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Abstract 

Aims To support decision-making in children undergoing aortic valve replacement (AVR), by providing a comprehensive overview 
of published outcomes after paediatric AVR, and microsimulation-based age-specific estimates of outcome with different 
valve substitutes.  

Methods 
and results 

A systematic review of published literature reporting clinical outcome after paediatric AVR (mean age <18 years) published 
between 1/1/1990 and 11/08/2021 was conducted. Publications reporting outcome after paediatric Ross procedure, mech-
anical AVR (mAVR), homograft AVR (hAVR), and/or bioprosthetic AVR were considered for inclusion. Early risks (<30d), 
late event rates (>30d) and time-to-event data were pooled and entered into a microsimulation model. Sixty-eight studies, 
of which one prospective and 67 retrospective cohort studies, were included, encompassing a total of 5259 patients (37 435 
patient-years; median follow-up: 5.9 years; range 1–21 years). Pooled mean age for the Ross procedure, mAVR, and hAVR 
was 9.2 ± 5.6, 13.0 ± 3.4, and 8.4 ± 5.4 years, respectively. Pooled early mortality for the Ross procedure, mAVR, and hAVR 
was 3.7% (95% CI, 3.0%–4.7%), 7.0% (5.1%–9.6%), and 10.6% (6.6%–17.0%), respectively, and late mortality rate was 
0.5%/year (0.4%–0.7%/year), 1.0%/year (0.6%–1.5%/year), and 1.4%/year (0.8%–2.5%/year), respectively. Microsimulation- 
based mean life-expectancy in the first 20 years was 18.9 years (18.6–19.1 years) after Ross (relative life-expectancy: 
94.8%) and 17.0 years (16.5–17.6 years) after mAVR (relative life-expectancy: 86.3%). Microsimulation-based 20-year 
risk of aortic valve reintervention was 42.0% (95% CI: 39.6%–44.6%) after Ross and 17.8% (95% CI: 17.0%–19.4%) after 
mAVR.  

Conclusion Results of paediatric AVR are currently suboptimal with substantial mortality especially in the very young with considerable 
reintervention hazards for all valve substitutes, but the Ross procedure provides a survival benefit over mAVR. Pros and cons 
of substitutes should be carefully weighed during paediatric valve selection.  
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Structured Graphical Abstract   

What characterizes contemporary outcome after the Ross procedure, mechanical aortic valve replacement (AVR), homograft AVR and 
bioprosthetic AVR in paediatric patients?

The Ross procedure offered survival closest to the general population and a low incidence of valve-related events such as bleeding when 
compared to mechanical AVR in children. Nonetheless, reintervention hazards were highest after Ross. Microsimulation-based estimates 
provided opportunities to communicate essential information to patients.

Valve selection requires careful balancing of all benefits and risks. Current outcomes of AVR in children are suboptimal and an ideal sub-
stitute for the aortic valve does not exist. Nonetheless, the Ross procedure offers a survival benefit over mechanical AVR.
These data confirm the benefits of a living aortic valve substitute in children.
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Paediatric aortic valve replacement: an art of balancing

All-cause mortality

Ross procedure Mechanical AVR Homograft AVR

5259 patients;
37 435 patient-years

3468 patients

27 081 patient-years
Pooled mean age: 9±6 years
5.5% Endocarditis

799 patients 517 patients

Median follow-up

Individual-patient, state-
transition microsimulation:

Early mortality: 3.8% Early mortality: 7.0% Early mortality: 10.6%

* Life expectancy at 20 years, relative to the age-matched, sex-matched and origin-matched general population

Relative life-expectancy* 94.8% (93.3–95.9%)
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Summary of clinical outcome after paediatric aortic valve replacement (AVR) with a pulmonary autograft (Ross procedure), mechanical prosthesis, 
or homograft.  

Keywords Aortic valve • Congenital heart disease • Aortic valve replacement • Microsimulation  

Introduction 
Aortic valve (AV) disease in children calls for lifelong monitoring and 
management. Although valve repair should always be considered in chil-
dren requiring AV surgery, the majority of paediatric patients inevitably 
require AV replacement (AVR).1–3 Using repair techniques, a haemo-
dynamically acceptable and durable result is only achieved in a small 
proportion of patients.4 Outcome of valve-replacing therapies in chil-
dren is largely dependent on somatic growth, in addition to 
valve-related morbidity. Four different valve substitutes are currently 
available. 

The pulmonary autograft procedure was introduced by Donald Ross 
in 19675 and became an established treatment modality for AV disease 
(AVD), known as the Ross procedure. This rapidly became the substi-
tute of choice in children1,6,7 since it is the only living valve substitute 
that mimics native AV function,8,9 shows diameter increase along 
with somatic growth, alleviates the need for lifelong anticoagulation, 
and yields excellent haemodynamics.10–12 In adults, it provides patients 
with a life expectancy comparable to the general population.8,13,14 

However, the Ross procedure is technically demanding, transforms 
single-valve disease to double-valve disease and the autograft is at risk 
for dilatation. Secondly, implantation of a mechanical prosthesis for  
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AVR (mAVR) may be considered.15 Durability of mechanical pros-
theses is excellent16 and they are widely commercially available, but 
they require lifelong anticoagulation and do not adapt to somatic 
growth. Additionally, homograft AVR (hAVR) was proposed as a treat-
ment for AVD by Ross in the early 1960s.17 Homografts bring the ad-
vantage of a nonthrombogenic substitute while offering patients a 
native human valve, but they exhibit limited availability and durability 
due to early structural degeneration. Finally, bioprostheses are com-
mercially available as a substitute, but limited durability and absent 
growth potential represent drawbacks in children. 

Since the publication of a prior systematic review on outcome after 
AVR in children by our group in 2016,1 an abundance of new publica-
tions reporting on paediatric cohorts undergoing AVR with longer 
follow-up have been published. Furthermore, our group has implemen-
ted advanced methods of microsimulation11,18–20 and meta-analysis of 
time-to-event data21 that allow for a substantially more accurate insight 
into long-term, patient-specific outcome. 

