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Abstract

INTRODUCTION: Reliable models to predict amyloid beta (Aβ) positivity in the gen-

eral aging population are lacking but could become cost-efficient tools to identify

individuals at risk of developing Alzheimer’s disease.

METHODS: We developed Aβ prediction models in the clinical Anti-Amyloid Treat-

ment in Asymptomatic Alzheimer’s (A4) Study (n = 4,119) including a broad range of

easily ascertainable predictors (demographics, cognition and daily functioning, health

and lifestyle factors). Importantly, we determined the generalizability of our models in

the population-based Rotterdam Study (n= 500).

RESULTS: The best performing model in the A4 Study (area under the curve

[AUC] = 0.73 [0.69–0.76]), including age, apolipoprotein E (APOE) ε4 genotype, family

history of dementia, and subjective and objectivemeasures of cognition, walking dura-

tion and sleepbehavior,was validated in the independentRotterdamStudywith higher

accuracy (AUC= 0.85 [0.81–0.89]). Yet, the improvement relative to amodel including

only age and APOE ε4wasmarginal.

DISCUSSION: Aβ prediction models including inexpensive and non-invasive measures

were successfully applied to a general population–derived samplemore representative

of typical older non-demented adults.

KEYWORDS

Alzheimer’s disease, amyloid-beta pathology, dementia, machine learning, predictionmodels

1 BACKGROUND

In 2021, the World Alzheimer Report estimated there were > 55 mil-

lion cases of dementia worldwide and forecasted that this number

would increase up to 42% within the next 10 years.1 Alzheimer’s dis-

ease (AD) is the leading cause of dementia, defined by neurotoxic

plaques forming amyloid beta (Aβ) peptides in the brain.2,3 Aβ can

trigger the aggregation of neurofibrillary tangles and subsequently

neurodegeneration resulting in progressive and irreversible cognitive
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decline. It was estimated that Aβ accumulation starts 15 to 20 years

before the onset of clinical symptoms.4

Given the key role of Aβ accumulation in the pathophysiology of

AD, enormous efforts are being undertaken to develop anti-amyloid

drug treatments that removeAβplaques at thepreclinical stage, before
dementia symptoms manifest.5,6 A crucial step in study enrolment,

as well as in translating treatment into clinical practice, is to identify

patients at an early stage of AD when irreversible brain damage is

still minimal. The only two clinically approved methods to confirm an
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elevated Aβ burden are a positive amyloid positron emission tomogra-

phy (PET) scan or positive cerebrospinal fluid (CSF) markers, both of

which are costly and invasive procedures with limited availability and

restricted to hospitals. Identifying at-risk individuals via an algorithm

predicting Aβ positivity is a cost-efficient, non-invasive method that

could help screening patients in clinical trials and eventually in primary

care beforemore elaborate confirmatory testing.

Ashford et al. provided a review of previously developed Aβ pre-

diction models.7 They found that prior work mostly restricted to

patients from highly specialized memory clinics, for example, 31.5%

of studies included the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) cohort.7–12 Due to recruitmentmechanisms (e.g., self-selection

in response to advertisement) and strict inclusion criteria (e.g., no vas-

cular disease), clinical studies likeADNI tend to includehighly educated

individuals who are more likely to report a family history of demen-

tia and show fewer comorbidities as well as higher prevalence of Aβ
pathology than observed in the general population.13–16 Aβ predic-

tion models derived from clinical samples may not translate well to

broader applications. Of particular concern is the lack of internal and

external validation found in 41% and 71%, respectively, of previous

studies.7 In contrast to clinical samples, epidemiological population-

based studies invite all residents of a well-defined area to participate

with less stringent inclusion criteria, and by design, aremore represen-

tative of the general population.17 Of the 21 studies which performed

external validation in Ashford et al.,7 only one study validated Aβ
prediction models in a population-based sample. This study demon-

strated good generalizability, but the validated model contained only

three predictors (age, apolipoprotein E [APOE] ε4, memory perfor-

mance) achieving moderately high performance (area under the curve

[AUC] = 0.71).18 To extend previous work, we examined the gen-

eralizability of more complex Aβ prediction models in the current

study.

Our goalwas to determine howaccurately predictionmodels, devel-

oped in a large convenience (clinical) sample with a wide range of

easily ascertainable predictors, could identify amyloid-positive individ-

uals from a population-based sample of older nondemented adults.

To this end, we developed two Aβ prediction models (with and with-

out APOE ε4 genotype) in cognitively unimpaired participants of the

cross-sectional Anti-Amyloid Treatment in Asymptomatic Alzheimer’s

(A4) Study (n = 4,119), considering 19 predictors. It should be noted

that other authors had already developed Aβ prediction models in the

A4 Study.19–21 Yet, new model development was necessary to include

the largest possible set of predictors that was available in both the

development and validation sample. Second, we internally validated

our models by estimating how accurately they identified Aβ status in
A4 Study participants not included in the model development, as well

as howmuch prediction improved compared to “basicmodels” (age and

APOE ε4), the two strongest known Aβ predictors.7 Third and critically,
we assessed external validity and temporal stability in the prospec-

tive population-based Rotterdam Study (n = 500), which was recently

enriched by amyloid PET (2018–2021), using predictors collected at

three different timepoints (on average 12 years before, 7 years before,

and 2 years after PET acquisition).

