of 

voxel removal, and in some cases, it can stop without obtaining 
the final result. The other strategy proposed in the literature 
uses distance transform for consequent erosions [2, 9]. Ref-
erence [21] used fuzzy distance transform for increasing the 
efficiency of an algorithm. The second group that searches for 
the optimal path between points has been widely described 
in the literature [5, 16, 40]. The optimality criterion can be 
derived from the image factors (intensities, gradient, and dis-
tance from the boundaries). Such methods are often robust in 
noisy images; nevertheless, they require an initial selection of 
source and endpoints. Our study has chosen to implement the 
skeletonization method using the optimal path searching with 
manual selection of the starting points, using the maximized 
Euclidean distance from the segmentation boundaries as the 
cost function in the optimization procedure. We are following 
the propagating wave-front back-tracing paradigm proposed by 
[11] for 2D images and [10] for the 3D extension.

Our skeletonization procedure described in Algorithm 5 
assumes that our processed object of the connected vas-
cular structures is a tree without loops. It performs back-
tracing from the red sphere-marked endpoints, followed by 
tracing from the wave-front-break points marked as green 
spheres. The following quantities are used in tracing the 
process for the analyzed voxel v : ED(v)—Euclidean dis-
tance from the segmentation boundary; ADV(v)—propa-
gation distance from the seed points; L(v)—branch label; 
LPk(v)— k-th parent label of a current branch. More than 
one of the quantities is possible when a branch is created 
from the junction. An example result of the skeleton trac-
ing process is presented in Fig. 4.

Algorithm 5. Skeletonization

The Euclidean distance maps often have many “flat” 
regions with identical distance values that may lead to 
the generation of concurrent parallel skeletons inside 
the thick vascular structures. Therefore, it is essential to 
connect the current back-tracing to the existing skeleton 

where possible. To do so, when we detect the existing 
skeleton in the close neighborhood of v , we check if it can 
be connected with a straight line to v v without crossing 
the segmentation boundary. Such a method can ensure 
the simplification of the resulting skeleton. The last part 
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of skeleton tracing is the classification of the skeletal 
points. Every point is analyzed in terms of the number of 
connections: 1—terminal point, 2—branch interior, 3 or 
more—junction. We separate every branch, store it as a 
tree structure, and pass it to the optimization routines. An 
example of a skeleton after this phase of skeletonization 
is shown in Fig. 4a.

2.3 � Skeleton optimization

In order to simplify the skeleton, the first phase of skel-
eton optimization involves the removal of short leaves of 
the defined tree. Short skeletal parts with user-defined 
tolerance with no connection to one of the endpoints are 
deleted (red circles in Fig. 4a). The goal of the second 
phase is to connect the short inner branches that usually 
occur near joint points where more than three vascular 
structures are connected, as marked with a green ellipse in 
Fig. 4a. The inner edge threshold value for minimal length 

can be selected manually or automatically selected as the 
diameter of the thinnest vascular structure detected in the 
reconstructed tree. In the procedure depicted in Fig. 4b, 
the short branches B0 …Bk are removed, and their end-
points are merged into a new central point as marked in 
the subset of Fig. 4b. This new junction point pCA is cal-
culated as the center of mass of the removed segments’ 
endpoints (points pCA and pCB ). In the final step, pCA is 
repositioned into a new position pNewC from the closest 
neighborhood of pCA , maximizing the distance to the seg-
mentation boundary. This last repositioning step can be 
treated as fine-tuning as we want to keep joint centers as 
close to the center of segmentation as possible. Such a 
solution significantly reduces the skeletal model’s com-
plexity and simplifies the final geometrical model. The 
last part involves optimizing the nodes’ location to obtain 
smooth curves, as seen in Fig. 4c. It is a standard solution 
to smoothen the skeleton, and it is mainly done by spline-
fitting into the point set defining skeletal segments [46].

