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Abstract: Chemerin is a novel adipokine that plays a major role in adipogenesis and lipid metabolism.

It also induces inflammation and affects insulin signaling, steroidogenesis and thermogenesis. Con-

sequently, it likely contributes to a variety of metabolic and cardiovascular diseases, including

atherosclerosis, diabetes, hypertension and pre-eclampsia. This review describes its origin and recep-

tors, as well as its role in various diseases, and subsequently summarizes how nutrition affects its

levels. It concludes that vitamin A, fat, glucose and alcohol generally upregulate chemerin, while

omega-3, salt and vitamin D suppress it. Dietary measures rather than drugs acting as chemerin

receptor antagonists might become a novel tool to suppress chemerin effects, thereby potentially

improving the aforementioned diseases. However, more detailed studies are required to fully under-

stand chemerin regulation.

Keywords: chemerin; nutrients; cardiovascular disease; metabolic disease

1. Introduction

Over the last three decades, due to the obesity epidemic, attention has shifted to
achieving an improved energy balance. The underlying concept is that a healthy lifestyle
and well-controlled nutrition will avoid obesity, and consequently prevent the development
of metabolic syndrome and any resulting cardiovascular disease [1].

Chemerin is a multifunctional protein that has recently been identified as an essential
player in hypertension, myocardial infarction, preterm birth, diabetes, metabolic disease
and liver cirrhosis [2,3]. In the two decades since its initial discovery, more than a thou-
sand articles have been published on chemerin [4], but none reviewed its relationship
with nutrition.

This review aims to comprehensively cover the physiology and pathological roles
of chemerin from a nutritional point of view, an approach based on the literature search
shown in Supplemental Figure S1. The underlying assumption is that by lowering chemerin
levels through dietary interventions, novel therapeutic strategies may be identified for the
prevention and treatment of various cardiovascular diseases associated with obesity and
metabolic syndrome.

2. Chemerin and Its Receptor

2.1. Origin of Chemerin

Chemerin was first identified in 1997 [5]. It was found in psoriatic lesions, and its
expression increased after topical exposure to the retinoid tazarotene, hence its first name
Tazarotene-induced Gene 2 (TIG2) [5]. Given this observation, the initial focus was on
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retinoic acid receptors (RARs) and retinoid X receptors (RXRs), with only the former re-
sulting in TIG2 upregulation [5]. The gene then became known as retinoic acid receptor
responder 2 (RARRES2) [6]. RARRES2 was believed to be a soluble ligand for a surface
receptor involved in antiproliferative effects [7]. In 2003, the protein sequence of RARRES2
was unraveled, and it received the name chemerin, while simultaneously the G protein-
coupled orphan receptor ChemR23 was confirmed to be its receptor [8]. Interestingly, two
nuclear receptors heterodimerizing with RXR [9,10] and one nuclear regulatory factor [11]
were also found to affect chemerin production (Figure 1). Indeed, the farnesoid X recep-
tor (FXR) agonist GW4064 increased chemerin in HepG2 cells and primary hepatocytes,
with this effect disappearing after FXR knockout [12]. Moreover, the RARRES2 promoter
includes both a peroxisome proliferator-activated receptor γ (PPARγ)-binding sequence
and a sterol regulatory element-binding protein 2 (SREBP2) binding site [13,14].

 

Figure 1. Induction of chemerin synthesis with retinoic acid, the activation of its receptors, and the 
resulting second messenger cascade. Not only chemerin, but also FAM19A1 and resolvin E1 target 
these receptors. See text for further details. RARRES2, retinoic acid receptor responder 2; FXR, far-
nesoid X receptor; RAR, retinoic acid receptor; RXR, retinoid X receptor; PPARγ, peroxisome pro-
liferator-activated receptor γ; SREBP2, sterol regulatory element-binding protein 2; CMKLR1, 
Chemerin-like receptor 1; CCRL2, CC-motif chemokine receptor-like 2; GPR1, chemerin type 2 re-
ceptor; ERK1/2, extracellular signal-regulated kinase 1/2; NFκB, nuclear factor-κB; PI3K, phospho-
inositide 3-kinase; AKT, protein kinase B.