RESEARCH INCONTEXT

∙ Systematic Review: We reviewed the literature on amy-

loid beta (Aβ) prediction via PubMed and found that most

predictionmodels were derived from clinical studies with-

out external validation. The generalizability to a broader

population that Aβ prediction models intend to assist,

for example, during primary care workup of prodromal

Alzheimer’s disease, remains unclear.

∙ Interpretation: Our study developed and internally vali-

datedmodels that identified the presence of Aβ pathology
in a large cohort of nondemented adults with moderate

accuracy (area under the curve [AUC] = 0.73 [0.69–0.76],

n = 4,119). Importantly, we externally validated our mod-

els in a population-based cohort with higher accuracy

(AUC=0.85 [0.81–0.89], n=500). Age and apolipoprotein

E (APOE) ε4 genotype are the strongest predictors, while

other easily ascertainable predictors, such as family his-

tory of dementia and subjectivememory complaints, seem

to improve prediction mainly when APOE ε4 status is not

available.

∙ Future Directions: While our Aβ prediction model gener-

alized well to a geographically diverse but predominantly

White and highly educated cohort, further validation in

other ethnocultural groups and more diverse educational

backgrounds is urgently needed.

2 METHODS

2.1 Participants

2.1.1 A4 Study

The A4 Study was a randomized clinical trial that tested whether

solanezumab, an anti-amyloid antibody, slowed down cognitive decline

at the preclinical stage.14 The study consisted of 67 sites across

four countries (United States, Canada, Australia, and Japan) and col-

lected data from 2014 to 2017.22 Inclusion criteria were age 65 to

85 years, living independently, normal cognition (Mini-Mental State

Examination [MMSE] between 25 and 30, Clinical Dementia Rating

[CDR] = 0, Logical Memory II between 6 and 18 depending on educa-

tional level) and having a study partner. Exclusion criteria were use of

AD medication, significant depression or anxiety, and unstable medi-

cal condition. For the current study we used the screening data that

was collected before the start of the clinical trial and included 4,486

participantswhoall underwent amyloidPETexamination.Weexcluded

participants without information on APOE ε4 genotype (n = 45). We

further excluded participantswithmissing data regarding any of the 19

predictors (n = 322). The final sample contained 4,119 participants,
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NGUYENHO ET AL. 3

F IGURE 1 Flow chart illustrating the study design of (A) the A4 Study and (B) the Rotterdam Study. Aβ, amyloid beta; APOE, apolipoprotein E;
MRI, magnetic resonance imaging; PET, positron emission tomography; RS, Rotterdam Study

which served as our training and test dataset. A flowchart of the

participant inclusion is shown in Figure 1A.

2.1.2 Rotterdam Study

The Rotterdam Study is an ongoing longitudinal population-based

cohort study in the well-defined Ommoord district in the city of Rot-

terdam in the Netherlands.23 The Rotterdam Study started with 7,983

participants (RS-I) in 1990, extended with 3,011 participants (RS-II) in

2000, and3,932participants (RS-III) in2006 (response rateswere78%,

68%, and 65%, respectively). Participants were re-examined every 3

to 4 years. Between 2018 and 2021, a subsample of RS-II and RS-III

participants, who were ≥60 years, had a good-quality brain magnetic

resonance imaging [MRI], no PET-related contraindications, no large

cortical infarcts, or a clinical diagnosis of dementiawere invited for PET

examination. Out of 1,697 invited participants, 645 made an appoint-

ment (response rate 38%) and 639 PET scans were acquired (more

details in Method S1 in supporting information and in van Arendonk

et al.24). Figure 1B and Figure S1 in supporting information illustrate

participant inclusion and study design of the Rotterdam Study. For

the current study, we excluded participants with missing data for any

predictor that was chosen in our models. Overall, 365, 500, and 351

participants had all predictors collected on average 12 years before

(2006-2011), 7 years before (2010–2015), and 2 years (2021–2022)

after PET, respectively. We used the largest dataset (n= 500) to inves-

tigate the external validity of our prediction models. Because only a

subsample of the Rotterdam Study could receive a PET examination,

we evaluated possible selection bias with respect to all individuals who

were eligible for the PET study but did not participate (Table S1 in sup-

porting information). PET participants were on average younger (69.0

vs. 71.7 years), more highly educated (34.0% vs. 24.7%), had slightly

higher MMSE scores (28.6 vs. 28.3), and better Digit Symbol Substitu-

tion Test performance (32.3 vs. 30.9 pairs) than non-participants. All

other variables, for example, APOE ε4 or family history of dementia,

showed no significant group differences.

