

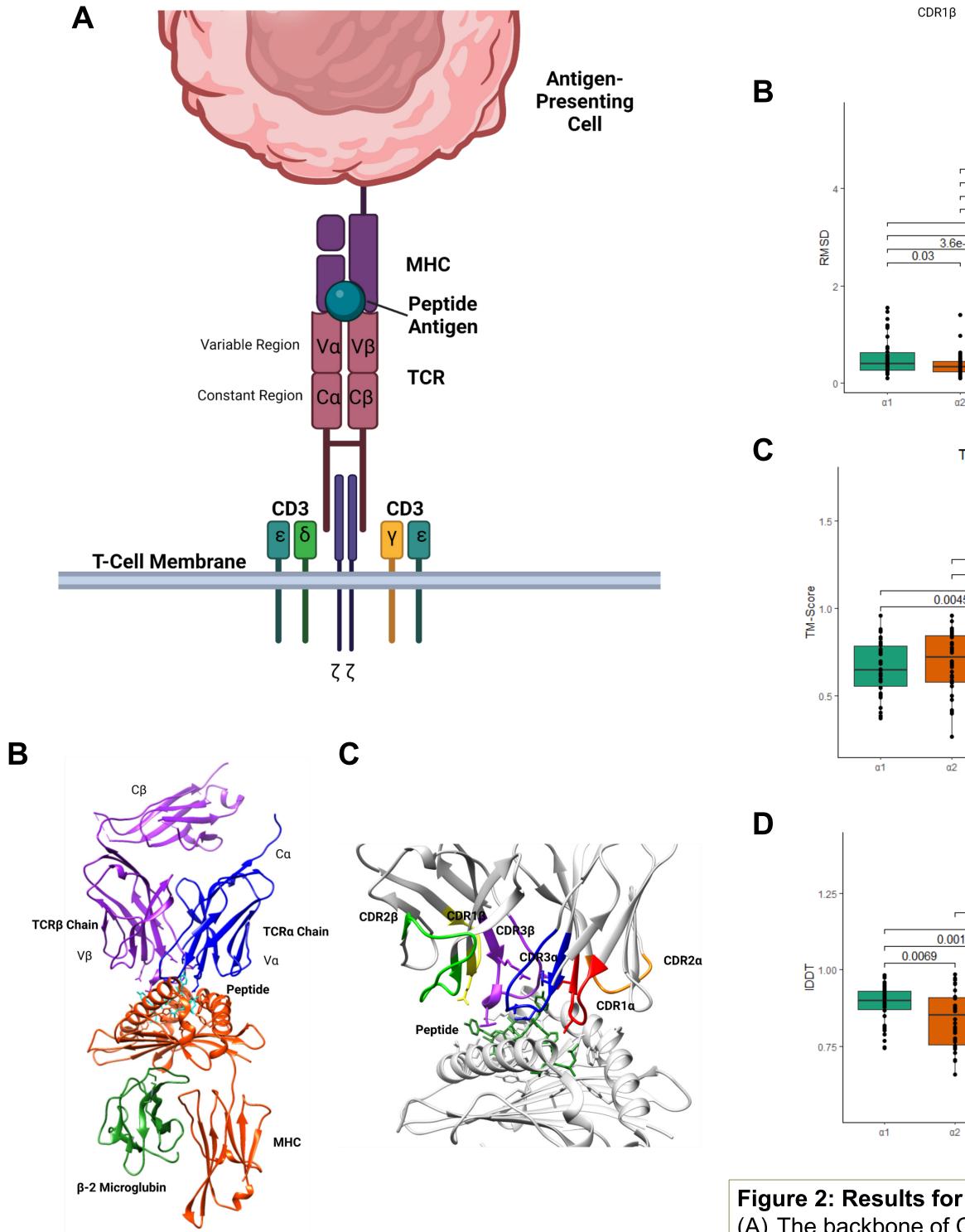
Evaluation of Structural Flexibility and Cross-Reactivity of the T-Cell Receptor

