
Vol.:(0123456789)1 3

European Radiology 
https://doi.org/10.1007/s00330-023-09615-y

TECHNICAL DEVELOPMENTS

Reproducibility of a combined artificial intelligence 
and optimal‑surface graph‑cut method to automate bronchial 
parameter extraction

Ivan Dudurych1 · Antonio Garcia‑Uceda2,3 · Jens Petersen4 · Yihui Du5 · Rozemarijn Vliegenthart1,6 · 
Marleen de Bruijne2,4 

Received: 26 July 2022 / Revised: 2 March 2023 / Accepted: 14 March 2023 
© The Author(s) 2023

Abstract
Objectives  Computed tomography (CT)–based bronchial parameters correlate with disease status. Segmentation and measure-
ment of the bronchial lumen and walls usually require significant manpower. We evaluate the reproducibility of a deep learning 
and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters.
Methods  A deep-learning airway segmentation model was newly trained on 24 Imaging in Lifelines (ImaLife) low-dose 
chest CT scans. This model was combined with an optimal-surface graph-cut for airway wall segmentation. These tools were 
used to calculate bronchial parameters in CT scans of 188 ImaLife participants with two scans an average of 3 months apart. 
Bronchial parameters were compared for reproducibility assessment, assuming no change between scans.
Results  Of 376 CT scans, 374 (99%) were successfully measured. Segmented airway trees contained a mean of 10 generations 
and 250 branches. The coefficient of determination (R2) for the luminal area (LA) ranged from 0.93 at the trachea to 0.68 
at the 6th generation, decreasing to 0.51 at the 8th generation. Corresponding values for Wall Area Percentage (WAP) were 
0.86, 0.67, and 0.42, respectively. Bland–Altman analysis of LA and WAP per generation demonstrated mean differences 
close to 0; limits of agreement (LoA) were narrow for WAP and Pi10 (± 3.7% of mean) and wider for LA (± 16.4–22.8% 
for 2–6th generations). From the 7th generation onwards, there was a sharp decrease in reproducibility and a widening LoA.
Conclusion  The outlined approach for automatic bronchial parameter measurement on low-dose chest CT scans is a reliable 
way to assess the airway tree down to the 6th generation.
Statement on clinical relevance  This reliable and fully automatic pipeline for bronchial parameter measurement on low-dose 
CT scans has potential applications in screening for early disease and clinical tasks such as virtual bronchoscopy or surgical 
planning, while also enabling the exploration of bronchial parameters in large datasets.
Key Points 
• Deep learning combined with optimal-surface graph-cut provides accurate airway lumen and wall segmentations on  
   low-dose CT scans.
• Analysis of repeat scans showed that the automated tools had moderate-to-good reproducibility of bronchial measurements  
   down to the 6th generation airway.
• Automated measurement of bronchial parameters enables the assessment of large datasets with less man-hours.
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using, for example, full-width at half-maximum [9], phase 
congruency [10], or optimal-surface graph-cut methods [11].

To evaluate early biomarkers of respiratory disease on 
low-dose chest CT scans, we built an automated pipeline 
for segmenting and quantifying the airway lumen and wall. 
We did this by combining two validated, open-source meth-
ods, for obtaining the airway lumen and wall segmentations, 
respectively. While previous studies have evaluated AI on 
lumen segmentations, we could not identify studies that have 
assessed their reproducibility when also measuring the air-
way wall in a fully automated way. Furthermore, this is the 
first combination of these 3D-Unet and 3D optimal-surface 
graph-cut methods for fully automated bronchial parameter 
evaluation. We aim to quantify the repeatability of this pipe-
line on low-dose chest CT. Subsequently, we computed the 
bronchial parameter measurements. We tuned this pipeline 
for the low-dose chest CT scan protocol and investigated its 
reproducibility using short-term repeated scanning.

Methods

CT scans

Scans for this study were obtained from the Imaging in 
Lifelines (ImaLife) study, which was approved by the local 
medical ethics committee, and is registered with the Dutch 
Central Committee on Research Involving Human Subjects 
(https://​www.​toets​ingon​line.​nl; Identifier: NL58592.042.16).

All scans were obtained using third-generation dual-
source CT (Somatom Force, Siemens Healthineers). Imag-
ing was performed with the participants in a supine position 
and coached to hold their breath at maximum inspiration. 
The ImaLife scanning protocol for lung imaging was as fol-
lows: 120 kVp, 20 mAs, pitch 3.0 (2.5 in large habitus), 
1/0.7 mm slice thickness/increment, and dose length product 
(DLP) of < 100 mGycm. Images were reconstructed with a 
quantitative-sharp reconstruction kernel (Qr59) [12].