2.2 Study outcome

18F-florbetapir and 18F-florbetaben amyloid PET imaging was, respec-

tively, performed in the A4 Study22 and the Rotterdam Study24 and

further processed according to an established pipeline in which aver-

age cortical standardized uptake value ratio (SUVR) was calculated

withinFreeSurfer-defined frontal, cingulate, lateral parietal, and lateral

temporal regions and using the cerebellum as a reference (more details

in Method S2 in supporting information). Aβ status was determined

by an algorithm combining both quantitative SUVR and qualitative

visual reads in both studies.25 Two tracer-specific SUVR thresholds

were used tomark early and establishedAβ accumulation, for example,

1.10 to 1.15 in the A4 Study26 and 1.10 to 1.24 in the Rotter-

dam Study.24,27 An SUVR > 1.15/1.24 was deemed positive while an

SUVR < 1.10 was deemed negative independent of the visual rat-

ing. An SUVR between both thresholds was deemed positive only

when the visual read was considered positive by two independent

raters.
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4 NGUYENHO ET AL.

2.3 Study predictors

We included all possible predictors that were collected identically or

comparably and had no more than 30%missing values in both cohorts

(for details regarding predictor inclusion/exclusion see Table S2 in

supporting information).

2.3.1 Demographics

Thedemographic predictors includedage, sex (female,male), education

(lower [< 10 years of education], further [10–12 years], higher [> 12

years]), marital status (married/not married), and family history (0, 1,

or 2 parents diagnosedwith dementia).

2.3.2 Genetic measures

We included the number of APOE ε4 risk alleles (0, 1, 2) in our model,

as it is a strong genetic predictor of late-onset AD.7 APOE genotyp-

ing (rs7412 and rs429358) was performed on the Illumina Global

Screening Array in the A4 Study or on a biallelic Taqman assay in the

Rotterdam Study.24,28

2.3.3 Objective measures of cognitive performance

We included a screening test for dementia (MMSE), a test for execu-

tive functions (Digit- or Letter-Symbol Substitution), and for memory

performance (total free recall score from the Free and Cued Selective

Reminding Test of theA4Study29 and the 15-words learning test of the

RotterdamStudy30). Bothmemory testsmeasured delayedword recall

under controlled learning conditions.

2.3.4 Subjective measures of daily functioning

We also considered self-reports on cognitive complaints and daily

activities. To this end, two independent evaluators (PTNH and JN)

matched the content of different questionnaires across the two stud-

ies. They consistently identified four questions with comparable con-

tent reflecting “subjective memory difficulties” and “subjective word-

finding difficulties” as well as the “need for assistance with finances or

medication” (more details in Table S3 in supporting information).

2.3.5 Health and lifestyle measures

The seven health and lifestyle predictors we included were body mass

index (BMI, kg/m2), current smoking (yes/no), alcohol consumption

(number of glasses per day), sleep duration (number of hours per night),

napping during the day (yes/no), and physical activity (time spent doing

aerobics exercise and walking). In the A4 Study, physical activity was

assessed using the two questions: “average number ofminutes ofwalk-

ing per day” and “average number of hours of aerobic exercise per

week.” In theRotterdamStudy, physical activitywas assessed using the

LASA Physical Activity Questionnaire.31

2.4 Data analysis

Data analysis was performed in R statistical software (v4.1.3). To

develop our Aβ prediction models, we split the A4 dataset into two

parts, with 80% serving as the training set and 20% as the test set. The

test set was not seen during model training. To select only the most

informative predictors, we applied the least absolute shrinkage and

selection operator (LASSO) technique (caret package, v6.0-92). Com-

pared to standard logistic regression, LASSO constrains the sum of the

regression coefficients tominimize overfitting andmodelmisspecifica-

tion, which are known problems for predicting rare events such as Aβ
positivity.32 Specifically, LASSO can discard predictors from the final

model (by shrinking their coefficients), thus reducing variance that is

specific to the training data but would otherwise compromise general-

izability. The strength of the coefficient shrinkage is determined by the

lambda parameter. To choose the optimal values for lambda,we ran 10-

fold cross-validation during which we oversampled amyloid-positive

cases using the Synthetic Minority Oversampling Technique33 to pre-

vent the algorithm from learning mainly to predict amyloid negativity.

Because the coefficient shrinkage is sensitive to the variables’ unit, all

predictors were centered and scaled.

For our second aim, evaluating internal validity, we determined the

models’ calibration (by calibration slope and intercept [rms package

v6.2.0]) and classification performance in the A4 test set. Classifica-

tion performance was assessed by the area under the curve (AUC;

pROC package v1.18.0). We calculated the 95% confidence intervals

(CI) of the AUC values based on 1000 bootstrap samples. In addition to

AUC,we also reported sensitivity, specificity, and positive and negative

predictive value. We further estimated whether our models (here-

after referred to as “extended model”) added predictive performance

beyond a “basic model” containing age and APOE ε4.
For our third aim, validating our models in an independent

population-based sample, we compared the AUCs in the A4 test set to

those in the Rotterdam Study. To estimate the models’ temporal sta-

bility, we compared the AUCs with predictors collected at the three

different Rotterdam Study visits. In a supplementary analysis, we con-

trasted model performance across datasets that contained only those

participants that had all predictors available at all three visits (n=178).

Finally, based on our models’ performance in the Rotterdam Study val-

idation dataset, we estimated how many PET scans would need to

be performed to find one amyloid-positive scan when using our mod-

els with and without APOE ε4 compared to a situation in which no

predictionmodel is used.