2.2. Chemerin Receptors
Chemerin-like receptor 1 (CMKLR1), also known as chemokine receptor-like 1, 

ChemR23, or chemerin1 [35], was first reported in 1996. This receptor is predominately 
expressed in dendritic cells, monocytes, macrophages, endothelial cells, the placenta, 
lungs, muscle, heart, adipose tissues, skin and spleen [2,35,36]. CMKLR1 is the most 
widely investigated chemerin receptor. Chemerin binding to CMKLR1 results in Gi acti-
vation, which decreases cyclic adenosine monophosphate (cAMP), thereby resulting in 
the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear fac-
tor kappa B (NFκB) activation [37,38] (Figure 1). Interestingly, the dietary supplement re-
solvin E1, a bioactive oxygenated product of eicosapentaenoic acid (EPA), exerted potent 
anti-inflammatory effects in a CMKLR1-dependent manner [39]. This suggests that resolv-
ing E1 competes with chemerin for CMKLR1 binding, thus preventing its inflammatory 
effects. 

G protein-coupled receptor 1 (GPR1), also known as chemerin receptor 2 
(chemerin2), was cloned in 1994 and identified as a chemerin receptor in 2008 [40,41]. It 
sequences homology with CMKLR1 is >40% [42]. Until today, as compared with CMKLR1, 
knowledge on GPR1 is limited. GPR1 occurs in the placenta, ovaries, testicles, skin, adi-
pose tissue, skeletal muscle and brain [43,44]. GPR1 binds chemerin with high affinity, but 
this results in relatively weak biological signaling in a Gi-dependent manner [40,45]. GPR1 
may have more agonists than chemerin, for e.g., FAM19A1, a member of the family with 
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Abundant chemerin levels occur in the liver, adipose tissue, and placenta [15,16]. Yet,
its mechanism of secretion is poorly understood, and changes in its gene expression do not
necessarily parallel changes in its secretion [17,18]. This implies that chemerin secretion is
subject to additional regulation [17,18]. Its synthesis starts with preprochemerin [8]. This
precursor has a conserved consensus amino-terminal signal sequence and is thought to
be sorted via conventional cellular secretory pathways [19]. Preprochemerin is secreted
as chemerin163S or prochemerin, following cleavage of its 20 amino acid signal peptides.
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Prochemerin can be detected in circulation blood [20,21]. Proteolytic removal of the C-
terminal helical segment by plasmin or angiotensin-converting enzyme type 2 results in the
generation of both chemerin157S and chemerin156F from prochemerin [19,22,23]. Hepatic
as well as whole-body knockdown of chemerin yielded an almost complete disappearance
of circulating chemerin. This suggests that the liver is the predominant source of chemerin
in blood [24]. Nevertheless, chemerin produced locally (e.g., in adipocytes and placenta)
plays an important role in lipid metabolism and vascular function [25–27]. Chemerin was
initially reported to induce chemoattraction and inflammation [8] in a calcium-dependent
manner [8,28,29]. Yet, following its identification in adipocytes, it became gradually known
as a novel adipokine affecting adipogenesis and lipid metabolism. This resulted in its
association with obesity, diabetes, and metabolic syndrome [30–32]. Simultaneously, it
was observed to affect vascular contraction, paving the way for its association with hy-
pertension [25,26]. Adipokines facilitate the interaction between adipose tissue and other
tissues [33]. The most extensively investigated adipokines are adiponectin and leptin. In
general, during the transition from lean to obese, leptin levels increase, while adiponectin
levels decrease [33], thereby decreasing the adiponectin/leptin ratio. Hence, increasing this
ratio now emerges as a therapeutic goal. To what degree the adiponectin/chemerin ratio
might be used to a similar extent is currently being debated [34].