Lumen segmentation

We used a deep learning airway segmentation method 
(Bronchinet) [3], based on a 3D U-Net model, to automati-
cally obtain airway lumen segmentation from the CT scans. 
For training, we used a dataset of 24 ImaLife scans to train 
Bronchinet from scratch, with ground truth airway segmenta-
tions generated with a previously reported method [13]. From 
the full dataset, we used 22 scans for training (i.e., optimising 
the model weights) and the remaining 2 scans for validation 
(i.e., early stopping and model convergence). The Bronchinet 
method was validated in a previous paper with a training set 

Abbreviations
AI	� Artificial intelligence
COPD	� Chronic obstructive pulmonary disease
CT	� Computed tomography
LA	� Luminal area
LoA	� Limits of agreement
LoA%	� Limits of agreement as percentage of overall 

measurement range
Pi	� Internal perimeter
Pi10	� Square root of the wall area of a hypothetical 

airway with internal perimeter of 10 mm
R2	� Coefficient of determination
SRWA​	� Square root of the wall area
TAC​	� Total airway count
TLV	� Total lung volume
WAP	� Wall area percentage

Introduction

Bronchial parameters are increasingly being investigated 
for use in the characterisation of pulmonary diseases such 
as chronic obstructive pulmonary disease (COPD) [1]. A 
potential benefit of developing robust bronchial parameters 
is the early detection of pulmonary disease. For example, 
screening for lung cancer with computed tomography (CT) 
may offer the opportunity for the evaluation of “off-target” 
organ systems such as the heart, bronchi, and vasculature 
[2]. While bronchial parameters could be used for the evalu-
ation of pulmonary disease, their use is limited by the man-
hours necessary for (manual) measurements. This step is 
further complicated by the low dose of screening CT scans, 
which can result in a worse image quality with more noise. 
Due to this, the development of reliable automated methods 
for CT bronchial parameter measurement is a necessary step.

To calculate bronchial parameters, most methods require 
segmenting and measuring the airway lumen and wall from 
chest CT scans. Segmentation of the airway lumen is chal-
lenging, due to the complex structure of the airway tree and 
the small size of most branches. Recently, deep learning meth-
ods for automatic segmentation of the airway lumen have 
achieved success [3–7]. Segmentation of the airway walls 
in the smaller branches is even more demanding, due to its 
small thickness and low contrast between the wall, lumen, and 
surrounding parenchyma. The thickness of the wall may fall 
below the scanner resolution, therefore lacking the stark con-
trast available in the larger airways. Airway wall segmentation 
has received less attention; currently, there are no automatic 
methods to obtain this directly from the CT scan without an 
initial seed placement or lumen segmentation [8]. Instead, the 
airway wall can be obtained as an additional refinement step 
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of similar size showing good performance [3]. We assessed 
the model performance using sixfold cross-validation.

Wall segmentation

An optimal-surface graph-cut method (Opfront) [11, 14] was 
used to refine the Bronchinet airway lumen segmentations 
and obtain the wall segmentation. Opfront performance was 
tuned on several parameters, which depend on the scan reso-
lution and protocol. We optimised the Opfront parameters 
using the COPDGene phantom, scanned using the ImaL-
ife protocol [15]. The optimised parameters were inner and 
outer derivatives, smoothness penalties/constraints, and 
surface separation penalty. These parameters were focused 
on as they most strongly influence the resulting lumen and 
wall segmentation. For all other parameters, we used the 
values suggested in Petersen (2015) [11]. The lumen and 
total diameters of the Opfront segmentation for the phantom 
tubes were measured and compared to the known dimen-
sions. To automatically search for the optimal parameter val-
ues, we used the Tree-structured Parzen Estimator algorithm 
[16], which modified parameters if the measurement error 
between phantom measurements and known dimensions was 
large [11]. Once phantom measurements were close to the 
known dimensions, Opfront was considered optimised.

Measurement of branches

From the airway lumen segmentations obtained by Bronchi-
net, discarding disconnected components. individual branches 
were extracted using a front-propagation method as described 
in the EXACT’09 challenge [17, 18]. Branch generations were 
determined based on Weibel’s airway model, which defines a 
new generation at each branching point [19]. Measurements 
of the airway lumen and wall radii were calculated for all 
branches, measured at regular intervals of 0.5 mm along the 
branch centreline, and averaged. Terminal branches of less 
than 2 mm in length were automatically discarded.