Therefore, to support decision-making in AVD in children, the aim of 
this systematic review and meta-analysis is to provide an overview of 
currently available evidence on early and late survival, reintervention, 
and valve-related outcomes after paediatric Ross procedure, mAVR, 
hAVR, or bioprosthetic AVR (bAVR). 

Methods 
Protocol and registration 
The protocol for this systematic review and meta-analysis was approved by 
the local medical ethics committee of the Erasmus University Medical 
Center (MEC-2021–0784), registered in the PROSPERO registry 
(CRD42021271660) prior to conduction and reported in accordance 
with the updated Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses guidelines22 (see Supplement S1) and Meta-Analysis of 
Observational Studies in Epidemiology guidelines.23 

Search strategy and selection of studies 
MEDLINE, Embase, Web of Science, Cochrane Library, and Google Scholar 
were searched by a biomedical information specialist using keywords re-
lated to AVR in infants, children and/or adolescents published between 1 
January 1990 and 11 August 2021. The search string is listed in  
Supplement S1. Titles and abstracts were independently screened by two re-
viewers (M.L.N., A.S.) and in case of disagreement, an agreement was 
reached through consensus. Full-text screening was performed independ-
ently by two reviewers (M.L.N., A.S.), adhering to identical exclusion cri-
teria. Inclusion criteria were observational or randomized controlled 
studies reporting outcomes after isolated AVR with a pulmonary autograft 
(Ross), homograft, mechanical- or biological prosthesis concerning ≥20 pa-
tients with a mean age <18 years and maximum age ≤21 years during AVR. 
Studies focusing on patients with a certain annulus/root size, history of pre-
vious AVR and studies limited to patients with comorbidities were ex-
cluded. Single-arm studies were considered for inclusion. If the full text 
was not available, the publication was obtained by either contacting the cor-
responding author or by an interlibrary loan procedure established among 
universities. 

Presence of methodological heterogeneity/diversity, potentially leading 
to statistical heterogeneity, was evaluated by investigating similarity of stud-
ies according to the PICOTS framework. 

Risk of bias assessment 
Quality and risk of bias of individual studies was assessed according to the 
Newcastle-Ottawa scale for cohort studies. Completeness of follow-up 
≥80% was considered adequate and mean follow-up ≥5 years was consid-
ered sufficient for outcomes to occur. Domains evaluated by the risk of bias 

assessment tool were patient selection and outcome reporting. The com-
parability domain was not evaluated as all cohorts were treated as single 
arms in the meta-analysis. 

Data extraction 
Data extraction was performed independently by two reviewers (M.L.N., 
A.S.) using Microsoft Office Excel 2016 (Microsoft Corp., Redmond, WA, 
USA). All extracted data were verified by another reviewer. In case of dis-
agreement on any of the reported values, an agreement was reached 
through consensus. All extracted study, patient and surgical characteristics 
and outcomes are enclosed in Supplement S1. 

Meta-analysis outcomes 
Pre- and postoperative functional class were defined according to the 
Ross classification of heart failure for children24 or the New York 
Heart Association (NYHA) classification, as described by the authors. 
Early and late outcomes were documented according to the guidelines 
by Akins and colleagues25 and are listed in Supplement S1. Early outcome 
events were defined as events occurring within the first 30 days after AVR 
and late outcome events as events occurring after the first 30 days after 
AVR. 

Statistical analyses 
The statistical software used is described in Supplement S1. Continuous vari-
ables are presented as mean ± standard deviation (SD). Categorical vari-
ables are presented as counts and percentages. Linearized occurrence 
rates (constant hazards over time) of events are presented as percentages 
per year. All single-arm publications and cohorts within multi-arm publica-
tions were categorized by valve type: autograft (Ross), hAVR, mAVR, and 
bAVR. Cohorts consisting of only infants (<1 year) and neonates (<30 
days) were pooled separately. Baseline and surgical characteristics were 
summarized as a weighted average based on sample size. Inverse variance 
weighting was carried out for pooling event proportions (early events), ac-
cording to the number of patients, and occurrence rates (late events), ac-
cording to the number of patient-years. Early and late outcomes 
(proportions and occurrence rates) were pooled on a logarithmic scale. 
Between-study variance was estimated according to the DerSimonian 
and Laird method in a random-effects model.26 In case an event did not oc-
cur, we assumed that 0.5 patients in this cohort experienced the event for 
pooling purposes (continuity correction). Subgroup analyses were per-
formed for (sub)cohorts consisting of infants (<1 year) and those consisting 
of consecutive children (<18 years), as well as for additional Konno (aorto-
ventriculoplasty) procedures27 and procedures without any left ventricular 
outflow tract (LVOT) enlargement. P < 0.05 were considered statistically 
significant. 

Estimates of time-to-event data, derived from published Kaplan–Meier 
curves, were extracted and combined using the method described by 
Guyot.28 Firstly, published Kaplan–Meier curves for survival, LVOT reinter-
vention, and right ventricular outflow tract (RVOT) reintervention were di-
gitized. Subsequently, the estimated time-to-event data were extracted 
from this digitized curve. Lastly, the reconstructed time-to-event data of 
studies were combined for each time-to-event outcome, to generate 
pooled Kaplan–Meier curves. A detailed overview of the methodology is 
presented in Supplement S1. 

A sensitivity analysis for survival and reintervention was performed (see  
Supplement S1) by comparing estimates derived from Kaplan–Meier pooling 
excluding any text-derived time-to-event data reconstruction vs. estimates 
derived from Kaplan–Meier pooling with additional text-derived 
time-to-event data reconstruction (i.e. zero events reported). 