3 RESULTS

3.1 Sample characteristics

Table 1 summarizes the sample characteristics. The average age at PET

acquisition was 71.3 (standard deviation [SD] = 4.7), 71.0 (SD = 4.8),
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TABLE 1 Sample characteristics.

A4 Study Rotterdam Study

Training set Test set

12 years

before PET

7 years before

PET

2 years after

PET

n 3296 823 365 500 351

Age at PET, mean (SD) 71.30 (4.66) 70.98 (4.75) 69.51 (5.33) 68.99 (5.10) 68.64 (5.04)

Years between predictors

and PET, mean (SD)

0 (0) 0 (0) −12.32 (0.96) −7.03 (0.86) 1.86 (0.71)

Amyloid PET status (%) Negative 2312 (70.1) 577 (70.1) 302 (82.7) 422 (84.4) 306 (87.2)

Positive 984 (29.9) 246 (29.9) 63 (17.3) 78 (15.6) 45 (12.8)

Demographic information

Sex (%) Female 1970 (59.8) 491 (59.7) 199 (54.5) 262 (52.4) 179 (51.0)

Male 1326 (40.2) 332 (40.3) 166 (45.5) 238 (47.6) 172 (49.0)

Race (%) White 3064 (93.0) 770 (93.6) 337 (92.3) 450 (90.0) 319 (90.9)

Asian 68 (2.1) 15 (1.8) 5 (1.4) 6 (1.2) 3 (0.9)

Black or African

American

118 (3.6) 28 (3.4) 3 (0.8) 3 (0.6) 2 (0.6)

American Indian or

AlaskanNative

6 (0.2) 3 (0.4) 0 (0) 0 (0.0) 0 (0.0)

Native Hawaiian or other

Pacific Islander

2 (0.1) 0 (0) 0 (0) 0 (0.0) 0 (0.0)

Mixed 0 (0) 0 (0) 1 (0.3) 1 (0.2) 0 (0.0)

Not available 38 (1.2) 7 (0.9) 19 (5.2) 40 (8.0) 27 (7.7)

Education (%) Lower 13 (0.4) 4 (0.5) 66 (18.1) 91 (18.2) 55 (15.7)

Intermediate 311 (9.4) 73 (8.9) 166 (45.5) 239 (47.8) 162 (46.2)

Higher 2972 (90.2) 746 (90.6) 133 (36.4) 170 (34.0) 134 (38.2)

Married (%) No 999 (30.3) 232 (28.2) 57 (15.6) 101 (20.2) 95 (27.1)

Yes 2297 (69.7) 591 (71.8) 308 (84.4) 399 (79.8) 256 (72.9)

Family history (%) No parent had dementia 1166 (35.4) 280 (34.0) 347 (95.1) 475 (95.0) 332 (94.6)

One parent had dementia 1788 (54.2) 460 (55.9) 17 (4.7) 24 (4.8) 18 (5.1)

Both parents had

dementia

342 (10.4) 83 (10.1) 1 (0.3) 1 (0.2) 1 (0.3)

Genetic measures

APOE ε4 allele count (%) 0 2153 (65.3) 523 (63.5) 259 (71.0) 342 (68.4) 253 (72.1)

1 1038 (31.5) 273 (33.2) 92 (25.2) 141 (28.2) 87 (24.8)

2 105 (3.2) 27 (3.3) 14 (3.8) 17 (3.4) 11 (3.1)

Objectivemeasures of cognitive performance

MMSE, mean (SD) 28.81 (1.21) 28.86 (1.17) 28.48 (1.47) 28.57 (1.29) 27.53 (5.58)

Delayedword-learning test,

mean (SD)

28.91 (5.55) 29.23 (5.77) 8.18 (2.75) 8.65 (2.77) 7.25 (2.85)

Digit Symbol Substitution

Test, mean (SD)

43.65 (8.91) 44.21 (9.09) 33.52 (5.79) 32.34 (5.90) 30.68 (6.27)

Subjectivemeasures of daily functioning

Subjectivememory difficulty

(%)

No 2547 (77.3) 633 (76.9) 199 (54.5) 281 (56.2) 162 (46.2)

Yes 749 (22.7) 190 (23.1) 166 (45.5) 219 (43.8) 189 (53.8)

Subjective word-finding

difficulty (%)

No 1236 (37.5) 324 (39.4) 273 (74.8) 381 (76.2) 240 (68.4)

Yes 2060 (62.5) 499 (60.6) 92 (25.2) 119 (23.8) 111 (31.6)

(Continues)
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TABLE 1 (Continued)

A4 Study Rotterdam Study

Training set Test set

12 years

before PET

7 years before

PET

2 years after

PET

Need for assistance with

finances or medication (%)

No 3076 (93.3) 770 (93.6) 340 (93.2) 437 (87.4) 319 (90.9)

Yes 220 (6.7) 53 (6.4) 25 (6.8) 63 (12.6) 32 (9.1)

Lifestylemeasures

BMI, mean (SD) 27.59 (5.18) 27.44 (4.78) 27.04 (4.13) 27.36 (4.14) 27.15 (3.96)

Aerobic exercise,

hours/week, mean (SD)