2.2. Chemerin Receptors

Chemerin-like receptor 1 (CMKLR1), also known as chemokine receptor-like 1, ChemR23,
or chemerin1 [35], was first reported in 1996. This receptor is predominately expressed
in dendritic cells, monocytes, macrophages, endothelial cells, the placenta, lungs, muscle,
heart, adipose tissues, skin and spleen [2,35,36]. CMKLR1 is the most widely investigated
chemerin receptor. Chemerin binding to CMKLR1 results in Gi activation, which decreases
cyclic adenosine monophosphate (cAMP), thereby resulting in the phosphorylation of
extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NFκB)
activation [37,38] (Figure 1). Interestingly, the dietary supplement resolvin E1, a bioactive
oxygenated product of eicosapentaenoic acid (EPA), exerted potent anti-inflammatory
effects in a CMKLR1-dependent manner [39]. This suggests that resolving E1 competes
with chemerin for CMKLR1 binding, thus preventing its inflammatory effects.

G protein-coupled receptor 1 (GPR1), also known as chemerin receptor 2 (chemerin2),
was cloned in 1994 and identified as a chemerin receptor in 2008 [40,41]. It sequences
homology with CMKLR1 is >40% [42]. Until today, as compared with CMKLR1, knowledge
on GPR1 is limited. GPR1 occurs in the placenta, ovaries, testicles, skin, adipose tissue,
skeletal muscle and brain [43,44]. GPR1 binds chemerin with high affinity, but this results
in relatively weak biological signaling in a Gi-dependent manner [40,45]. GPR1 may have
more agonists than chemerin, for e.g., FAM19A1, a member of the family with sequence
similarity 19 that was recently reported as a novel ligand for GPR1 in the brain [40,46].

CC motif chemokine receptor-like 2 (CCRL2) is believed to function as a chaperone
protein, concentrating chemerin locally and thereby allowing optimal chemerin–CMKLR1
interaction [22,47]. It neither internalizes chemerin nor transduces signals [2,20]. CCRL2
is expressed in various tissues, including adipose tissue, breasts, the placenta, lungs,
macrophages, dendritic cells, neutrophils and microglia [20].

3. Nutrients and Chemerin

Nutrients and diet greatly affect chemerin production. Figure 2 summarizes the
current knowledge.
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is not surprising given the fact that retinoic acid acts via the RAR, which directly induces 
the transcription of RARRES2, i.e., chemerin [50]. Indeed, incubation of intestinal cells, 
bone marrow stromal cells, endothelial cells and brown adipose tissue with retinoic acid 
upregulated chemerin [51–53]. Moreover, both beta-carotene and all-trans retinoic acid 
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3.1. Vitamins

Vitamin A is derived from carotenoids and retinyl esters. This vitamin is essen-
tial, among others, for maintaining embryogenesis, vision, immune regulation and the
metabolism of glucose and lipids [48]. Retinoids and retinoic acids are the primary metabo-
lites of vitamin A, and some of their actions have been reported to involve chemerin [49].
This is not surprising given the fact that retinoic acid acts via the RAR, which directly
induces the transcription of RARRES2, i.e., chemerin [50]. Indeed, incubation of intestinal
cells, bone marrow stromal cells, endothelial cells and brown adipose tissue with retinoic
acid upregulated chemerin [51–53]. Moreover, both beta-carotene and all-trans retinoic
acid supplementation increased CMKLR1 expression in vivo as well as in vitro [54,55]. En-
dothelial CCRL2 expression also displayed retinoid acid-sensitive regulation in vitro [56].
No such findings have been reported for GPR1.

Vitamin D supplementation led to improvement in rats with either pre-eclampsia or
gestational diabetes mellitus, potentially because it lowered the elevated levels of chemerin
in these models (see Section 4.3) [57,58]. While the protective effect of vitamin D on pre-
eclampsia and gestational diabetes in humans is well established, to what degree this
depends on chemerin lowering has not been investigated [59]. Additionally, both vitamin
D-deficient obese children and type 2 diabetes mellitus patients display elevated chemerin
levels [60,61], and circulating vitamin D levels negatively correlate with chemerin levels in
breast cancer patients [62]. Yet, 1,25 dihydroxyvitamin D3, the active form of vitamin D,
did not alter chemerin expression in renal tubular epithelial cells or endothelial cells [56,63].
One possibility is that the effects of vitamin D on chemerin are mediated via lipid lowering
in vivo [64].
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Vitamin C did not affect chemerin in adipocytes [65], and vitamin K absence in
hepatocellular carcinoma patients did not alter chemerin [66]. Additionally, vitamin B3
increased chemerin mRNA levels in differentiated bovine preadipocytes [67], while vitamin
E supplementation upregulated hepatic CMKLR1 mRNA expression [68].