Automated pipeline

We combined the Bronchinet and Opfront methods in an auto-
mated pipeline to obtain the wall segmentation and bronchial 
parameter measurements directly from input CT scans. For 
this, we built a docker image [20] to link both tools and man-
age software dependencies. This allows deploying the pipeline 
in any computing system featuring at least 16 GB RAM and a 
CUDA-compatible graphics card with at least 8 GB memory.

Reproducibility study

A total of 188 ImaLife participants with two scans an 
average of 3 months apart were included. None of these 

participants were included in the Bronchinet model train-
ing. For more information on the ImaLife study, please see 
prior publications [12, 21]. Participants were invited for a 
short-term repeat scan for scientific purposes in case of an 
intermediate nodule (100–300 mm3) on the first scan. All 
scans were automatically processed by the proposed pipe-
line. Inspiration levels were quantified based on the total 
lung volume (TLV), derived from automated lung segmenta-
tion [22]. Participants with a difference in inspiration defined 
by a TLV difference between first and second scans greater 
than 15% were excluded from the analysis [23]. Bronchial 
parameters were automatically calculated from airway 
branch lumen and wall radii, namely luminal area (LA), wall 
area percentage (WAP), and the square root of the wall area 
(SRWA) at a hypothetical airway with an internal perimeter 
of 10 mm (Pi10). Pi10 was calculated by linear regression 
of SRWA compared to the internal perimeter of the airway 
branch, excluding the trachea, and including branches up to 
and including the 6th generation (Figure S1) [24].

Statistical analysis

To measure the reproducibility of the pipeline, the coefficient 
of determination (R2) was calculated for bronchial parameters 
per airway generation by first and second CT scan compari-
son. An R2 of > 0.7 was considered good, 0.7–0.5 moderate, 
and < 0.5 poor [25]. Bland–Altman analysis was performed 
to calculate the limits of agreement (LoA) for each bronchial 
parameter per generation. The python package statsmodels 
(v 0.13.5) was used for statistical analysis [26].

Results

Bronchinet and Opfront performance

On the cross-validation assessment of Bronchinet with the 
24 ImaLife scans, the median Dice overlap coefficient for the 
obtained airway lumen segmentations was 0.92 (inter-quartile 
range (IQR), 0.83–0.93), the median centreline complete-
ness was 85.2% (IQR 78.8–89.4%), and the median centreline 
leakage (indicating predicted false-positive centrelines) was 
7.1% (IQR, 3.5–10.8%) As the volume of the trachea and 
main bronchi dominate these values, they were excluded to 
focus on downstream segmentation performance.

The optimised Opfront segmentation of the COPDGene 
phantom resulted in sub-voxel accuracy. The lumen diam-
eter was estimated within a mean unsigned error of 3.1% 
(0.13 ± 0.07 mm), and the total diameter with an average 
unsigned error of 5.8% (0.35 ± 0.20 mm) (Table 1). The air-
way segmentations were fully 3D and the extracted airways 
reached the 10th generation on average (Fig. 1). The total 
execution time was 28 ± 4 min per scan.
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Reproducibility study

Out of 376 scans, 374 (99%) were successfully segmented 
and measured. Twenty of 188 participants were excluded 
due to a difference in TLV of > 15% between the first and 
second scans. The final group comprised 98 male and 70 
female participants with a repeat scanning within 3 months 
(98 ± 14 days). The mean age was 59.6 ± 9.4 and the body 
mass index (BMI) was 26.5 ± 3.8. Of the 168 included par-
ticipants, 40 were never-smokers, 76 were smokers, 39 had 
a COPD diagnosis and 13 participants had missing COPD 
disease status (Table 2). The mean pack-year history for 
smokers was 14.7 ± 8.1  years. Mean CT measurements 
were 5.52 ± 1.28 L for TLV, 250 ± 54 for total airway count 
(TAC), 42.0 ± 2.3% for 3rd generation LA, 56.4 ± 3.4% for 
3rd generation WAP, and 3.92 ± 0.12 for Pi10.

The coefficient of determination (R2) of LA ranged from 
0.93 at the trachea to 0.68 at the 6th generation, decreasing 
to 0.51 at the 8th generation. Corresponding values for WAP 
were 0.86, 0.67, and 0.42, respectively (Fig. 2A).