Algorithm 6. Skeleton optimization

Our study uses a similar method for smoothing as 
presented in [42]. Algorithm 6 has extended the method 
for constraining the distance from the boundary surface 
values that should stay in the selected tolerance. First, 
we double the resolution of the skeleton using B-Splines 
interpolation. In order to improve its shape, we apply 
iterative Gaussian-weighed smoothing of all the skeletal 
segments separately; we do not reposition the junction 
points. We use simple convolution formula for the 1D 
smoothing.

where n is the odd size of the weighting kernel, and wj is the 
weight of the Gaussian kernel. We also do not allow reposi-
tioning of the skeletal points further than half of the voxel’s 
size in all the directions to prevent the optimal distance from 
bounding the segmentation.

smoothedPos(xi) =

n∑
j=1

�
wj ⋅ xi −

n−1
2

+ j
�

n∑
j=1

wj

,
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2.4 � Primary generation of tubular structures

Our vascular segment of the reconstruction method con-
sists of four phases. In the first phase, we reconstruct the 
tubular object for every segment. In the second phase, 
we detect the collisions between the segments and 
remove the intersecting parts of every segment. There-
after, we detect and remove the interior mesh collisions. 
The last part of the reconstruction procedure consists of 
a mesh generation at every n-furcation point. The fol-
lowing subsections contain a detailed description of the 
developed algorithms.

There are two main models of the tubular structure 
reconstruction described in the literature. The first one 
assumes that cross-sections of such objects perpendicular 
to the skeleton are circles, while the second one claims 
that the shape of the ellipse is more accurate [31]. In our 
study, we have selected the circular model because it 
is less complicated and easier for further optimization. 
First, we need to estimate the values of the radius along 
the skeletal segment. Reference [44] used a ray casting 
technique to trace the gradient maxima from a central 
point of the vessel in a 2D cross-section image. We use 
a similar approach to determine the radius and use ray 
casting, taking into account the 3D orientation of the 
skeletal line. For every point, we cast rays in Ndest direc-
tions in a plane orthogonal to the polyline, where Ndest is 
the desired density of the final triangle mesh. When we 
collect the r0 … rdest−1 values, we select a median value 
to filter the out-noise. When we collect an array of the 
median radii along the skeletal segment, we apply the 
Gaussian-weighed radius filtering to generate smoother 
tubular objects.

2.5 � Internal collision detection

Most commercial applications utilize tubular filters that pro-
duce triangular meshes connecting discs that are perpendicu-
lar to the skeletal line. They are mainly used for determining 
planes for generating 2D volumetric cross-sections used for 
the presentation of intensity values along the reconstructed 
tubular objects. One problem may occur when the curvature 
is significant for higher radius values. The discs perpendicu-
lar to the skeleton may start to collide, as shown in Fig. 5a. 
This produces self-collisions in the generated mesh. These 
self-collisions have to be detected and removed. Reference 
[45] proposed a method of merging the vertices to eliminate 
the crisscrossing of the radial lines. The second problem 
that arises is that when we generate the 2D planar recon-
structions while tracing the skeleton, we can produce false 
reconstructions that will present anatomical features as being 
misplaced—when one of the discs that are crossing one part 
of the colliding disc is in the wave-front and the second is 
at the back of the second disc. In order to remove such col-
lisions, we need to detect them accurately.

In our study, we use a two-pass algorithm that analyses the 
points on DISCk+1 lying on one side of DISCk , and in the sec-
ond—backward pass, we analyze every DISCk for collision 
with DISCk−1 . In every step, for a given DISCk+1 , we define 
the Cartesian equation of a plane a ⋅ x + b ⋅ y + c ⋅ z + d = 0 , 
where ⟨a, b, c⟩ is the vector normal to the plane. Thereafter, we 
check the analyzed neighbor disc if it is situated at the same side 
of the plane. When they are not, these points are marked for 
removal. We create a flag array dest × N where N is the num-
ber of skeletal points. In Fig. 5b, the white pixels are marked as 
the colliding ones. They are also visualized as yellow spheres 
on the mesh, as shown in Fig. 5c. After the detection of the 

Fig. 4   Skeleton optimization 
phases. a Starting skeleton 
estimation. The red ellipses 
show regions to be optimized. 
The green ellipse marks the 
region presented in b. b Joint 
points optimization—short 
branch removal and merging. 
Inset shows joint point after 
optimization
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colliding points, we apply dilation on the array to remove the 
points adjacent to the ones from the detected regions. Thereafter, 
the removed points are interpolated using Catmul-Rom splines 
[12] in the form of:

where t  signifies the portion of the distance between the 
two nearest control points, and P0 …PN are the mesh points 
along the skeleton ( Y  axis) for a given position at the X-axis.