3.2. High-Fat Diet and Glucose

A high-fat diet, resulting in obesity and nonalcoholic fatty liver (NAFLD) in rats and
mice, generally upregulates chemerin in blood, adipose tissue and liver [69–71]. Similarly,
higher chemerin levels are observed at these same sites in obese and NAFLD patients in
comparison with healthy humans [72–74]. Interestingly, an intensive lifestyle intervention
consisting of dietary changes and resistance exercise programs over the course of several
months lowers chemerin in obese subjects [75,76]. The fat-induced chemerin upregula-
tion likely involves PPARγ, since the PPARγ agonist pioglitazone suppressed chemerin
while the antagonist GW9662 did the opposite [77]. Remarkably, both chemerin knockout
in vivo and chemerin knockdown in adipocytes decreased PPARγ expression, suggesting
that chemerin–PPARγ interaction may occur in two directions [13,14]. Furthermore, in
differentiated 3T3-L1 cells, SREBP2 knockdown prevented the oleic acid-induced rise in
chemerin [13], confirming that this transcription factor contributes to chemerin synthesis.

In mice, a high-fat diet upregulated CMKLR1 and CCRL2 in white adipose tissue and
liver [78–80], while in rats chemerin knockout suppressed adipogenesis [81,82]. A high-fat
diet also upregulated chemerin in pregnant mice, but decreased GPR1 [83]. Interestingly,
GPR1 knockout mice exposed to a high-fat diet developed glucose intolerance with no
change in body weight [84], while a lower body mass, body fat percentage and food intake
was observed in CMKLR1 KO mice [85]. In apparent contrast with this latter finding,
CMKLR1 and CCRL2 knockout mice exposed to a high-fat diet developed enhanced
obesity [84,86], leading the authors to suggest that the net effect of the chemerin/CMKLR1
pathway might depend on the experimental setting.

A large cohort study has revealed a linear association between elevated levels of
chemerin and the consumption of sugar-sweetened beverages [87]. Indeed, a high glucose
challenge increased chemerin, both in 3T3-L1 cells and in mice in vivo, and this involved
insulin [88]. Here, it is important to note that chemerin enhanced the insulin-stimulated
glucose uptake in 3T3-L1 cells [89]. A similar chemerin upregulation, combined with
increased CMKLR1 expression, was observed in human retinal pigment epithelium cells
exposed to high glucose [90]. Yet, chemerin-mediated antagonism of insulin-induced
signaling has also been observed, both in the vascular wall [91] and in human granulosa-
lutein cells [92], although in the latter cells insulin still upregulated chemerin. Thus, while
glucose upregulates chemerin in an insulin-dependent manner, chemerin may subsequently
fine-tune the effects of insulin. Among others, this may involve the upregulation of pro-
inflammatory cytokines via CMKLR1 [93], which will impair insulin signaling and promote
insulin resistance [93]. In support of this concept, patients with proliferative diabetic
retinopathy displayed higher serum chemerin and pro-inflammatory cytokine levels than
patients with non-proliferative diabetic retinopathy [90].

Finally, omega-3 polyunsaturated fatty acids inhibit the secretion of chemerin from
adipocytes [65,94]. This inhibition, which involved G-protein-coupled receptor 120, might
contribute to the anti-inflammatory effects of omega-3 polyunsaturated fatty acids [95].

3.3. Protein, Salt and Alcohol

A healthy diet with a high protein and low carbohydrate content lowers chemerin,
while the opposite occurs with a more pro-inflammatory (i.e., a low consumption of
polyunsaturated and monounsaturated fats as well as fiber and high consumption of
saturated fats) diet [96,97]. This was also true in patients with morbid obesity [98]. In
contrast, a high intake of red meat, which associates with elevated levels of inflammatory
markers, and a low intake of dairy, link to elevated chemerin levels [87].
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Exposing Dahl salt-sensitive rats to a high-salt diet reduced circulating chemerin and
increased its urinary secretion [99]. At the tissue level, high salt intake diminished chemerin
particularly in adipocytes [100].