2.87 (3.79) 3.03 (3.89) 2.98 (3.62) 3.14 (4.72) 2.76 (5.19)

Walking, minutes/day, mean

(SD)

58.75 (60.47) 60.90 (66.40) 28.02 (36.06) 31.93 (40.10) 26.93 (25.91)

Sleep duration, hours/night,

mean (SD)

7.12 (1.06) 7.09 (1.06) 6.71 (1.06) 6.75 (1.21) 6.64 (1.41)

Napping during the day (%) No 2062 (62.6) 504 (61.2) 321 (87.9) 433 (86.6) 298 (84.9)

Yes 1234 (37.4) 319 (38.8) 44 (12.1) 67 (13.4) 53 (15.1)

Current smoking (%) No 3245 (98.5) 812 (98.7) 300 (82.2) 411 (82.2) 328 (93.4)

Yes 51 (1.5) 11 (1.3) 65 (17.8) 89 (17.8) 23 (6.6)

Alcohol, glasses/day, mean

(SD)

0.77 (1.12) 0.73 (1.19) 0.77 (0.93) 0.71 (0.91) 0.54 (0.80)

Abbreviations: A4, Anti-Amyloid Treatment in Asymptomatic Alzheimer’s; APOE, apolipoprotein E; BMI, body mass index; MMSE, Mini-Mental State

Examination; PET, positron emission tomography; SD, standard deviation; y, years.

and 69.0 years (SD = 5.10) in the A4 training set, A4 test set, and

the Rotterdam Study validation set, respectively. All three datasets

included slightly more women (59.8%, 59.7%, and 52.4%, respectively)

thanmenand themajority of participantswereWhite (93%, 93.6%, and

90%, respectively). In the A4 training and test sets, 34.7% and 36.5%,

respectively, carried at least one APOE ε4 risk allele, which was not

significantly different from the 31.6% in the Rotterdam Study. More

than half of the A4 Study participants, 64.6% in the training set and

66% in the test set, had at least one parent diagnosed with demen-

tia, in contrast to only 5.0% in the Rotterdam Study. Aβ positivity

was more frequent in the A4 Study (29.9%) than in the Rotterdam

Study (15.6%).

3.2 Model development and predictor selection

The extended model included most predictors, except higher educa-

tion, BMI, and alcohol consumption. The strongest predictors of Aβ
positivity were age (β = 0.20), family history with both parents diag-

nosed with dementia (β = 0.18), and subjective memory (β = 0.14)

and word-finding (β = 0.12) difficulties (Table 2). When APOE ε4 was

included, carrying one (β= 0.59) or two (β= 0.44) APOE ε4 risk allele(s)
became the strongest predictors, followed by age (β= 0.27), family his-

tory (β = 0.12), and subjective memory (β = 0.13) and word-finding

(β = 0.08) difficulties. The predictor selection was consistent with

the results of multivariate logistic regressions (Table S4 in support-

ing information) showing that all predictors with small (β > 0.05) to

medium (β > 0.10) LASSO weights were significantly related to Aβ
status.

3.3 Internal validity and added classification
performance of the Aβ prediction models

Calibration plots are presented in Figure S2 in supporting informa-

tion. The calibration slopes of the extended models were close to the

target value of one in both the A4 training and test sets (range: 0.89–

1.06) suggesting that the predicted risks were not extreme (e.g., not

too high for participants at high risk or not too low for participants at

low risk). The calibration intercepts were all slightly negative (−0.82 to

−0.85) implying that bothmodels had a small tendency tooverestimate

the risk of Aβ positivity in all participants. Classification performance

is shown in Table 3. The extended model showed moderate predic-

tive performance with an AUC of 0.62 [95% CIs: 0.60–0.64] in the A4

training set and 0.61 [0.57–0.65]) in the A4 test set, which was higher

relative to the performance of a basic model including only age (A4

training set: AUC = 0.56 [0.54–0.58]; A4 test set: AUC = 0.58 [0.54–

0.63]). The extended model with APOE ε4 reached an AUC equal to

0.73 [0.71–0.75] in the A4 training set and to 0.73 [0.69–0.76] in the

A4 test set. The improvement relative to the basic model with APOE

ε4 was marginal (A4 training set: AUC = 0.71 [0.69–0.73]; A4 test set:

AUC= 0.72 [0.68–0.76]).
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NGUYENHO ET AL. 7

TABLE 2 Standardized LASSOweights for Aβ predictionmodels.