The Cochran Q-statistic and I2-statistic were used to assess the propor-
tion of total heterogeneity in an outcome attributable to between-study 
heterogeneity. Univariable random effects meta-regression was per-
formed to evaluate causes of heterogeneity within outcome measures. 
The effect of patient characteristics, surgical details (see Supplement S1)  
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and median year of surgery on outcomes was investigated by 
meta-regression. Presence of publication bias was explored by conducting 
sensitivity analysis, in which the quartile of studies with the smallest sam-
ple size was temporarily excluded. These results were compared to the 
pooled results including all studies. 

Microsimulation 
Microsimulation models provide insight into age-specific life expectancy and 
lifetime risk of valve-related events that may occur during the particular re-
maining life of that particular patient.29 An individual-patient state-transition 
microsimulation model based on the pooled early and late outcome esti-
mates of our meta-analysis was employed to estimate age-specific life ex-
pectancy and age-specific risks of valve-related morbidity after paediatric 
AVR (see Supplement S1). Since follow-up duration was too short to 
make inferences about lifetime risks after paediatric AVR, the occurrence 
of all valve-related events was simulated to the extent of the observation 
period this meta-analysis (20 years). All outcomes of the meta-analysis 
that subsequently served as input for the microsimulation, model structure, 
equations, and all functions used in the simulation (technical documenta-
tion) are explained in Supplement S1 and the Supplementary 
Microsimulation. Recommendations for reporting simulation studies were 
checked to ensure good practice, transparency, and validation of the 
model.30,31 

The occurrence of all-cause and structural valve deterioration 
(SVD)-related AV reintervention was modelled according to the flexible 
parametric survival model that fitted the time-to-event data of each out-
come best (see Supplement S2). No time-to-event data were available for 
other valve-related events (endocarditis, cerebrovascular accident, bleed-
ing, valve thrombosis, thromboembolism); therefore, we assumed constant 
hazards for these events. 

All-cause mortality was simulated and can be divided into death directly 
due to valve-related events vs. death not directly due to valve-related 
causes. The latter consists of both background mortality in the general 
population and excess mortality that does not directly result from 
valve-related events but is only observed after AVR. Methods for estimating 
background mortality and additional details of the estimation of excess 
mortality are described in Supplement S1. 

In order to obtain age-specific estimates of life expectancy and 20-year 
risks of valve-related complications after the Ross procedure, the microsi-
mulation simulated cohorts of 10 000 patients aged <1 year or <18 years, 
of which 71.2% and 70.7% were male, respectively (pooled male 
proportions). 

Probabilistic sensitivity analysis was performed to take the uncertainty in 
input parameters of our microsimulation into account and incorporate the 
implications of this uncertainty into the modelled outcomes. In the sensitiv-
ity analysis, the model considered a sample size of 1000 patients per set and 
ran for 500 different sets of randomly drawn input parameters. 
Microsimulation-based outcomes are reported along with a 95% credible 
interval (CrI), the interpretation of which differs from a 95% confidence 
interval (CI). The 95% CrI represents the range of values (interval) within 
which an unobserved parameter will fall with 95% probability given the ob-
served data, thus the bounds being fixed and parameters random. The 95% 
CI entails that in a large numbers of repeated samples, 95% of the intervals 
include the true value, the parameter being fixed and bounds random. 
Additional insights into the probabilistic sensitivity analysis are provided in  
Supplement S1. 

For the purpose of internal validity assessment of late survival and re-
intervention outcomes of this model, the model was run for 10 000 pa-
tients with the distribution of the pooled mean ± SD of age and 
proportion of males for all subgroups of studies included in the pooled 
Kaplan–Meier for late mortality. The Kaplan–Meier survival curve ob-
tained from this microsimulation (excluding early mortality) was plotted 
against the pooled Kaplan–Meier survival curve derived from our 
meta-analysis in a calibration plot (excluding early mortality) to confirm 
calibration. 

Results 
Systematic review 
A total of 3807 publications were identified by the systematic literature 
search, of which 68 (67 retrospective cohort studies and 1 prospective 
cohort study) were included in the meta-analysis (Figure 1), encompass-
ing a total of 5259 patients with 37 435 patient-years of follow-up. 
Median follow-up was 5.9 years (range:1–21 years). Only one study 
on bAVR was identified.32 References of included studies and individual 
study characteristics are listed in Supplement S3 and S4, respectively. 

Quality and risk of bias assessment for cohort studies revealed that 
32% of studies scored 7/7 points (100% of points). Another 49% of 
studies scored 6/7 points (86% of points), 15% scored 5/7 points 
(71% of points) and 4% scored 4/7 points (57% of points). Total and 
substitute-specific quality assessment is enclosed in Supplement S1.3. 

Meta-analysis 
Baseline characteristics and operative details for each substitute are 
summarized in Table 1. Baseline characteristics for the Ross–Konno 
and infant Ross cohorts are summarized in Supplement S5. 

Pooled early mortality after Ross, mAVR, and hAVR was 3.7% (95% CI: 
3.0%–4.7%), 7.0% (95% CI: 5.1%–9.6%), and 10.6% (95% CI: 6.6%–17.0%), 
respectively. Pooled late mortality rates after Ross, mAVR, and hAVR, were 
0.5%/year (95% CI: 0.4%–0.7%/year), 1.0%/year (95% CI: 0.6%–1.5%/year), 
and 1/4%/year (95% CI: 0.8%–2.5%/year), respectively. Pooled early out-
come risks and pooled occurrence rates of late mortality and valve-related 
events are listed in Table 2. Pooled outcomes for the Ross–Konno and infant 
Ross cohorts (see Supplement S6) as well as all individual study estimates 
(see Supplement S7 and S8) are enclosed in the Supplement. 

Similarity of included studies was evaluated for each study by the 
PICOTS statement (see Supplement S14). Substantial statistical hetero-
geneity was observed for several late outcomes after the Ross proced-
ure and mAVR, mainly for late mortality, AV reintervention, and 
allograft reintervention (Table 2). Individual estimates of the univariable 
random-effects meta-regression for each outcome after the Ross pro-
cedure and mAVR are listed and summarized in Supplement S12. 