Chronic alcohol consumption upregulated chemerin in a dose-dependent manner,
both in healthy humans (serum) [101,102] and in rats (serum and fat tissue) [101]. Chemerin
mRNA levels were elevated in fat tissue in mice fed ethanol [103]. In patients with chronic
pancreatitis, serum chemerin concentrations were higher in heavy drinkers compared with
non-alcoholic patients [104]. The potential connection between alcohol, salt and chemerin
levels may involve aldosterone. Notably, alcohol has been shown to increase aldosterone
levels [105], whereas salt has been observed to decrease it [106]. Additionally, aldosterone
has been found to elevate chemerin levels [107].

4. Potential Role of Chemerin in Metabolic and Cardiovascular Disease

4.1. Lipid Metabolism

Chemerin not only stimulates adipogenesis but also facilitates lipid accumulation
in a wide variety of cells [29,108–112]. In agreement with this concept, its levels and
receptors are upregulated in differentiating preadipocytes. Moreover, obesity, NAFLD
and nonalcoholic steatohepatitis (NASH) are all accompanied by elevated chemerin levels,
while attenuating these conditions lowers chemerin [72,77,113,114]. Table 1 summarizes
the genes that are currently believed to be involved in the effects of chemerin on lipid
metabolism. Here, it should be noted that a methionine–choline-deficient (MCD) diet (a
classical dietary model of NASH) has also been reported to decrease CMKLR1 [114,115]
and chemerin in the liver [12]. These opposing effects on chemerin might relate to sex, as
increased chemerin levels were observed in male animals exposed to a MCD diet [116],
while MCD-fed females displayed chemerin lowering [12]. Moreover, in hepatocytes or
matured adipocyte cells, the fatty acids EPA, docosahexaenoic acid, palmitate acid and oleic
acid all induced lipid accumulation, while only the latter increased chemerin expression,
with the former three decreasing this expression [12,94,114]. In an oral lipid tolerance test,
chemerin decreased when switching from fasting to lipid uptake, reaching its lowest level
after 4 h [117].

Table 1. Genes and proteins that are involved in the effect of chemerin on lipid metabolism.

Related Genes or Proteins Disease or Model Sample Type Species Reference

CMKLR1; IL6 NAFLD Liver Human [72]
hsCRP Obesity Serum Human [73]

CMKLR1; PPARγ T2D Liver, gastrocnemius Rat [77]
ERK5; p-ERK5 Obesity Osteoclast Mouse [78]

PI3K; AKT; p-AKT Obesity Kupffer cells Mouse [79]
insulin; CCRL2; AKT; p-AKT;

ERK; p-ERK
Obesity Visceral adipose tissue Mouse [80]

CMKLR1; ERK1; ERK2; PPARγ;
adiponectin; perilipin; FASN; HSL;

GLUT4; IR; TNFα; IL6; leptin; UCP1
Obesity; adipogenesis

Adipocytes (3T3-L1; brown
adipose tissue)

Mouse [81]

PPARγ; adiponectin; FAS;
perilipin; leptin

Adipogenesis Adipose tissue Mouse [82]

GPR1; GLUT3; AKT; p-AKT;
PPARγ; FABP4

GDM; obesity Placenta Human; Mouse [83]

Insulin; AKT; p-AKT Insulin challenge
Adipocytes (3T3-L1; primary

human adipocytes)
Human; Mouse [86]

Insulin; AKT; p-AKT T2D; obesity
Human vascular smooth muscle

cells, mouse aortas
Human; Mouse [89]

CMKLR1; insulin; IRS1; p-IRS1 T2D Liver, adipose tissue Mouse [90]
HSL; LPL; leptin; PPARγ;

CEBPα; FABP4
Adipogenesis Bovine intramuscular adipocytes Bovine [108]
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Table 1. Cont.