2.6 � Tube intersections

Determining the geometrical identification of n-furcation is 
not only a task of centerline analysis. It is also necessary to 
characterize the n-furcation points with reference to reconstruct 
tubular mesh surfaces. Authors [33] proposed the identification 
of the bifurcation region of the intersecting tubes by defining 
the bifurcation plane, detecting the skeleton-surface intersection 
points as the centers of the maximal inscribed spheres associ-
ated with the centerline locations, and splitting the final mesh 
junction reconstruction between the tubular segments. In this 
method, the authors did not exclude any volume for the joint 
object; however, they divided the junction contribution between 
the colliding tubes. In our method, we use the detection of the 
collision using voxelized mesh collision with the exclusion of 
the intersection region, which is a new object referred to as the 
“joint point.” This volumetric part where the uncertainty of the 
membership occurs can be separated. The main reason for this 
uncertainty is that in the neighborhood of the joint point, there 
are usually many voxels of the same distance value—there can 
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be a “flat” region where many points meet the criterion of a 
joint point. The size and shape of the dilation 3D kernel can 
result in slightly repositioned joint points. Such repositioning 
may result in changes in the skeleton’s directions. Therefore, we 
have decided to remove the tubes’ collision visible in Fig. 6a by 
removing the uncertain volume from all of the touching tubes. 
We apply a tube clipping algorithm to remove overlapping seg-
ments, as shown in Fig. 6b.

2.7 � Joint reconstruction

The novel joint reconstruction algorithm Algorithm 7 con-
sists of several phases. First, we need to estimate the center 
pCentre of a sphere and its radius. The sphere must be vis-
ible from all ends of the tubes shortened in the previous 
step. The shape of the ends is in the form of ellipses with 
the vectors ��⃗nx  being normal to the surface of the ellipse 
facing the sphere as shown in Fig. 7. The final central point 
is localized at the optimally visible spatial position, and 
it is estimated using the optimization scheme, minimizing 
the maximum �ki angle.

where N are all possible skeletal points between the end-
points of the tubes within the joint and

The second part is the ellipse Ek projection onto a sphere to 
obtain a set of Epk ellipses. For every k-th ellipse, the center of 

pCentre = piMIN
, where iMIN = arg min

iÎ ⟨0,N - 1⟩
(max(�ki),

���⃗cki =
(
pCentrei , pck

)
, ����⃗nck =

���⃗cki
‖‖‖ ���⃗cki

‖‖‖
, 𝜃ki = cos−1(����⃗nck ⋅ ��⃗nk).

Fig. 5   Self-collision removal 
scheme. a Visualization of the 
colliding mesh. b 2D array with 
colliding points detected (in red 
and green circles). c 3D visu-
alization of the colliding points 
(yellow spheres). d Visualiza-
tion of the mesh with collisions 
removed

Fig. 6   Primary tube clipping 
using radius checks at the tube 
ends. a The initial state of the 
fully colliding meshes at the 
joint point. b Tube meshes after 
the first shortening by the radius 
estimated for the first skeletal 
point
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the projection is localized on the 
(
pCentrei , pck

)
 line at a distance 

r − Δr from pCentre to pk = pCentre − ����⃗nck ⋅ (r − Δr) , where r is 
the radius of the projected sphere.

The goal of repositioning the projection center from pCentre 
to pk is to generate the smallest and most well-separated projected 
ellipses (with maximized distance from other projected ellipses) 
to avoid collisions. The next step is to generate the Delaunay 
triangulation [14] of the projected ellipses. Such a triangula-
tion can be applied straightforwardly to generate the connection 
between projected ellipses, resulting in a convex hull, as shown 
in Fig. 8a. Thereafter, the new triangulation can be connected to 
the original tube’s ends, as can be observed in Fig. 8b by linking 

the corresponding vertices. The last step, as shown in Fig. 8c–d, 
involves mesh relaxation using constrained Laplacian smooth-
ing [15, 29]. The selection of r and Δr may be crucial for the 
smoothing process. In order to avoid large initial angles between 
the Delaunay triangulation and the mesh connecting it to the tube 
ends, we experimentally selected 0.7 as the maximum possible r 
value rmax (distance between pCentre and the closest point of all 
the tube ends ellipses) and an example set of the joint reconstruc-
tion with r = 0.7 ⋅ rmax . In our experiments, we are relying on the 
Laplacian mesh smoothing constrained smoothing implemented 
in the VTK [36] library. Therefore, it will not be discussed in 
this study.