Basic model

Extended

model

Basic model

withAPOE ε4
Extendedmodel

withAPOE ε4

Age 0.22 0.20 0.32 0.27

APOE, one ε4 allele – – 0.62 0.59

APOE, two ε4 alleles – – 0.46 0.44

Female – 0.03 – Not selected

Education, intermediate – –0.04 – Not selected

Education, higher – Not selected – Not selected

Married – 0.05 – Not selected

Family history, one parent had dementia – 0.04 – −0.02

Family history, both parents had dementia – 0.18 – 0.12

MMSE – −0.03 – −0.02

Delayedword-learning test – −0.09 – −0.05

Digit Symbol Substitution Test – −0.08 – −0.05

Subjectivememory difficulty – 0.14 – 0.13

Subjective word-finding difficulty – 0.12 – 0.08

Need for assistance with finances or medication – 0.01 – Not selected

BMI – Not selected – Not selected

Aerobic exercise, hours/week – 0.02 – Not selected

Walking, minutes/day – −0.03 – −0.02

Sleep duration, hours/night – −0.06 – −0.04

Napping during the day – −0.09 – −0.06

Current smoking – 0.03 – Not selected

Alcohol, glasses/day – Not selected – Not selected

Abbreviations: Aβ, amyloid beta;APOE, apolipoprotein E; BMI, bodymass index; LASSO, least absolute shrinkage and selection operator;MMSE,Mini-Mental

State Examination.

3.4 External validity and temporal stability of the
Aβ prediction models

External validity of the Aβ prediction models was tested in the Rot-

terdam Study using predictors collected 7 years before PET (Table 3).

While the relative predictive accuracy across the different models was

similar to that in the A4 Study, the absolute accuracy was higher in

theRotterdamStudy indicating high external validity. For the extended

model, AUC increased from 0.61 [0.57–0.65] in the A4 test set to 0.63

[0.56–0.70] in theRotterdamStudy. For the extendedmodelwithAPOE

ε4, performance improved considerably from an AUC of 0.73 [0.69–

0.76] in the A4 test set to 0.85 [0.81–0.89] in the Rotterdam Study.

Table S5 in supporting information shows the performance at differ-

ent probability thresholds. ROC curves are plotted in Figure 2. The

models performed robustly across the three Rotterdam Study visits

including predictors that were collected at three different timepoints

(Figure S3 in supporting information). AUC values ranged from 0.61 to

0.63 for the extended model and from 0.82 to 0.85 for the extended

model with APOE ε4 (Table 3). A supplementary analysis, in which we

only included participants with complete data across the three visits

(n = 178), yielded identical AUCs for the visits 12 and 7 years before

PET, but a slightly higher AUC for the visit 2 years after PET (Table S6

in supporting information).

Finally, as a proof of concept, we estimated how many individu-

als from the general population (age range 60–90 years) would need

to undergo PET imaging to find one amyloid-positive case (Table 4).

When no prediction model is used, 8.1 PET scans would have to be

acquired. This number was calculated as the inverse Aβ prevalence,

which was estimated to be 18.9% in non-demented individuals simi-

lar to the whole Rotterdam Study cohort.24 By applying our extended

model with APOE ε4 before PET, this number could be reduced to 6.5

PET scans (at a probability threshold set to achieve 90% sensitivity) or

4.1PET scans (at a probability threshold set to achieve90%specificity).

For our extended model without APOE ε4, we estimated that 8.0 PET

scans (at 90% sensitivity) or 6.7 PET scans (at 90% specificity)would be

necessary. The numbers for the prediction models were calculated as

the inverse positive predictive valueswhich themodels achieved in the

Rotterdam Study validation dataset, assuming again an Aβ prevalence
of 18.9%.
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8 NGUYENHO ET AL.

TABLE 3 Performance of the Aβ predictionmodels in the training, test, and external validation datasets.

Model n Prevalence Sensitivity Specificity PPV NPV Accuracy AUC [95%CI]

A4 training set

Basic model 3296 0.30 0.48 0.61 0.34 0.73 0.54 0.56 [0.54–0.58]

Extendedmodel 3296 0.30 0.57 0.60 0.38 0.77 0.59 0.62 [0.60–0.64]

Basic model with APOE ε4 3296 0.30 0.63 0.70 0.47 0.82 0.66 0.71 [0.69–0.73]

Extendedmodel with APOE ε4 3296 0.30 0.64 0.71 0.48 0.82 0.67 0.73 [0.71–0.75]

A4 test set

Basic model 823 0.30 0.48 0.67 0.38 0.75 0.57 0.58 [0.54–0.63]

Extendedmodel 823 0.30 0.55 0.62 0.38 0.76 0.58 0.61 [0.57–0.65]

Basic model with APOE ε4 823 0.30 0.66 0.68 0.47 0.82 0.67 0.72 [0.68–0.76]

Extendedmodel with APOE ε4 823 0.30 0.63 0.70 0.47 0.82 0.67 0.73 [0.69–0.76]

Rotterdam Study, 2 years after PET

Basic model 351 0.13 0.62 0.57 0.18 0.91 0.60 0.60 [0.50–0.69]

Extendedmodel 351 0.13 0.60 0.59 0.18 0.91 0.60 0.63 [0.54–0.71]

Basic model with APOE ε4 351 0.13 0.78 0.75 0.32 0.96 0.77 0.82 [0.75–0.88]

Extendedmodel with APOE ε4 351 0.13 0.78 0.73 0.30 0.96 0.75 0.82 [0.76–0.88]

Rotterdam Study, 7 years before PET

Basic model 500 0.16 0.64 0.59 0.23 0.90 0.62 0.63 [0.56–0.69]

Extendedmodel 500 0.16 0.56 0.61 0.21 0.88 0.59 0.63 [0.56–0.70]