Related Genes or Proteins Disease or Model Sample Type Species Reference

Cyclophilin D; UCP1; UCP2;
PRDM16; PEPCK; DGAT-2; DIO-2

Obesity Brown adipose tissue Mouse [109]

CMKLR1; TNFα; IL-1β; NFkB; PI3K;
AKT; p-AKT

Pre-eclampsia Placenta Mouse [110]

GPR1; SREBP1c; FASN; ACC1;
DGAT-2; SCD-1; TNFα; IL6; SOCS3

NAFLD
Human hepatoma cell

line HepG2
Human [112]

Abbreviations. CMKLR1, chemerin-like receptor 1; IL6, interleukin 6; hsCRP, high-sensitivity C-reactive pro-
tein; PPARγ, peroxisome proliferator-activated receptor γ; ERK, extracellular signal-regulated kinase; p-ERK,
phosphate extracellular signal-regulated kinase; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; p-
AKT, phosphate protein kinase B; CCRL2, CC motif chemokine receptor-like 2; FASN, fatty acid synthase; HSL,
hormone-sensitive lipase; GLUT4, glucose transporter type 4; GLUT3, glucose transporter type 3; IR, insulin
receptor; TNFα, tumor necrosis factor alpha; UCP, uncoupling protein; GPR1, chemerin type 2 receptor; FABP4,
fatty acid-binding protein 4; IRS1, insulin receptor substrate-1; p-IRS1, phosphate insulin receptor substrate-1;
LPL, lipoprotein lipase; CEBPα, enhancer-binding protein alpha; PRDM16, positive regulatory domain zinc finger
region protein 16; PEPCK, phosphoenolpyruvate carboxykinases; DGAT-2, diacylglycerol O-acyltransferase 2;
DIO-2, type II iodothyronine deiodinase; NFκB, nuclear factor-κB; SREBP1c, sterol regulatory element-binding
protein 1; ACC1, acetyl-CoA carboxylase 1; SCD-1, stearoyl-CoA-desaturase 1; SOCS3, suppressor of Cytokine
Signaling-3; T2D, type 2 diabetes; GDM, gestational diabetes mellitus.

An obesogenic diet increases chemerin secretion from brown adipocytes, while cold
stimulation caused the opposite [118,119]. Chemerin might contribute to temperature
regulation, given that its overexpression decreased whole body and brown adipose tis-
sue temperature in mice [120]. Chemerin overexpression additionally impaired metabolic
homeostasis and induced glucose intolerance. These effects involved CMKLR1 and un-
coupling protein 1. In addition, the chemerin–CMKLR1 axis is a physiological negative
regulator of thermogenic beige fat, and targeting this pathway might be a novel strategy
for obesity [121].

Circulating chemerin correlates positively with low-density lipoprotein (LDL) and
negatively with high-density lipoprotein (HDL) [122,123]. Yet, the latter negative asso-
ciation particularly concerns large HDL, since a positive association was observed with
both small and intermediate HDL. This suggests that chemerin is involved in the HDL
maturing process [123,124]. LDL apheresis lowered circulating chemerin, implying that
chemerin is bound, at least partly, to lipoproteins [125]. Future studies should investigate
this possibility.

4.2. Cardiovascular Effects

Chemerin levels are elevated in multiple cardiovascular diseases (Table 2) [126–129].
Chemerin is not only an independent risk factor for arterial stiffness [130], but in chronic
kidney disease it also is a predictive marker of atherosclerosis [131,132]. This relates to the
above-described effects of chemerin on the atherogenic process, involving vascular remod-
eling, lipid deposition and inflammation [93,133–135]. Indeed, the expression of chemerin
and its receptor CMKLR1 in periaortic and pericoronary fat and foam cells determines
atherosclerosis severity [136,137] and correlates with carotid plaque instability [138].

Recent data suggest that chemerin also exerts effects in cardiomyocytes, vascular
smooth muscle cells, endothelial cells and fibroblasts, and might even originate from some
of these cells. Tumor necrosis factor-α upregulated chemerin in murine cardiomyocytes,
and in these cells chemerin induced apoptosis by activating caspase 9 and reducing pro-
tein kinase B (AKT) [139]. In rat cardiac fibroblasts, chemerin promoted cell migration by
increasing reactive oxygen species (ROS), AKT and ERK1/2 [140]. Aldosterone induced
chemerin synthesis in cardiac fibroblasts via Rho/ROCK/JNK signaling [141]. In endothe-
lial cells, chemerin promoted angiogenesis and ROS production and decreased insulin
signaling and nitric oxide production [2,91,142].