Algorithm 7. Joints generation

Fig. 7   The idea of sphere 
projection. Three elliptical 
tube ends are projected onto 
a sphere. The center of each 
ellipse is connected to the 
center of the sphere. The center 
of each projection is placed on 
a resulting line and is moved 
towards the center of the sphere 
by Δr from the collision points 
of the line and the sphere. All 
the dest points of the tube ends’ 
ellipses are projected onto a 
sphere using this point

Fig. 8   Joint generation 
algorithm ( r = 0.7 ⋅ rmax ) 
for bifurcation (top row) and 
quadri-furcation (bottom row). 
a The optimal sphere position 
in the space between the tube 
ends with projected circles 
and Delaunay triangulation. b 
Connection of the Delaunay 
triangulation to the existing tube 
endpoints. c Result of mesh 
relaxation. d Final visualization 
of the reconstructed joint
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The resulting mesh has excellent properties for further 
mesh modifications and the generation of the volumetric 
meshes for simulations—no collisions, no elongated trian-
gles, and no triangles degenerated to a line.

3 � Results

A sample of 20 3D time-of-flight magnetic resonance angi-
ography images acquired on three Tesla scanner (Philips 
Intera Achieva, Nijmegen, Netherlands) at the London Ham-
mersmith hospital was used to evaluate the algorithm. The 
data is publicly available on the IXI dataset website (http://​
brain-​devel​opment.​org/​ixi-​datas​et/). The parameters of each 
sequence are as follows:

The voxel size of the analyzed datasets was equal to 
0.47mm × 0.47mm × 0.8mm.

For each dataset, the same procedure was performed. The 
operator manually indicated the starting point for the mor-
phological growing inside the basilar artery and obtained the 
labeled voxels of the initial vessel tree segmentation and the 
simplified skeleton. At this stage, the branches of the ves-
sel tree could be removed if, for example, only the selected 
parts were of interest. Thereafter, the optimized skeleton 
and the tubular model with the joints were created auto-
matically. Depending on the complexity of the vessel tree 
in a given dataset, the total calculation time is below 10 s 

TR = 16.7ms;TE = 5.7ms;phase encoding steps = 286,

ETL = 0;acquisitionmatrix = 288 x 286;

reconstruction diameter = 240.0;the flip angle = 16.0.

on a personal computer with Intel I7 4702QM (3.2 GHz, 4 
cores/8 threads), 16 GB of RAM, and NVidia GTX 765 M.

First, we checked the repeatability of the morphological 
growing and its robustness to the initial choice of seed. We 
launched the morphological growing procedure 50 times, 
starting with seed volumes randomly selected from the basi-
lar artery. In each case, the whole procedure consisted of a 
morphological growing, initial and optimized skeleton for-
mation, and finished with the tubular reconstruction of the 
vessel branches.

In Fig. 9a, one can see the skeleton centerlines from all 
the realizations of the procedure overlaid on the voxels of the 
data for a fragment of the vascular tree. It can be seen that 
the differences are almost invisible for the tubular parts of 
the reconstructed vessels. The higher differences appear only 
in the proximity of the joints and are later removed in the 
procedure of joint reconstruction. In order to quantify these 
higher differences, we calculated the Hausdorff distance [20] 
that shows the maximal distance between the points from 
two curves. The average distance between the curves plotted 
in Fig. 9a is equal to 0.73mm , with the maximal value reach-
ing 3.3mm . The maximum Hausdorff measure values cor-
respond with cases where the algorithm selected a random 
seed point inside a joint. As the joint object is not tubular, its 
centerline can vary—in the Euclidean distance map guiding 
the search for centerlines—and there are more flat regions 
with identical maximum values. In other words, the joint 
represents a region of uncertainty, where neighboring voxels 
may belong to skeletal lines of different vessels. The solution 
is to select a seed point outside the joint area. In all cases, a 
single seed point was enough to reconstruct all the vessels 
in the vascular tree, but more than one seed may be required 
in case the parts of the tree are not connected.