For Pi10, R2 was 0.69 (Fig. 2B) and LoA was ± 0.14 mm 
(± 3.7% of mean) with a mean difference (MD) of 0.00 mm 
(Fig. 2C). For LA, MD ± LoA ranged from − 0.1 ± 37 mm2 
at the trachea to − 0.1 ± 3.7 mm2 at the 6th generation, and 
down to − 0.15 ± 6.6 mm2 at the 8th generation (Table 3). 
For WAP, MD ± LoA ranged from 0.05 ± 1.4% at the trachea 
to 0.14 ± 4% at the 6th generation and down to 0.25 ± 5.4% 
at the 8th generation. LoA expressed as a percentage of the 
mean (LoA%) was between ± 5.9 and 9.3% for WAP. LoA% 
for LA was ± 7.4–6.8% at the 0–1st generations, widening 
to ± 16.4–22.8% for the 2nd to 6th generations, and further 
increasing to ± 28.9–36.3% at the 7th to 8th generations 
(Table 3).

Discussion

In this study, we built an automated pipeline for low-dose 
chest CT scans to obtain segmentations of the airway lumen 
and wall by combining two open-source methods. The result-
ing segmentations yielded automated quantitative bronchial 
parameters. Repeated scans showed moderate to good repro-
ducibility (R2 > 0.6) of bronchial parameters down to the 
6th generation. The Bland–Altman analysis showed no sys-
tematic bias and narrow limits of agreement for Pi10 and 
WAP, but wider for LA, demonstrating a lower variability 

Table 1   Opfront measurement error for phantom tube lumen and wall

Measurement error (mm)
Tube Lumen Wall

1 0.09  − 0.15
2 0.09 0.03
3 0.09  − 0.22
4  − 0.00 0.21
5 0.05  − 0.01
6 0.04 0.24
7  − 0.05 0.33
8 0.14  − 0.22

Fig. 1   a 3D rendering of the airway lumen (yellow) and wall (blue) 
of an ImaLife participant CT scan. Disconnected components (grey) 
were discarded prior to bronchial parameter measurement. Maximum 

generation: 8. b 2D overlay of the airway lumen (yellow) and wall 
(blue) segmentations on sagittal, coronal, and axial planes respec-
tively
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in summary parameters like Pi10 and WAP compared to the 
direct measurement of LA.

The use of low-dose CT scans for lung cancer screening 
provides the opportunity to screen for other early diseases 
such as COPD, bronchiectasis, and cardiac disease, which 
may influence lung cancer risk and/or prognosis. Automated 
bronchial parameter measurement can enable the screening 
of large cohorts in a reasonable timeframe with good reli-
ability. Furthermore, fully 3D segmentation can be readily 
useful in clinical tasks such as virtual bronchoscopy or surgi-
cal planning. However, for bronchial parameters, it is hard to 
determine whether the airways are normal or abnormal. The 
number of never-smokers in bronchial parameter research 
is typically very small [27]. Combined with heterogenous 
bronchial parameter methodology, it is unclear what quan-
titatively defines “normal” airways on low-dose CT and by 
which bronchial parameter. This study demonstrated a wider 
variability in measurements for LA than Pi10 or WAP. While 
this could in part concern variability or error due to meth-
odology, additional factors like seasonal changes, smoking, 
or illness before a scan could result in true differences. Pi10 
averages many branches, while WAP includes wall thickness 

Table 2   Characteristics of participants

Data are displayed as mean and standard deviation or number (per-
centage). Mean CT measurements were calculated from the first scan. 
BMI body mass index, N number, SD standard deviation, TLV total 
lung volume, WAP wall area percentage, LA luminal area, TAC​ total 
airway count. * Pack-years do not include never-smokers

Variable Number (%) or Mean ± SD

Participants 168 (100%)
  Male/female 98 (58%) /70 (42%)
  Never-smoking 40 (24%)
  Smoking 76 (45%)
  COPD 39 (23%)
  No status 13 (8%)

Age (years) 59.6 ± 9.4
BMI (kg/m2) 26.46 ± 3.78
Pack-years* 14.7 ± 8.1
TLV (L) 5.52 ± 1.28
Pi10 (mm) 3.92 ± 0.12
WAP (%) 56.4 ± 3.42
LA (mm2) 42.0 ± 2.31
TAC (n) 250 ± 54

Fig. 2   a Reproducibility 
analysis. Comparison of 
bronchial parameter measure-
ments between first and second 
scans per generation by the 
coefficient of determination. b 
Scatter plot and regression line 
of Pi10 measurement on first 
and second scans. c Limits of 
agreement for Pi10 between first 
and second scans. R2 coefficient 
of determination, SD standard 
deviation
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in its calculation and so could be more resistant than LA to 
localised variations in measurements. Our pipeline provides 
similar reproducibility of LA and WAP as previous methods 
on similar datasets [11], but it also gives better reproducibil-
ity of Pi10 [28]. Additionally, it offers fully automatic bron-
chial parameter measurement using low-dose noisy scans.