Vascular chemerin most likely originates from perivascular adipose tissue (PVAT),
while CMKLR1 occurs in endothelial and vascular smooth muscle cells [26,143]. Exoge-
nously added chemerin induced constriction via CMKLR1, Gi and calcium in isolated
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vessels (Figure 3), and this was enhanced after endothelial removal or during nitric ox-
ide inhibition [26,28]. Without exogenous chemerin, endogenous chemerin derived from
PVAT is also capable of inducing constriction, most likely by activating the sympathetic
nervous system [143]. Remarkably, although both whole-body and hepatic chemerin knock-
down abolished circulating chemerin [24], only whole-body knockdown also lowered
blood pressure. This implies that chemerin from a non-hepatic source, most likely PVAT,
contributes to blood pressure. To what degree the chemerin-induced upregulation of inflam-
matory cytokines in vascular smooth muscle cells [144] contributes to vessel contraction
remains unknown.

kidney disease it also is a predictive marker of atherosclerosis [131,132]. This relates to the 
above-described effects of chemerin on the atherogenic process, involving vascular re-
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4.3. Pregnancy-Related Problems

Chemerin is also a major player during pregnancy. Circulating chemerin levels nor-
mally fall in the first and second trimesters of pregnancy, and then increase during the third
trimester, reaching the highest levels at late gestation, to fall again to pre-pregnancy levels
shortly after delivery [145–147]. The placenta is a major contributor to this rise in circulating
chemerin [110]. Since cord blood chemerin levels exceed those in maternal blood [146],
maternal and fetal chemerin levels may act independently. Yet, maternal obesity is associ-
ated with higher cord blood chemerin levels [148,149]. How chemerin upregulation during
pregnancy is regulated and whether chemerin affects the fetus are unknown.
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The high levels of chemerin in late pregnancy are suggestive of the possibility that
they play a role in the preparation of delivery. This might require a delicate balance, given
that overexpression of chemerin increases the risk of miscarriage [110]. Simultaneously,
chemerin correlates positively with platelet count, which is relevant at the time of delivery
to prevent hemorrhage [150–152]. Overall, excessively high maternal chemerin levels are
indicative of a negative pregnancy outcome and a low birthweight, while cord blood
chemerin levels associate positively with fetal birthweight [110,153,154]. In agreement with
the former, intraperitoneal application of chemerin to pregnant mice with diabetes resulted
in cognitive disorder in the offspring [155]. In the fetus, chemerin is expressed at the
level of the intestine, where it peaks at 20–24 weeks of gestation to promote macrophage
recruitment for gut development [52]. Thereafter intestinal chemerin expression returns to
low levels.

Serum chemerin is increased in pre-eclampsia, correlating with the severity of the
disease and adverse neonatal outcomes [154,156]. In fact, its level in the first trimester
may help to predict the occurrence of pre-eclampsia [157]. Importantly, the pre-eclamptic
placenta releases more chemerin than a healthy placenta [110], supporting the concept
that circulating chemerin in pregnancy is placenta-derived, and that the elevated chemerin
levels in pre-eclamptic women originate in the placenta. Moreover, placental chemerin
overexpression in mice induced a pre-eclampsia-like syndrome (Figure 4), characterized by
high blood pressure, proteinuria, endothelial dysfunction and fetal growth restriction [110].
Placental chemerin overexpression simultaneously increased the circulating and placental
levels of cholesterol, raising the possibility that chemerin might also contribute to dyslipi-
demia in pre-eclampsia [158]. A rat model of pre-eclampsia similarly displayed higher
circulating chemerin levels [58]. In gestational diabetes mellitus (GDM), chemerin correlates
with obesity and glucose homeostasis [50]. Yet, chemerin levels in the blood, adipose tissue
and placenta are not necessarily elevated in GDM [159,160]—this may be limited to obese
GDM women [161,162]. In such women, high cord blood chemerin levels were predictive
for both maternal insulin resistance and large for gestational-age babies [148,149]. It is
important to stress that adverse perinatal outcomes are linked to maternal cardiometabolic
and neurocognitive outcomes [163,164]. This may represent the long-term consequences of
inflammatory dysfunction, potentially involving chemerin.