Fifteen-year freedom from LVOT reintervention after Ross and 
mAVR was 77.6% and 88.7%, respectively. Pooled Kaplan–Meier curves 
of freedom from all-cause mortality, LVOT reintervention and RVOT 
reintervention are presented in Figure 2. 

Within all twelve studies reporting NYHA functional class at last 
follow-up after the Ross procedure (median follow-up: 5.8 years, range: 
2.8–20.5 years), 95.2% of the patients were in NYHA class I/II. 

Sensitivity analysis 
Sensitivity analyses revealed that possible publication bias did not con-
siderably influence the pooled outcome estimates of our meta-analysis 
for the Ross procedure, mAVR, and hAVR, since pooled outcome es-
timates remained largely unchanged after excluding the smallest quar-
tile of studies by sample size. The results of sensitivity analyses are 
presented in Supplement S11. 

Sensitivity analyses of Kaplan–Meier reconstruction with or without 
additional text-derived time-to-event data are presented in Supplement 
S13. Removal of text-derived time-to-event data revealed a change in 
15-year freedom from reintervention from 81.0% to 59.4%. As the 
pooled occurrence rate of LVOT reintervention was lower in infants 
(1.0%/year) than in children (1.3%/year), the Kaplan–Meier that includes 
text-derived time-to-event data more accurately approximates reinter-
vention rates.  
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Microsimulation outcomes 
Microsimulation-based age-specific estimates of (event-free) life ex-
pectancy and age-specific 20-year risks of valve-related morbidity are 
presented in Table 3 and Figures 3 and 4. The microsimulation model 
calibration with the pooled mortality and reinterventions resulting 
from the meta-analysis are available in Supplement S9. Analysis of 
survival estimates from the microsimulation model (excluding early 
mortality) vs. the estimates obtained from our meta-analysis of 

time-to-event data (excluding early mortality) revealed a HR for excess 
mortality of 2.2, 1.8, and 1.2 for mAVR, the Ross procedure and the in-
fant Ross procedure, respectively (see Supplement S10). 

For children undergoing mAVR, mean life expectancy in the first 20 
postoperative years was 86.3% (95% CrI: 83.5%–89.3%) relative to the 
age- and sex-matched general population. For children undergoing a 
Ross procedure, mean life expectancy in the first 20 postoperative 
years was 94.8% (CrI: 93.3%–95.9%) relative to the matched general 

Figure 1 Flowchart of study selection. * The total number of publications (n = 68) includes three publications from which only Kaplan–Meier curves 
were used. Baseline characteristics and outcome estimates of these publications are not provided due to overlapping study populations with other 
publications included in this meta-analysis.   
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Table 1 Summary of baseline characteristics and surgical details   

Ross Mechanical Homograft  

Pooled estimate Number of 
studies 

Pooled 
estimate 

Number of 
studies 

Pooled 
estimate 

Number of 
studies  

Total number of patients 3468 38 799 15 517 8 

Follow-up             

Mean, y 8.1 ± 6.0 37 7.3 ± 4.6 15 5.4 ± 5.4 6 

Total, patient-years 27080.7 37 5906 15 2036.1 6 

Mean age (years) 9.2 ± 5.6 33 13.0 ± 3.4 11 8.4 ± 5.4 6 

Male 70.7% (60.5–91.7) 27 75.3% (58.3–84.5) 7 67.7% (63.5–72.6) 3 

Urgent 6.6% (2.4–14.8) 7 – 0 – 0 

Preop. NYHA/Ross class             

I 52.2% (48.6–56.3) 2 – 0 – 0 

II 35.8% (34.4–37.1) 2 – 0 – 0 

III 10.5% (9.4–11.4) 2 – 0 – 0 

IV 1.5% (0.0–2.9) 2 – 0 – 0 

I/II 83.5% (78.3–91.6) 3 – 0 – 0 

III/IV 16.5% (9.4–21.7) 3 – 0 – 0 

Hemodynamics             

Aortic stenosis 34.9% (11.6–89.1) 30 30.7% (6.1–60.3) 7 39.6% (21.7–66.0) 3 

Aortic regurgitation 24.6% (8.8–59.2) 30 54.2% (20.7–87.8) 7 30.4% (10.6–43.3) 3 

Combined 42.0% (9.3–75.8) 27 15.1% (6.1–21.8) 7 30.0% (14.4–51.8) 3 

Bicuspid AV 56.4% (33.4–78.2) 20 54.0% (50.9–56.9) 2 – 0 

Etiology             

Congenital 79.6% (66.6–100.0) 24 60.3% (11.5–98.2) 9 – 0 

Endocarditis 5.5% (0.0–30.9) 23 29.7% (0.0–74.1) 9 6.5% (0.0–18.1) 3 

Rheumatic 2.7% (0.0–10.9) 24 6.1% (0.0–19.0) 9 – 0 

Other/unknown 12.3% (0.0–100.0) 27 3.9% (0.0–9.2) 9 – 0 

Concomitant anomalies 27.9% (12.2–36.7) 8 28.2% (10.9–50.0) 4 43.3% (32.5–55.4) 2 

Aortic coarctation 9.0% (2.9–16.8) 9 2.4% (0.0–5.5) 3 – 1 

Ventricular septal defect 6.3% (0.9–15.9) 10 8.9% (1.8–13.8) 4 – 1 

Interrupted aortic arch 4.5% (2.0–6.1) 4 0.9% (0.0–1.8) 2 – 1 

Previous cardiac 
interventions 

53.4% (34.9–80.4) 12 43.1% (7.3–64.3) 7 58.0% (43.7–89.4) 2 

AV intervention 53.8% (18.3–81.3) 19 27.1% (5.5–52.3) 4 42.9% (37.4–51.9) 4  

Percutaneous 27.2% (9.1–58.7) 20 3.3% (0.0–16.7) 4 33.3% (27.0–37.7) 2  

AV repair 29.1% (0.0–56.5) 18 26.0% (5.5–40.0) 4 – 1  

AV replacement 1.8% (0.0–8.7) 15 1.5% (0.0–5.6) 4 13.7% (6.4–17.0) 2 

SAS resection 9.4% (0.0–24.5) 11 3.7% (0.0–7.3) 3 – 1 

Aortic surgery 12.7% (2.9–29.4) 9 4.1% (1.8–8.3) 3 – 1  

Coarctectomy 6.3% (0.0–12.0) 6 2.8% (1.8–3.7) 2 – 0 

VSD closure 5.5% (0.0–9.8) 10 1.8% (0.0–3.7) 3 – 1                                                                                                                                                                                                                   

Continued  
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population. For infants undergoing a Ross procedure, mean life expect-
ancy in the first 20 postoperative years was 84.0% (CrI: 81.1%–86.9%) 
relative to the matched general population. 