Basic model with APOE ε4 500 0.16 0.82 0.72 0.35 0.96 0.77 0.84 [0.79–0.88]

Extendedmodel with APOE ε4 500 0.16 0.82 0.72 0.35 0.96 0.77 0.85 [0.81–0.89]

Rotterdam Study, 12 years before PET

Basic model 365 0.17 0.63 0.61 0.25 0.89 0.62 0.64 [0.56–0.71]

Extendedmodel 365 0.17 0.60 0.62 0.25 0.88 0.61 0.61 [0.53–0.69]

Basic model with APOE ε4 365 0.17 0.78 0.73 0.38 0.94 0.75 0.82 [0.76–0.87]

Extendedmodel with APOE ε4 365 0.17 0.75 0.74 0.37 0.93 0.74 0.82 [0.76–0.87]

Abbreviations: A4, Anti-Amyloid Treatment in Asymptomatic Alzheimer’s; Aβ, amyloid beta; APOE, apolipoprotein E; AUC, area under the curve; CI, 95%

confidence intervals; NPV, negative predictive value; PET, positron emission tomography; PPV, positive predictive value.

TABLE 4 Number of cognitively unimpaired participants necessary to undergo PET imaging to find one amyloid-positive case.

No prediction

modela Predictionmodelb withAPOE ε4 Predictionmodelb withoutAPOE ε4

Probability thresholdc – ≥0.42 ≥0.5 ≥0.68 ≥0.38 ≥0.5 ≥0.62

Number needed to scan 8.1 6.5 5.9 4.1 8.0 7.5 6.7

aWhen no prediction model is applied the number to be scanned for identifying one amyloid-positive case was calculated as the inverse of the estimated

Aβ prevalence. We assumed an average Aβ prevalence of 18.9% in cognitively unimpaired individuals aged between 60 and 90 years (this is an adjusted

prevalence estimatewe previously computed using an inverse probabilityweighting approach to adjust the proportion of amyloid-positive participants to the

characteristics (age, sex, education, andAPOE ε4 allele count) of all RotterdamStudy participants alive at the start of the PET study; see vanArendonk et al.,24

and Table S2 in supporting information).
bWhen our extended models with and without APOE ε4 are applied the number to be scanned was calculated as the inverse of the positive prediction value

(i.e., the likelihood to be truly amyloid-positive after a positive screen) derived for three different probability thresholds and assuming again a prevalence of

18.9%.
cThe probability thresholdswere chosen to achieve at least 90% sensitivity (at≈ 40%probability), balanced sensitivity and specificity (at 50%probability), or

90% specificity (at 60%–70% probability).

Abbreviations: Aβ, amyloid beta; APOE, apolipoprotein E; PET, positron emission tomography.
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NGUYENHO ET AL. 9

F IGURE 2 Receiver operating characteristic (ROC) curves display the performance of the (A) models without APOE ε4 and (B) models with
APOE ε4 in the A4 Study test dataset and in the Rotterdam Study dataset used for external validation. A4, Anti-Amyloid Treatment in
Asymptomatic Alzheimer’s Study; APOE, apolipoprotein E; RS, Rotterdam Study

4 DISCUSSION

In the current study, we developed two Aβ prediction models, one

without and one with APOE ε4, based on the A4 Study, the largest

amyloid PET study conducted to date (n = 4,119). When APOE ε4 was

not considered, easily ascertainable predictors, such as family history

of dementia or subjective cognitive complaints, improved predictive

accuracy (AUC = 0.61) compared to a basic model including only age

(AUC= 0.58). When APOE ε4 status was included, these predictors did
not considerably increase predictive accuracy compared to using age

and APOE ε4 only (AUC of 0.73 vs. 0.72). Importantly, these findings

were validated in the prospective population-based Rotterdam Study

(n= 500) with higher accuracy (e.g., AUC increased from 0.73 to 0.85).

Economicmodels only including predictors that are readily available

in the clinical routine (withoutAPOE ε4) have not achievedAUCs above
0.70.8,9,34–36 Two studies that also developed prediction models in the

A4 Study classified amyloid-positive cases with an AUC of 0.61 (based

on age, family history, BMI, free recall)19 or of 0.62 (based on age,

education, sex, family history, activity of daily living, cognitive status

[Cogstate, Cognitive Function Index, Preclinical Alzheimer Cognitive

Composite]).20 Because our extended model’s performance (AUC of

0.61) was highly consistent with these reports, the inclusion of novel

predictors, such as sleep duration,37 did not appear to aid predictive

performance. IncludingAPOE ε4 genotype improved prediction perfor-

mance above AUCs of 0.7 in most prior work including the current and

other A4-based studies (AUC= 0.73 in Petersen et al.19 and in current

study or AUC = 0.74 in Langford et al.20). Our results further suggest

that other readily ascertainable predictors did not increase predictive

accuracy significantly beyond the strong effect of APOE ε4. Likewise,
no considerable improvement above APOE ε4 was found for MMSE