4.4. Sex Differences

Sex hormones likely contribute to the synthesis and effects of chemerin. In humans,
serum chemerin increases with age, and chemerin levels are higher in females than in
males [117,165]. However, in type 2 diabetes and obesity cohorts, serum chemerin in males
was higher than in females [166,167]. In the deoxycorticosterone acetate–salt rat model,
chemerin deletion decreased blood pressure in females while increasing blood pressure in
males [168]. Furthermore, chemerin levels in white adipose tissue were downregulated in
female rats and upregulated in male rats after gonadectomy [169]. The latter coincides with
observations in differentiated 3T3-L1 adipocytes, where testosterone decreased chemerin
release into the supernatant. Yet in these cells estradiol was without effect [117], and in
lean women with polycystic ovarian syndrome (PCOS), chemerin levels were upregulated
versus obese PCOS women [170]. Chemerin was observed to suppress follicular steroido-
genesis and may thus contribute to PCOS [170,171]. Additionally, chemerin levels were
low in subfertile males, most likely due to their elevated luteinizing hormone levels [172],
and this was suggested to reflect a link between chemerin and reproductive function.
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Table 2. Circulating chemerin in various metabolic and cardiovascular diseases.

Country Population
Number of

Included Patients (n)
Chemerin Levels

(ng/mL)
BMI

Age Reference
Control Diseased Control Diseased Control Diseased

USA Obesity 10 37 76.2 147 <25 >25 54 [21]
Hungary Obesity 50 50 405 590 <25 >25 43 [122]
Mauritius T2D 142 114 249 250 ≤25 >25 49 [31]

Saudi Arabia T2D 38 41 89 99 >25 >25 44 [58]
Germany T2D 29 29 191 219 >25 >25 56 [72]

USA T2D 969 173 180 191 >25 >25 45 [162]
China Atrial fibrillation 146 256 107.74 133.24 <25 <25 60 [126]

China
Coronary artery

disease
191 239 45.7 48.7 ≤25 ≤25 62 [127]

China
Coronary artery

disease
56 132 90 111 <25 <25 62 [128]

China
Coronary artery

disease
50 50 133 189 ≤25 ≤25 60 [134]

Korea
Obesity and

arterial stiffness
35 33 106 120 <25 >25 52 [129]
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Table 2. Cont.

Country Population
Number of

Included Patients (n)
Chemerin Levels

(ng/mL)
BMI

Age Reference
Control Diseased Control Diseased Control Diseased

Canada
Stable and

unstable carotid
atherosclerotic plaque

165 208 >25 70 [138]

Austria

Hypertension *

A total of 495

155 180

>25 65 [131]T2D * 170 192
MetS * 163 201

Netherlands Pre-eclampsia 29 30 149 287 ≤25 ≤25 32 [110]
Germany Pre-eclampsia 37 37 205 250 <25 <25 30 [145]

Turkey Pre-eclampsia 46 88 200 358 >25 >25 27 [154]
China Pre-eclampsia 477 41 181 312 <25 ≤25 26 [157]

Germany GDM 80 40 218 230 <25 <25 30 [160]

Abbreviations. T2D, type 2 diabetes; MetS, metabolic syndrome; ACE, angiotensin-converting enzyme; AT1,
angiotensin II type 1; GDM, gestational diabetes mellitus. * these three populations are from one cohort.

5. Conclusions

Chemerin is a novel player that might contribute to a wide variety of cardiovascular
diseases, amongst others, by stimulating adipogenesis, inflammation and contraction, and
by influencing thermogenesis, steroidogenesis and insulin signaling. Its concentrations vary
widely, partly in a sex-dependent manner, and vitamin A, fat, glucose and alcohol generally
upregulate it, while omega-3, salt and vitamin D suppress chemerin. Dietary measures
rather than drugs acting as chemerin receptor antagonists might become novel tools to
suppress chemerin effects, thereby potentially improving diseases such as atherosclerosis,
diabetes, hypertension and pre-eclampsia. However, more detailed studies are required to
fully understand chemerin regulation.
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