Discussion 
Valve selection in young patients who potentially have a long life ahead 
remains a complex topic. Focus should lie on determining what substi-
tute will ensure optimal outcome in the individual child in need of AV 
surgery not amenable to repair, from both a clinical and patient per-
spective. The current study adds to the ever-growing body of evidence 
on the management of valvular heart disease that current options for 
paediatric AVR are far from perfect. Through the microsimulation, it 
shows that valve selection in children remains a delicate balancing act 
between substitute-specific risks and benefits. 

The Ross procedure provides children with excellent haemodynamics 
and low rates of endocarditis, valve thrombosis, thrombo-embolism, and 
bleeding compared to prosthetic valves but transforms single-valve disease 
to double-valve disease at a young age33 and comes at the cost of a mod-
erate LVOT reintervention rate and high RVOT reintervention rate due 
to conduit deterioration. Contrarily, mAVR puts patients at substantial 
risk for valve-related complications such as bleeding and valve-thrombosis 
given thrombogenicity of the prosthesis and subsequent need for anticoa-
gulation. The hazard of reintervention for SVD is low after mAVR given 
excellent durability.16 Although patient selection may play a role, hAVR 
was associated with the highest mortality and reintervention rates. The 
single study reporting outcome after bAVR included 24 children deemed 
no Ross candidates.32 They reported no deaths and one reoperation 
(0.3%/year), although follow-up was short (mean follow-up: 46 months). 
These are good outcomes but should be considered carefully, especially 
since these were selected patients from a single center and the Achilles 
heel of bioprosthetic valves remains SVD, which usually occurs beyond 
46 months.20 Noteworthy, 54% of patients showed mild-moderate sten-
osis at last echocardiographic follow-up (34 ± 26 months). 

Early mortality 
Regarding early mortality, the observed differences between Ross 
(3.7%), mAVR (7.0%), and hAVR cohorts (10.6%) were substantial. 
The higher early mortality risk after paediatric mAVR and hAVR 
compared to the Ross procedure can be attributed mostly to the 
widely varying patient profiles across groups. Regarding 

haemodynamics, mAVR was more often performed in patients 
with isolated regurgitation compared to the Ross procedure and 
hAVR. The aetiology of valve dysfunction was more often related 
to endocarditis or rheumatic disease in mAVR than in Ross patients. 
Concomitant anomalies were comparable among Ross and mAVR 
patients. Compared to mAVR, previous cardiac interventions were 
more frequently performed in patients undergoing the Ross proced-
ure or hAVR. Conversely, during AVR, the number of concomitant 
procedures and annular enlargement was higher during mAVR com-
pared to Ross. Indeed, no conclusive evidence of selection bias was 
observed in our sensitivity analysis. However, unobserved patient se-
lection may still be embedded in the decision-making process during 
valve selection, possibly reflecting in observed outcomes. For ex-
ample, hAVR represents a last resort alternative for most surgeons, 
therefore forming a selected cohort. Survival has previously shown 
to be largely determined by patient-related factors, in addition to 
prosthesis type alone.34 

A previous meta-analysis by our group in 20161 showed higher 
early mortality than the current analysis after mAVR (7.3%), hAVR 
(12.8%), and the Ross procedure in children (4.2%) and infants 
(16.9%). In a nationwide analysis between 2000–10, Brown et al.35 

reported a decreasing trend in 30-day mortality for paediatric cardiac 
surgery in general, although not evidently observed for Ross or 
non-Ross AVR procedures. Nelson et al. recently reported early 
mortality comparable to the current review in 3446 children under-
going AVR.36 

Late mortality 
Late mortality after Ross (0.5%/year), mAVR (1.0%/year), and hAVR 
(1.4%/year) in children varied greatly between groups. 
Microsimulation-based survival relative to the matched general popula-
tion revealed that, in the first 20 years after the Ross procedure, survival 
was better (94.8% [95% CI: 93.3%–95.9%]) compared to mAVR (86.3% 
[95% CI: 83.5%–89.3%]). Better survival after the Ross procedure com-
pared to mAVR corresponds with a nationwide report37 and a 
propensity-adjusted comparison.38 

Compared to the general population, all substitutes demonstrated 
impaired survival in children. Prosthetic AVR has previously shown to 
be associated with additional mortality that is not observed in the gen-
eral population.39–41 For the Ross procedure, this stands in contrast to 
earlier observations of survival in young adults. Studies revealed that the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Continued    

Ross Mechanical Homograft  

Pooled estimate Number of 
studies 

Pooled 
estimate 

Number of 
studies 

Pooled 
estimate 

Number of 
studies  

Annular enlargement 
procedures 

16.5% (0.0–36.7) 28 27.4% (2.3–100.0) 11 24.0% (8.4–70.2) 3 

SAS resection during AVR 6.4% (0.0–18.9) 17 5.0% (0.0–12.0) 7 34.7% (0.0–70.2) 2 

Concomitant procedures 24.8% (0.0–44.4) 13 39.1% (10.0–82.4) 9 – 1 

Aortic surgery 10.3% (0.0–29.8) 15 8.8% (0.0–21.6) 7 – 1 

Other valve surgery 4.3% (0.0–19.4) 15 11.9% (5.4–24.1) 7 13.9% (3.8–24.3) 2 

Other concomitant surgery 12.4% (0.0–30.0) 14 4.6% (0.0–22.2) 7 – 1   
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Ross procedure in adults actually yields a life expectancy comparable to 
the general population.8,13 In children as opposed to young adults, rela-
tively worse disease phenotype, higher early mortality and the hazard of 
multiple reinterventions early in life may contribute to the observed dif-
ferences between our results and those in young adults, emphasizing 
that extrapolation of outcome in adults to children may not be justifi-
able for all outcomes. 