and objective memory performance in the Amyloid Biomarker Study

(n = 2,908)38 or for subjective cognitive decline in the Harvard Aging

Brain Study, ADNI, and Australian Imaging Biomarker and Lifestyle

(AIBL) study (n= 890).35

To more accurately predict Aβ status, more sophisticated predic-

tors are probably necessary. Structural MRI and blood-based mark-

ers (Aβ42/40, phosphorylated tau181), for example, helped to reach

AUCs above 0.8 in multiple,9–11,39,40 but not all, previous studies.41,42

Because these models were developed in relatively small and highly

selected patient samples and often lacked external validation, their

performance in the wider population has yet to be determined (for

first population-based data seeMielke et al.43). Although available, we

decided not to include MRI in our models, because imaging is bur-

densome and expensive and therefore of limited use for screening

purposes. Plasma biomarkers, on the other hand, were not available

in the current cohorts, but seem to be promising minimally invasive

predictors of Aβ positivity if inconsistencies in sample handling and

untransparent usage of in-house assays are overcome.44 We are plan-

ning to enrich the Rotterdam Study with plasma biomarkers soon to

then validate corresponding Aβ predictionmodels.

The key strength of this study was that we externally validated

our developed models in an independent sample. The differences

in sample characteristics between the A4 Study and the Rotter-

dam Study (multi-centric cross-sectional assessment of a convenience

sample from North America, Australia, Japan versus mono-centric

prospective assessment of a population-based sample from Northern
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10 NGUYENHO ET AL.

Europe) allowed us to thoroughly determine the models’ performance

across different populations. Somewhat unexpectedly, predictive per-

formance was similar (model without APOE ε4) or higher (model with

APOE ε4) in the population-based validation dataset indicating that

Aβ prediction models can be applied to a broader population than

the one in which they were developed. We can only speculate about

what might have caused this performance boost. One explanation is

that an accumulation of various genetic factors (other than APOE ε4)
and/or environmental factors related to the high prevalence of fam-

ily history of dementia in the A4 Study may have underestimated the

predictive power of APOE ε4, while APOE ε4 is the main driver of Aβ
in an unselected sample like the Rotterdam Study. One previous study

that tested external validity in a population-based sample also found

robust performance. The best-performing model (including age, APOE

ε4, memory performance) reached an AUC of 0.75 and 0.72 in the clin-

ical training cohorts (ADNI, AIBL) and 0.71 in the Mayo Clinic Study of

Aging (MCSA) validation cohort.18 This result was similar to the per-

formance of the best model developed directly in the MCSA cohort

(AUC= 0.70; based on age, APOE ε4, family history, and subjective cog-

nitive difficulties45), but lower than the performance observed in the

current validation dataset (AUC= 0.85).

To our best knowledge the current study is one of the first to esti-

mate the stability of Aβ prediction models over time. We found robust

performance using predictors collected at three different timepoints

before and after PET acquisition. This was not surprising for the mod-

els including static APOE ε4 status. However, even the model without

APOE ε4,which contained comparably strong static (family history) and

dynamic predictors (subjective memory difficulty), showed high tem-

poral stability with a slight superiority for the timepoint closest to PET.

Future studies should confirm whether Aβ positivity can be predicted

with a time difference of up to 12 years as suggested by the current

results.42

We suggest two scenarios in which Aβ prediction models may be

useful in a general population setting: screening for clinical AD tri-

als and in primary care. Clinical trials increasingly move toward the

inclusion of asymptomatic subjects, because treatment may be more

effective before notable cognitive impairment and brain damage have

occurred. In trials which aim to include only amyloid-positive individu-

als (and thus would require a high specificity), prediction models could

reduce the number of unnecessary (negative) PET scans. We calcu-

lated that half the number of PET scans (4.1 instead of 8.1) would be

necessary for identifying one amyloid-positive individual, when apply-

ing our best performing model (extended model with APOE ε4) in
individuals similar to the Rotterdam Study. In contrast, in a future sce-

nario in which primary care would like to identify individuals for early

disease management, this would require high sensitivity to miss as

few amyloid-positive individuals as possible. Here, a prediction model

could increase confidence of primary health-care providers to refer a

patient to a specialized clinic. Such selective referralsmaybecomeeven

more critical in the future considering an increasing number of older

adults and likely more approved treatments against AD that require

confirmatory testing of underlying AD pathology as a first step.46

The current study has several limitations. First, not all predic-

tors were measured in identical ways across the two cohorts, with

the largest mismatch occurring between the different delayed recall

tests. Misestimation of Aβ risk could be a possible consequence but

should be marginal given the relatively small contribution of memory

performance to Aβ prediction. Second, the Rotterdam Study valida-

tion sample was not free of selection or nonparticipation bias, which

should be considered when interpreting the results. Third, although

our models performed comparably well relative to previous models,

the absolute performance was still insufficient for clinical use. Fourth,

it is likely that blood-based biomarkers could have improved predic-

tion, but they were not available in the two cohorts. Finally, although

we involved two independent studies in geographically diverse popula-

tions, most participants were non-Latinx White and highly educated,

and it therefore remains crucial to further validate the resulting

models in other ethnocultural groups and more diverse educational

backgrounds.

In conclusion, we confirmed that Aβ prediction models can be

generalized to a population with very different characteristics than

the convenience sample in which they were developed and which,

importantly, was more representative of typical older non-demented

adults.
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