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Figure 2: Results for Aim 1: Structural Flexibility.
(A) The backbone of CDR loops adopts different 

conformations between bound and unbound states (gold: 
1AO7 for A6 TCR bound to pMHC; blue: 3QH3 for 
unbound A6 TCR).

(B) Greatest RMSD range (Å) in CDR3α/β loops.
(C) Lowest TM-score range in CDR3α/β loops.
(D) Lowest lDDT range in CDR3α/β loops.

Future Directions

• Increase the number of TCR complexes 
studied for more definitive conclusions.

• Implement more structural difference 
methods.[9]

• Evaluate the role of MHC flexibility in 
cross-reactivity.

• Explore TCR structural flexibility upon 
binding to peptide presented by MHC.

• Evaluate role of TCR structural  
flexibility in cross-reactivity.
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Figure 1: Structures of the TCR-pMHC complex.
(A) TCR chains engage with peptide presented by MHC.
(B) Structures as modeled by bound A6 TCR 1AO7. 
(C) CDR loops of bound A6 TCR 1AO7.

Figure 3: Results for Aim 2: Cross-Reactivity.
(A) The backbone of CDR loops adopts different conformations 

among three A6 TCR bound to different peptides (gold: 
1AO7 bound to LLFGYPVYV; blue: 3H9S bound to 
MLWGYLQYV; pink: 3PWP bound to LGYGFVNYI).

(B) Greatest RMSD range (Å) in cross-reactive CDR3α/β loops.
(C) Lowest TM-score range in cross-reactive CDR3α/β loops.
(D) Lowest lDDT range in cross-reactive CDR3α/β loops.

Definitions

LYRA 1.0[7]- used to 
determine CDR 

regions through input 
of TCR chain 
sequences

UCSF Chimera[8]- used 
to visualize structural 
differences through 
alignment function

RMSD- root-mean-square 
deviation, measures the 

average distance between 
corresponding atoms

Higher value indicates greater 
structural difference

TM-score- template modeling 
score, measures the alignment 

and structural similarity 
between two protein structures
Lower value indicates greater 

structural difference

lDDT- Local Distance 
Difference Test, measures the 
distance differences between 

atom pairs in model and 
reference structures

Lower value indicates greater 
structural difference

Conclusions

• Aim 1: CDR3α/β loops display a greater 
degree of structural flexibility than other 
CDR loops.

• Aim 2: CDR3α/β loop-mediated structural 
flexibility is found in cross-reactivity.

• T-cells have become of interest for cancer 
therapies due to their ability to recognize and 
engage with tumor antigens.[1] T-cells receptors 
(TCR) interact with peptide-major histocompa-
tibility complexes (pMHC) to trigger a 
response.[2]

• During an immune response, T-cells proliferate 
until the pathogen is cleared, and a portion of 
them will develop an antigen-specific memory, 
allowing a stronger and faster immune 
response in an event of reactivation.[3]

• There are two parts to each TCR chain (α and 
β): the variable and the constant region. Within 
each variable region, there are three 
complementarity-determining regions (CDR1, 
CDR2, and CDR3).[2]

• While CDR1 and CDR2 more often interact 
with MHC helices, CDR3, the most structurally 
diverse of all loops, engages with peptides to a 
great extent.[2] To advance therapeutic 
interventions, a greater understanding needs to 
be reached through the evaluation of structural 
flexibility and cross-reactivity of TCR.
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