Valve-related reintervention 
All-cause reintervention was significantly lower after mAVR compared 
to Ross and hAVR (1.2%/year, 3.4%/year, and 4.8%/year, respectively). 
Occurrence rates of AV reintervention after the Ross procedure (1.3%/ 
year) and mAVR (1.1%/year) differed slightly, while these rates were 
significantly lower compared to hAVR (4.6%/year). Microsimulation- 
based comparison of reintervention revealed that, when considering 
non-linear SVD/non-SVD (NSVD) occurrence and subsequent reinter-
ventions, AV reinterventions at 20 years after a Ross procedure (42.0% 
[95% CI: 39.6%–44.6%]) were more common than after mAVR (17.8% 
[95% CI: 17.0%–19.4%]). 

Importantly, the main causes for left-sided reintervention differ when 
reinterventions after a Ross, mAVR, and hAVR are compared. Where 

the commonest indication for reintervention after the Ross procedure 
is structural autograft deterioration,38 reintervention after mAVR is 
mainly indicated due to the fact that children outgrow their prosthetic 
valve and that pannus formation occurs more often.1,16,42 Indeed, 
microsimulation-based SVD/NSVD and reintervention rates after the 
Ross procedure were higher than after mAVR. Nevertheless, an im-
portant observation must be noted regarding the reoperative manage-
ment of the failing autograft compared to mechanical prostheses. 
Whereas during reintervention after mAVR the valve itself cannot be 
repaired,42 in the setting of autograft dilatation with or without insuffi-
ciency typically observed after a Ross procedure, a valve-sparing ap-
proach in children and young adults achieves good results and is 
increasingly performed.43–46 Preservation of an autologous, nonthrom-
bogenic valve may be of value in improving quality of life and clinical end-
points as our patients reach young adulthood.47,48 Additionally, it has 
been suggested that a secondary Ross, performed after initial AV repair, 
is associated with improved survival and less reinterventions, although 
unmeasured confounders are conceivably at play.49,50 Reinterventions 
after hAVR were often indicated as a result of early SVD compared 
to Ross and mAVR.51,52 

The higher overall reintervention rate after the Ross procedure 
(3.4%/year) in comparison to mAVR (1.2%/year) was largely driven 

Figure 2 A. Pooled Kaplan–Meier freedom from all-cause mortality after the Ross procedure. (B) Pooled Kaplan–Meier freedom from all-cause mor-
tality after mechanical AVR. (C) Pooled Kaplan–Meier freedom from all-cause mortality after homograft AVR. (D) Pooled Kaplan–Meier freedom from 
autograft (LVOT) reintervention after the Ross procedure. (E) Pooled Kaplan–Meier freedom from homograft (RVOT) reintervention after the Ross 
procedure. (F) Pooled Kaplan–Meier freedom from any aortic valve-related reintervention after mechanical AVR.   
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by homograft reinterventions. Homograft reinterventions after the 
Ross procedure in infants (6.5%/year) and children (2.3%/year) were 
high, as reflected in the microsimulation-derived reintervention risks. 
Pulmonary homograft deterioration in children is dependent on age 
and somatic growth and is considered a multifactorial process that is 
also affected by host immune responses and blood group incompatibil-
ity,53,54 often resulting in stenosis.55,56 Oversizing of the RVOT homo-
graft may delay the need for re-replacement during childhood.57,58 

However, some controversy reigns in this regard as oversizing was 
not always shown to be protective of RVOT reintervention.59 

Valve-related events 
Bleeding, valve thrombosis, thrombo-embolism, endocarditis, SVD, and 
NSVD are valve-related complications that may occur after AVR. After 
the Ross procedure and mAVR, respectively, thrombo-embolic events, 
0.1%/year (0.07%–0.2%/year) vs. 0.4%/year (0.3%–0.7%/year), and cere-
brovascular accidents, 0.1%/year (0.03%–0.2%/year) vs. 0.4%/year (0.3%– 
0.8%/year), occurred significantly more frequently after mAVR. Also, 
after the Ross procedure compared to mAVR, there was a trend towards 
lower bleeding [0.1%/year (0.03%–0.2%/year) vs. 0.3%/year (0.2%–0.6%/ 
year)] and valve thrombosis rates [0.2%/year (0.09%–0.4%/year) vs. 0.3%/ 

year (0.2%–0.6%/year)]. After hAVR, pooled valve-related event rates ex-
cept SVD were generally low although reported by little studies. Notably, 
after reconstructive, nonthrombogenic valve surgery like AV repair and 
the Ross procedure, rates of bleeding and thrombo-embolic complica-
tions are generally low.11 The microsimulation revealed that, despite 
high rates of reinterventions after a Ross, the mean event-free life expect-
ancy after a Ross [9.1 years (8.7–9.4years)] is considerably higher than 
after mAVR [4.0 years (3.6–4.4years)]. 