The majority of the maximal differences are below the 
maximal size of the voxel. In Fig. 9b, we show that the 

Fig. 9   Robustness of the 
method to the choice of the 
initial seed in the morphologi-
cal growing in the sample case 
from the IXI database (606–
2601). a Fifty skeleton lines 
(purple, smoot lines inside) 
overlaid on the voxels from 
the morphological growing 
(perpendicular lines mark the 
edges of voxels). b Tubular seg-
ments are found for each of the 
skeleton lines. Each of the tubes 
is rendered with different colors, 
and only the most external is 
visible

http://brain-development.org/ixi-dataset/
http://brain-development.org/ixi-dataset/
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tubular segments of the vessels built with the 50 centerlines 
are practically identical, with the radius below the voxel’s 
size. This shows that the technique is almost insensitive to 
the human factor in initializing the segmentation procedure.

After that, we checked the accuracy of the tubular approx-
imation of the morphological segmentation. We defined the 
error of this approximation as the distance of the recon-
structed tubular objects from the initial voxel segmentation. 
This value was calculated for every point of the optimized 
skeleton for each voxel along the radius of the vessel. The 
distributions of this error for all of the analyzed datasets can 
be found in Fig. 10a. An average error for all the cases was 
equal to 0.22mm with a standard deviation equal to 0.20mm.

For the majority of the tubular radii (91.4%) , the error 
is lower than the voxel size. Only 0.67% of the errors were 
larger than 1mm , and 0.011% were larger than 2mm . In the 
latter case, the number of points is negligible, and it is only 
visible in the logarithmic scale in the inset of Fig. 10a. We 
have also observed that the error tends to increase with the 
vessel’s radius and reaches maxima for ICA arteries, as 
shown in Fig. 10b. In such cases, the elliptical model of 
the vessel cross-section will be more accurate; however, as 
the number of such erroneous voxels is almost negligible, 
it is clear that the assumption of a circular cross-section of 
the tubular segment is sufficient. Additionally, the most sig-
nificant values above 2mm follow morphological growing 

properties in regions with large curvature and significant 
radius values. In the latest implementation, we detect these 
cases and reposition centerlines towards maximum values in 
the Euclidean distance map.

Access to the complete information (such as volume, 
cross-section area, and skeletal line parameters like length, 
directional cosines, tortuosity, and other shape descriptors) 
on every vessel segment enables the quantitative analysis 
of the vascular structures. An example of simple analysis is 
shown in Fig. 11a, where the histogram of vessel radii in the 
whole dataset is presented. The same data is presented in 
Fig. 11b, where the tubular model with the color-coded ves-
sel diameter is plotted. Subsequently, a more sophisticated 
analysis is performed for all the 20 datasets to compare the 
vasculature of the left and right cerebral hemispheres. A 
previous study [32] aimed at measuring the lateralization 
indices of the cerebral flow measurement in humans to 
evaluate whether the flow acceleration resulted from the 
vessel stenosis or reduced the distal resistance. The radius 
asymmetry can impact the flow measurement, and together, 
they can provide a better understanding of the flow velocity 
attenuation in the cerebral vessels. To compare the asym-
metry for the left and right M1 segments, we computed 
the average radius of the left M1 segment ( Rl ), the average 
radius of the right M1 segment ( Rr ), the average cross area 
of the left M1 segment ( Al ), and the average cross area of 

Fig. 10   Tubular model recon-
struction error. a Histogram of 
the error in the linear and loga-
rithmic scales for all the vessel 
segments in the selected dataset 
(603–2701). b Mean error as a 
function of the vessel radius
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the right M1 segment ( Ar ). Thereafter, we derived the four 
parameters that we use to quantify the symmetry of the 
vascular system:

The results summarized in Table 1 show that the vari-
ability of the vessel radius lateralization indices in the sam-
pled individuals is measurable and is characterized by a 
substantial interquartile range. The radius asymmetry can 
impact the flow measurement, and together, they can provide 
a better understanding of the flow velocity attenuation in the 
cerebral vessels. The structural basis of the flow laterali-
zation is especially critical for understanding the dynamic 
flow phenomena during cognitive tasks [41] and the devel-
opment of intracranial atherosclerosis preceding the large 
vessel ischemic stroke.