Various methods can be used as an initial step for lumen 
segmentation. We used Bronchinet due to its state-of-the-
art performance [3], speed, and open-source availability 
which enabled retraining on the low-dose scans in this 
study. Fully automated bronchial parameter calculation has 
been previously proposed using tools trained on manually 
traced borders alongside older algorithms such as FWHM, 
intensity-based, and phase congruency [29, 30]. However, 
previous research shows that manual and FWHM meas-
urement overestimates the airway wall [31], which is also 
evident when used to measure the COPDGene phantom 
(Table S2). Compared to these approaches the advantage of 
our method is that Opfront was optimised on a phantom with 
precise physical measurements, eliminating the bias in wall 
measurements that comes with the previously mentioned 
approaches. The pipeline output is a ready-to-use 3D model 
of the airways, which has potential applications in tasks such 
as virtual bronchoscopy, airflow simulation, and 3D print-
ing. Deploying the pipeline in a docker image provides the 
method as ready-to-use and implementable in clinical prac-
tice. For lumen segmentation, good results could be read-
ily achieved by using the publicly available trained model 
bundled with Bronchinet [3], which uses airway segmen-
tations for training from the Danish Lung Cancer Screen-
ing Trial [32] in combination with an Erasmus-MC Sophia 
(cystic fibrosis) dataset [33]. The ImaLife scan protocol has 
a lower radiation dose with a total DLP of < 100 mGycm, 
and more noise in the scans; retraining the tools resulted 
in better performance [13]. For maximum performance on 
different datasets, optimising the pipeline for the target CT 
protocol may be necessary. This was achieved by re-training 

the Bronchinet with efficiently generated ground truths, and 
tuning Opfront using a physical phantom.

A limitation of this study is the lack of severe airway 
disease in the cohort as the ImaLife study comprises a 
general population. Evaluation of severe cases is important 
prior to adoption in a clinical setting, where scan proto-
col may also change. For the analysis, we assumed that 
there are no short-term differences in bronchial param-
eters between the scans. However, factors such as illness 
or smoking before the scan could have an impact on the 
bronchial parameter results. This would tend to increase 
variability between scans, which could mean that the 
actual scan-rescan repeatability may be better than we 
currently report. The methods used do not perform ana-
tomical airway labelling, and so we could not compare the 
repeat measurements of specific airway branches directly. 
Instead, we focused on average values per generation for 
participants. Lastly, Bronchinet does not guarantee a fully 
connected airway segmentation, some peripheral branches 
may be discarded during measurement. For cases with an 
occluded lumen, this could result in the exclusion of seg-
mented airways beyond the blockage.

In conclusion, we demonstrate a comprehensive and 
fully automatic pipeline for bronchial parameter measure-
ment on low-dose CT using open-source tools. Based on 
the results of short-term repeat CT scanning, the pipeline 
provides reliable bronchial parameters down to the 6th 
generation. Overall, these methods enable the exploration 
of bronchial parameters in large low-dose CT datasets 
after an initial investment in the training and optimisation 
of deep learning and optimal-surface graph-cut methods.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00330-​023-​09615-y.
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Table 3   Mean difference (MD) 
and limits of agreement (LoA) 
and LoA as a percentage of 
overall range (LoA%) between 
the first and second scan for 
the luminal area and wall 
area percentage per airway 
generation

Gen generation

Luminal area 
(mm2)

Wall area percent-
age (%)

Gen MD LoA LoA% MD LoA LoA%

0  − 1.10  ± 37  ± 7.4 0.05  ± 1.4  ± 5.9
1  − 0.19  ± 16  ± 6.8 0.02  ± 2.3  ± 6.1
2     0.37  ± 19  ± 16.4  − 0.14  ± 3.8  ± 6.1
3     0.19  ± 9.2  ± 12.6  − 0.01  ± 4.2  ± 9.1
4     0.25  ± 6.3  ± 20.6  − 0.13  ± 4.5  ± 8.5
5  − 0.09  ± 4.4  ± 22.5 0.12  ± 4.2  ± 7.5
6  − 0.10  ± 3.7  ± 22.8 0.14  ± 4.0  ± 6.8
7  − 0.04  ± 3.5  ± 28.9 0.12  ± 4.5  ± 7.4
8  − 0.15  ± 6.6  ± 36.3 0.25  ± 5.4  ± 9.3
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