Functional status and quality of life 
Most studies did not report pre- and postoperative Ross or NYHA 
classification. It has been shown that the Ross procedure, in adults, is 
associated with superior quality of life when compared with mAVR 
and equivalent quality of life when compared with valve repair.60,61 

Patients that underwent a Ross procedure, compared to mAVR, may 
face less anticoagulation-driven events over time that will likely influ-
ence their quality of life positively,61 although being subject to a substan-
tial reintervention hazard. Little is known about quality of life after AVR 
in children, especially in relation to valve-related events such as bleeding 
or reintervention. After mechanical mitral valve replacement, younger 
children show greater impairment in general health status than older 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Microsimulation-based (event-free) life-expectancy and 20-year risks of valve-related morbidity 

Valve substitute Mechanical Ross procedure Ross procedure  

Age group <18 years <18 years <1 year 

Mean age 13.0 ± 3.4 years 9.2 ± 5.6 years 96.3 ± 85.3 days 

Life expectancy in first 20 postoperative years 17.0 (16.5–17.6) 18.9 (18.6–19.1) 16.9 (16.3–17.5) 

Relative to matched general population 86.3% (83.5%–89.3%) 94.8% (93.3%–95.9%) 84.0%(81.1%–86.9%) 

Event-free life-expectancy in 20 postoperative years 4.0 (3.6–4.4) 9.1 (8.7–9.4) 6.8 (6.4–7.1) 

Twenty-year event risks, in %       

Autograft/aortic valve reintervention 17.8 (17.0–19.4) 42.0 (39.6–44.6) 29.1 (26.3–32.4) 

Autograft/aortic valve SVD/NSVD 11.6 (9.2–13.7) 38.5 (33.8–42.0) 23.9 (16.6–28.1) 

Pulmonary homograft reintervention – 78.8 (75.6–82.2) 100 (97.5–100) 

Pulmonary homograft SVD/NSVD – 73.6 (67.0–78.0) 97.3 (90.3–100) 

Valve thrombosis        

Autograft/aortic valve 6.1 (3.9–8.7) 2.4 (0.5–5.5) 2.3 (0.6–4.3)  

Pulmonary homograft – 2.2 (0.5–5.6) 1.7 (0.3–4.4) 

Endocarditis        

Autograft/aortic valve 5.5 (2.9–10.0) 3.7 (1.7–6.6) 3.4 (1.3–6.0)  

Pulmonary homograft – 6.8 (3.5–12.9) 3.2 (1.3–6.9) 

Cerebrovascular accident 8.0 (4.8–12.9) 1.9 (0.6–4.7)  2.0 (1.2–5.2) 

Bleeding event 5.3 (3.0–8.6) 2.2 (0.6–4.8) 1.5 (0.4–3.9) 

Simulation-based cause of deatha        

Early postoperative mortality 31.6% 42.4% 79.4%  

Background or excess mortality 32.0% 24.2% 3.2%  

Mortality after reinterventions 10.4% 15.7% 9.6% 

Values between brackets derived from the upper and lower boundaries of the 95% credible interval of the probabilistic sensitivity analysis. 
a = percentage of total simulated mortality based on deterministic microsimulation of 10 000 individuals per group.   
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children. Long-term anticoagulation treatment after mitral valve re-
placement was well tolerated in the majority of but not all patients. 
Sample size of this cross-sectional study, however, was limited to 19 
children.62 

As previously stressed by Etnel and colleagues,11 the precise impact 
of these valve-related events on quality of life in children and adults, as 
opposed to length of life, remains to be investigated. 

The Ross procedure in infants 
Pooled mortality after the Ross procedure in infants was substantially 
higher (16.3%) than in children (3.7%). The course leading to early post-
operative mortality in infants is typically characterised by preoperative 
need for mechanical ventilation and postoperative need for extracor-
poreal membrane oxygenation, probably reflecting poor ventricular 
function.63 

Early mortality risks64–68 and late overall reintervention rates67,69,70 

in our meta-analysis as well as in previous reports were high after the 
Ross procedure in infants, but generally low after AV repair in in-
fants.71–73 Taking these differences into account, one might argue 
that, whenever possible, adopting a strategy of initial repair followed 
by a delayed Ross later in childhood may improve outcome. It must, 
however, be acknowledged that patient selection likely played a role 
in the observed differences in early mortality between previous Ross 
and repair studies and that the Ross procedure simply may be the 
only viable option for several disease phenotypes.74 

Somewhat counter-intuitively, autograft reintervention rates were 
lower for infants (1.0%/year) compared to children (1.3%/year). It has 
been theorised that this difference arises due to the relatively pro-
nounced somatic growth these younger children are subject to, since 
in this setting, the autograft increases appropriately in diameter (i.e. in 
accordance with somatic growth) rather than pathologically (i.e. in 

Figure 3 Microsimulation-based age-specific life expectancy and 20-year risks of valve-related morbidity after mechanical aortic valve replacement 
and the ross procedure. Included error bars represent 95% credible intervals. SVD indicates structural valve deterioration and NSVD indicates 
non-SVD.   
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the form of dilatation).75–78 The autograft may also be less subject to 
immediate dilatation in infants because of exposure to higher 
pulmonary vascular resistance before autograft translocation.79,80 

Additionally, clinicians may be more hesitant towards a 

reintervention in infants already having undergone a Ross, since there 
are no attractive alternatives in growing children. 

Particular difficulties arise when children present with complex 
LVOT obstruction, which may require additional annular 

Figure 4 Microsimulation-based life expectancy after mechanical aortic valve replacement (<18 years) and the Ross procedure (<18 years and <1 
year) compared with the age-, origin-, and sex-matched general population. Included error bars represent 95% credible intervals. (A) Life expectancy in 
children aged <18 years (Ross procedure and mechanical aortic valve replacement). (B) Life expectancy in infants aged <18 years at time of the Ross 
procedure.   
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enlargement.27,81 In this meta-analysis, children undergoing a Ross– 
Konno procedure were young, with numerous previous interventions 
and concomitant anomalies. Early (14.5%) and late mortality (1.7%/ 
year) were high, as well as overall reintervention rates (11.0%/year). 
Some authors argue that infants with severe LVOT obstruction who 
are considered for a Ross–Konno are better off with a univentricular 
repair, either as a bridge to decision82 or definitive,83 although there 
is no evidence in support of these suggestions. 