The main reason for quantification is the need to describe 
the cerebral vasculature asymmetry using numbers and aim 
to compute the asymmetry at a single time-point and follow 
this parameter’s evolution over time. To identify abnormal 
asymmetry, one must understand the normal variability of 
the cerebrovascular tree in healthy individuals [7]. Such 
variability in vascular asymmetry results from events in 
the early course of brain development and defines the range 
where asymmetry is considered within the normal range. 
Measurement of the cerebral arteries’ lateralization indices 
will also indicate the potential locations for the flow abnor-
malities, resulting in subsequent vessel pathology.

Once the asymmetry goes beyond the defined range, one 
can consider the potential pathological reasons for such 

F1 =
Al

Ar

F2 =
Al−Ar

Al+Ar

F3 =
Rl

Rr

F4 =
Rl−Rr

Rl+Rr

deviation. The branching pattern of the cerebral arterial 
vessels is a complex field that still poses many unanswered 
questions [18]. We see the following reasons for quantify-
ing the directional asymmetry: clinical and anatomical sci-
ences find structural lateralization of the cerebral structure 
and function important [28], potential clinical scenarios that 
might benefit from the fast and automatic computation of 
those indices rely on qualitative and quantitative evaluation 
of collateral flow in cerebral vessels. We can provide both 
the directed and absolute lateralization indices. The impact 
of automatic vs. manual measurement favors the automatic 
methods for vessel diameter estimation.

The vessel length and radius asymmetry apply to both 
ischemic stroke evaluation and arterial vasospasm in the 
course of the subarachnoid hemorrhage. In both scenarios, 
the evaluation of flow volume asymmetry influences the 
diagnostic and therapeutic steps. Therefore, computing 
the reference range for healthy individuals provides help 
in the identification of pathological cases. Information on 
the length and asymmetry of the middle cerebral artery is 
important and useful in evaluating patients diagnosed with 
large vessel occlusion and considered for treatment using 
mechanical thrombectomy, a method recently introduced for 
the treatment of severe ischemic stroke.

4 � Discussion

Understanding vascular health in the course of life, develop-
ment, aging, and disease requires developing new methods 
of vessel quantification. The aim of this study was to present 
a vessel segmentation tool for medical professionals that 

Fig. 11   a Histogram of the 
vessel diameters in linear and 
logarithmic scales for all the 
vessel segments in one selected 
dataset (631–2651). b The tubu-
lar model with the color-coded 
vessel diameter. Visualization 1 
shows the process of morpho-
logical growing as well as the 
consecutive steps of the algo-
rithm overlaid on the cerebral 
structures
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would be easy to use and would provide quantitative data on 
the vascular tree. The proposed approach to the segmenta-
tion of vessels was evaluated using publicly available IXI 
time-of-flight magnetic resonance angiography datasets. The 
sequence parameters and hardware settings are representa-
tive of the widely used methods applied for clinical evalua-
tion of brain vasculature using pulse sequence that has been 
available for the last 3 decades.

The unique capabilities of our reconstruction method pre-
sented in this study are that it is robust, highly flexible, and 
resistant to the segmentation errors that arise from human 
mistakes or lack of experience. In our implementation, we 
also provided several parameters readily accessible for modi-
fication for a user when reconstructing complex vascular 
geometries from clinical images. Customized constrained 
vascular volumetric tree generation, skeletal optimizations, 
and reconstruction of the vascular geometry at n-furcating 
vessel junctions are the key components described in this 
work. Therefore, the method is easily to be adapted to many 
imaging technologies that provide 3D medical data because 

of the many parameters that can be tuned for optimal results. 
In this study, we described the application of the method to 
MRI data; nevertheless, we have started to perform initial 
tests using CT or OCT data.

The initial segmentation of the vessels starts from the 
seed points that are selected manually and propagated auto-
matically based on the signal and the spatial properties of 
the data. In the first phase of the analysis, we obtain the vol-
ume of the vascular trees based on the initial selection and 
signal to noise the properties of vessels. As we have shown, 
the algorithm is very resistant to the initial selection of the 
seed; however, during the stage of the procedure, a user can 
select the shape and size of the voxel adjacency kernel. This 
is useful in dealing with different data resolutions and allows 
the rejection of vessels below a certain diameter.