Three studies reporting clinical outcomes after an infant Ross ad-
dressed problems related to perioperative myocardial ischemia.67,69,84 

It has been hypothesised that these problems occur due to issues with 
the implantation of the right coronary button in the autograft.85 

Whether this technical challenge directly translates to higher post-
operative mortality is not clear. Nevertheless, these studies did report 
a number of deaths confirmed84 or suspected67 to be attributable to 
the obstruction of coronary flow. 

Strengths and limitations 
To the best of our knowledge, this is the first systematic review using 
advanced methods of microsimulation and time-to-event meta-analysis 
after paediatric AVR. By assembling all the, often small, cohorts we ob-
tained a large sample size, also including time-to-event data. This allows 
for a unique insight into real-world, long-term outcome after paediatric 
AVR with any of the available substitutes but does not aim to compare 
procedures directly. 

Since this is a meta-analysis of retrospective studies, the limitations of 
pooling data from retrospective observational studies must be taken 
into consideration.86 Second, selection bias of patients that were in-
cluded in the studies might have influenced our outcomes due to the 
nature of observational studies, mainly relating to the fact that there 
is no randomization for allocation to treatment options. Risk of bias as-
sessment revealed no serious implications for a single-arm 
meta-analysis with absolute risk estimates, i.e. exposure was ascer-
tained through secure records (surgical records), all patients in each 
subgroup received the same treatment (Ross/mAVR/hAVR/bAVR), 
practices in studies reflect usual clinical practice, follow-up was long en-
ough for outcomes to occur in most studies (5 years for late out-
comes), and completeness of follow-up was adequate for almost all 
cohorts (>80%). Therefore, all studies were retained and risk of bias 
described (see Supplement S1.3). Other limitations include heterogen-
eity of underlying disease mandating treatment, practice variation pat-
terns and biased choice of substitutes related to anatomical entities. 
Additionally, this systematic review only included studies with at least 
20 participants in the meta-analysis, therefore missing out on literature 
reporting on smaller cohorts. Publication bias is possibly present, which 
might have influenced our results. The presence of possible publication 
bias was not explored with use of funnel plots since addressing publica-
tion bias in absolute risk outcomes, which are all of our outcomes, is 
associated with considerable methodological limitations that may give 
rise to funnel plot asymmetry.87 Lastly, since extrapolation of event 
rates beyond the observed follow-up time may not be as appropriate 
in children as in adults, we decided to simulate the individual lives in 
our microsimulation for a period of 20 years. Hence, limited by the 
follow-up of included studies, no lifelong probabilities could be ex-
plored but only insights into early adulthood. The unavoidable assump-
tion (given lack of data) of linear rates of valve-related events other than 
SVD/NSVD represents a limitation of the microsimulation. 

Heterogeneity in studies may have introduced uncertainty in several 
reported outcomes. Nonetheless, due to the use of random-effects 

models, the uncertainty is integrated in the 95% confidence intervals 
used in our meta-analysis and the 95% CrI used in our microsimulation. 
Through univariable meta-regression (see Supplement S12), we ob-
tained insights in possible sources of heterogeneity for a particular out-
come. Still, heterogeneity of disease and in outcomes remain and 
represent limitations. 

Implications for clinical practice and future 
perspectives 
Decision-making in children with AVD remains a matter of numerous 
considerations pertaining to patient characteristics, valve durability, life- 
expectancy, anticoagulation prescription, pregnancy wishes, and patient 
and parent values. Throughout life, patients will face multiple decisions 
related to the treatment of their AVD. Accumulation of evidence on 
outcome after all potential therapies available may guide strategic valve 
intervention planning at a young age, also taking into account the poten-
tial options available for a second and third intervention. Ideally, while 
considering the best available evidence and unique characteristics of 
the individual patient is important, including patient values and goals 
in an informed decision-making with the patient and parents, is essen-
tial. Surgical technique and perioperative care have improved over the 
years and some improvements like autograft modifications and AV re-
pair strategies88,89 are still being made. Moreover, anticoagulation after 
mAVR shows room for improvement.90 With optimal self-care in a de-
veloped country, mAVR yields excellent survival close to the general 
population in selected patients.90 

Regarding outcomes after the Ross procedure, pooled data from the 
real world appear less encouraging than data from experienced, high- 
volume centres. The technically demanding nature of the Ross procedure 
likely contributed to the variation in reported outcomes that is potentially 
correlated with center- and surgeon volume.91 

Focusing on survival, according to the microsimulation, it seems that 
survival after the Ross procedure in children, as opposed to adults, does 
not approximate life expectancy of the general population. 
Nonetheless, it appears that the Ross procedure in children provides 
a survival benefit over mAVR when compared to their age-matched, 
sex-matched and origin-matched general population. This is accompan-
ied by avoidance of anticoagulation and the possibility to live a normal, 
active life. Contrarily, RVOT reinterventions were high after a Ross but 
these are generally associated with low mortality.66,92 Concluding, the 
Ross procedure represents a unique option to children anticipating 
somatic growth, even to infants albeit with worse early outcomes. 

Valve repair retains haemodynamic function and yields better quality 
of life than prosthetic AVR in adults.60,61 Repair postpones AVR, which, 
especially in children where growth is anticipated, is desirable. 
Postponing a Ross at a young age may therefore be sensible if the valve 
is amenable to repair.93,94 Improvements in repair techniques to 
achieve a durable result may thus be of benefit to children with 
AVD.89,95–97 

Further modifications on the autograft,98 improvements in AV re-
pair93,95 and other innovative therapies such as tissue-engineered 
valves99,100 deserve attention in the future to further improve clinical 
and patient-reported outcome after paediatric AV surgery, not merely 
during childhood but beyond as well. 

Conclusions 
Based on current outcomes, results of paediatric AVR are suboptimal 
with substantial mortality especially in the very young, anticoagulation-  
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related morbidity after mAVR and considerable reintervention hazards 
after a Ross and other biological substitutes. Noteworthy, compared to 
the general population, the Ross procedure offers a survival benefit 
over mAVR (Structured Graphical Abstract). It is essential to carefully 
weigh pros and cons of different substitutes during valve selection in in-
dividual children. 
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