In the second phase, the quantification of the centerlines and 
the branch terminal points enable more precise identification of 
the global structure of the brain arteries and the quantification 
of the properties like cross-sectional area along the individual 
points belonging to the centerline. Skeleton smoothing provides 

Table 1   Symmetry analysis of 
M1 segments for 20 cases from 
IXI set

P, percentile; Q, quartile; IQR, interquartile range

Data name (R
l
) [mm2] A

l
 [mm2] (R

l
) [mm2] A

r
 [mm2] F

1
F
2

F
3

F
4

603–2701 1.37 5.88 1.33 5.60 1.05 0.02 0.83  − 0.09
605–2598 1.17 4.31 1.29 5.25 0.82  − 0.10 1.46 0.19
606–2601 1.19 4.44 1.20 4.52 0.98  − 0.01 1.27 0.12
608–2599 1.43 6.39 1.40 6.18 1.03 0.02 0.76  − 0.13
609–2600 1.40 6.17 1.12 3.92 1.58 0.22 0.75  − 0.14
610–2649 1.17 4.33 1.01 3.23 1.34 0.15 0.41  − 0.41
611–2650 1.06 3.51 1.08 3.69 0.95  − 0.03 1.00  − 0.00
612–2688 0.98 3.03 1.07 3.59 0.84  − 0.09 1.30 0.13
613–2734 1.26 5.02 1.29 5.23 0.96  − 0.02 0.92  − 0.04
614–2735 1.30 5.31 1.28 5.14 1.03 0.02 1.54 0.21
631–2651 1.38 6.01 1.23 4.74 1.27 0.12 0.94  − 0.03
632–2652 1.30 5.30 1.24 4.84 1.10 0.05 0.63  − 0.23
633–2689 1.24 4.80 1.18 4.37 1.10 0.05 1.23 0.10
634–2690 1.19 4.46 1.21 4.59 0.97  − 0.01 1.49 0.20
635–2691 1.37 5.90 1.32 5.51 1.07 0.03 0.70  − 0.18
636–2733 1.20 4.55 1.11 3.85 1.18 0.08 0.76  − 0.14
637–2785 1.30 5.35 1.28 5.12 1.04 0.02 0.60  − 0.25
638–2786 1.35 5.76 1.28 5.13 1.12 0.06 0.92  − 0.04
643–2787 1.23 4.72 1.24 4.80 0.98  − 0.01 1.64 0.24
646–2653 1.29 5.22 1.29 5.26 0.99  − 0.00 0.92  − 0.04
P10 1.16 4.23 1.08 3.68 0.94  − 0.04 0.63  − 0.23
Q1/P25 1.19 4.46 1.17 4.26 0.98  − 0.01 0.76  − 0.14
Q2/P50 1.28 5.12 1.24 4.82 1.04 0.02 0.92  − 0.04
Q3/P75 1.36 5.79 1.29 5.24 1.11 0.05 1.28 0.12
P90 1.38 6.03 1.32 5.52 1.28 0.12 1.50 0.20
IQR 0.17 1.34 0.13 0.98 0.13 0.06 0.52 0.26
Bowey skew  − 0.03 0.00  − 0.20  − 0.15 0.10 0.04 0.38 0.24
Kelly skew  − 0.04 0.01  − 0.33  − 0.24 0.43 0.30 0.32 0.11
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the opportunity to trim the extracted vascular tree based on 
the spatial properties anticipated in cerebral arteries. The skel-
eton can be simplified in many ways by separately treating the 
short leaves of the skeleton tree, the internal loops (two dif-
ferent nodes having two common branches), and single node 
loops (both ends of a branch are connected to the same node). 
The skeletal branches representing the leaves (one free end of a 
branch) can be shortened when turning towards the boundary. 
Some endpoints generated in the first step of the algorithm can 
be manually selected to be ignored in the reconstruction pro-
cedures. For large curvatures and radius values, an algorithm 
in its original form can produce an inaccurate skeleton because 
of volumetric growth and the splitting process into new volu-
metric wave-fronts. However, as shown in the results section, 
the final centerlines in the vessel branches are almost indepen-
dently identical to the seed selection, and the smooth skeletons 
provide a convenient visual aid for the evaluation of the major 
vascular trunks. The only important differences appear close to 
the vessel joints; nevertheless, these areas are discarded during 
the later stages of the procedure.

The third step is the reconstruction of the tubular vessel 
models that are also insensitive to human interaction and lead 
to almost the same result independently of the initial seed 
selection. In the final step of the tubular reconstruction method, 
we can apply a correction procedure to improve the final shape 
of the tubular segments. For example, the overlap of the ves-
sel lumens enables the identification of the collision discs and 
identifies the location of the vessel junctions. Trimming of 
the skeletons based on the location of the collision discs pro-
vides a convenient way of locating regions where the vessel 
geometry is altered by a division in two or more vessels. The 
final tube and junction model divides the identified vessels into 
segments and multi-furcations. The segments are characterized 
by length, width, width variance, and tortuosity. The junctions 
are defined by the number of inflowing and outflowing vessels, 
their lumen ratio, and the spatial position.

In our method, we do not highly optimize the vessel 
joint’s shapes in terms of the distance from the segmenta-
tion. Their main role was to fulfill the volumetric mesh con-
tinuity criteria. Because of that reason in the error measure-
ment process, the joints were not taken into consideration. 
The most important was the resection of uncertain volume in 
the reconstructed tree. Further processing of junction objects 
would involve expanding to the segmentation boundaries 
and smoothing. However, it goes beyond the scope of this 
study, as we are only focusing on tubular structures.

The other problem with the optimized joints is that some 
reconstruction cases are faulty. The problem arises when 
the central point of the joint is not visible from all endpoints 
of the joined tubular segments. In such cases, we should 
apply a different reconstruction method that is currently 
developed. This problem can occur when we are setting the 
skeletal simplification to a high level—many short internal 

branches are deleted and joined into a single joint for a large 
number of tubular segments. It is a sporadic case and could 
occur only when a significant number of tubes would join. 
In most cases, selecting a proper threshold for the minimum 
length of the inner segment would remove the problem. In 
our solution, we can select this parameter manually or we 
can use the minimal diameter value of the reconstructed 
tubular tree. The proposed approach also enables the spatial 
analysis of the vessel lumen and the junction distribution 
that can be characterized by the field-theory approach to 
the cerebral vascular tree. The combined dataset of junction 
locations and their characteristics gives a convenient way 
to compare the laterality indices of the brain arteries using 
semi-automatic algorithms for mid-line symmetry detection.

The main advantage of our method presented in this work 
is that we can adjust to the specific data and case studies. 
Skeleton reconstruction parameterization gives the user pos-
sibility to choose what kind of segments he is interested in 
and what wants to remove from the reconstruction. The user 
can select the length, diameter, or angular properties of all 
analyzed model parts. Separate treatment of leaf branches 
and inner parts of a skeleton helps in tuning the method for 
specific datasets and different modalities. Another essential 
part of our approach is the tube clipping part removing the 
uncertainty regions from further reconstruction and analysis.

From the point of view of computational complexity, the 
most critical first-stage segmentation is performed incremen-
tally. The number of steps in this procedure is limited by the size 
of the N3 volume, where each voxel is visited at most once, and 
a fixed complexity procedure is made on it. The remaining parts 
of the procedure work on a tree, the number of nodes of which 
is limited by the size of the volume, and the rest of the calcula-
tions are linear due to the size of the tree (constant in each node).

We also plan to exploit the versatility of the method to use 
it with different, more complex vascular geometries, such as 
tumors or other organ systems [38]. We also plan to explore 
its application for other data modalities and resolution. Here, 
one example may be optical coherence tomography that also 
allows the reconstruction of vascular networks in the human 
eye [34]. In their studies, the current methodology relies on 
the ability to identify vessel lumen and probable directions 
beyond the n-furcation of the vessel. Further steps in the 
development of such algorithms will greatly benefit from a 
combination with vessel modeling presented in this study 
and allow simultaneous calculations of flow direction as 
well as shape and the diameter of the vessels, and a com-
bination with the analysis of the vessel lumen will allow 
the assessment of stenosis and vasospasm. This can lead to 
information on the elasticity of the vessel walls. This study 
contributes to the development of a generalized vascular 
model spanning across the meso- and micro-scales that can 
be used to help in the assessment of the condition of the 
vascular system in various systemic disorders.
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