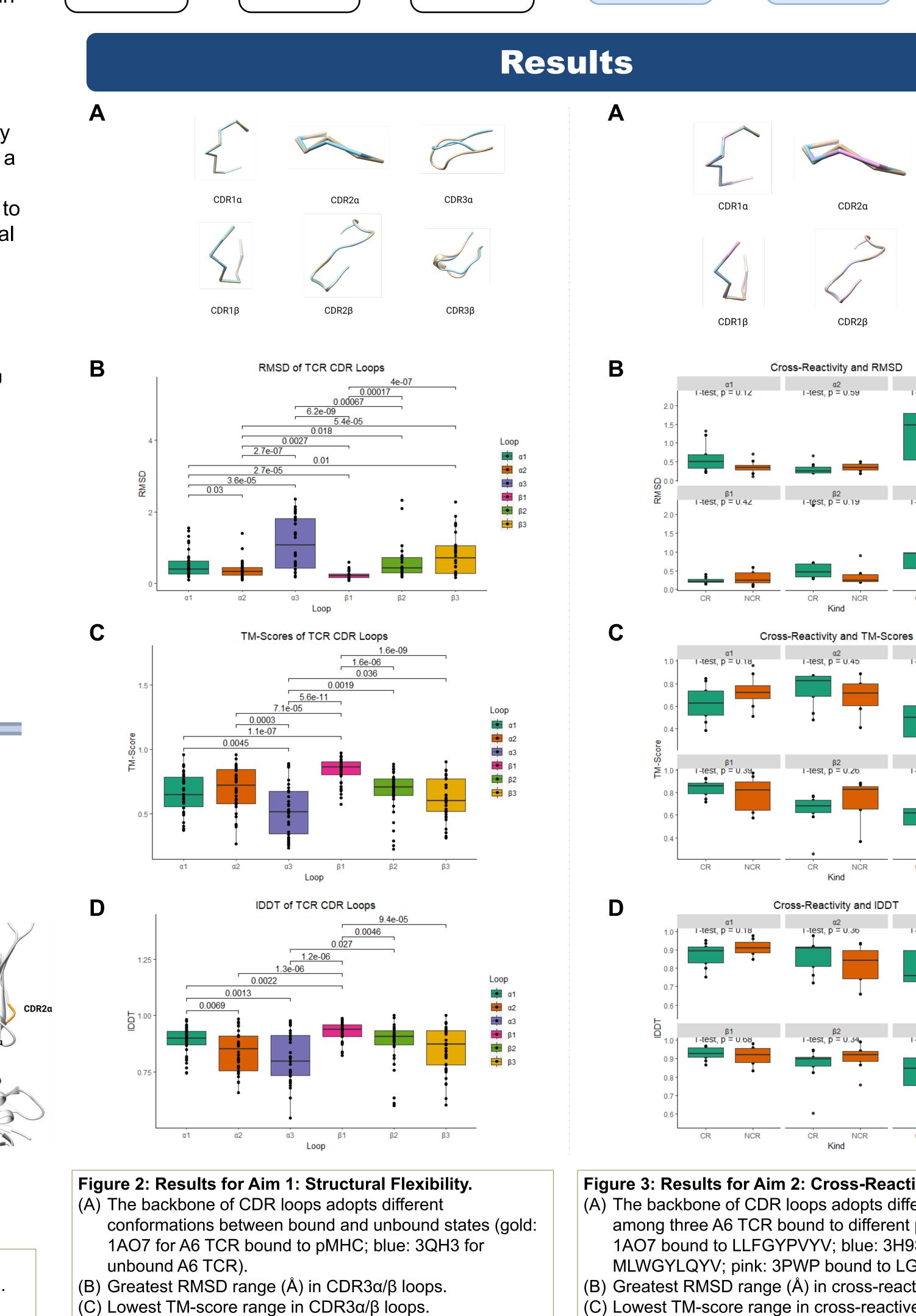
Margaret He^{1,2}, Xianli Jiang, PhD², Kun Hee Kim^{2,3}, Ken Chen, PhD^{1,2,3}

¹ King Foundation High School Summer Program, School of Health Professions; ² Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center; ³ UTMDACC UTHealth Graduate School of Biomedical Sciences, Houston, TX

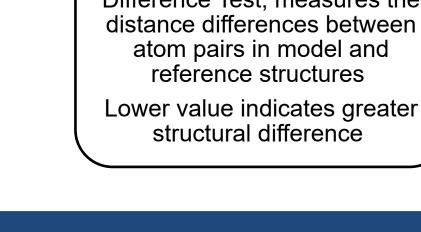
THE UNIVERSITY OF TEXAS MDAnderson **Cancer** Center

Making Cancer History®


Background


- T-cells have become of interest for therapies due to their ability to reco engage with tumor antigens.^[1] T-ce (TCR) interact with peptide-major tibility complexes (pMHC) to trigge response.^[2]
- During an immune response, T-cel until the pathogen is cleared, and them will develop an antigen-speci allowing a stronger and faster imm response in an event of reactivatio
- There are two parts to each TCR β): the variable and the constant re

d	Objective		Definitions
for cancer ecognize and -cells receptors or histocompa- ger a	 Explore TCR structural flexibility upon binding to peptide presented by MHC. 	 Evaluate role of TCR structural flexibility in cross-reactivity. 	<u>LYRA 1.0^[7]- used to</u> determine CDR regions through input
	Methods		of TCR chain sequences alignment function
cells proliferate d a portion of ecific memory, nmune tion. ^[3] R chain (α and t region. Within	Aim 1: Structural Flexibility <u>Aim 2: Cross-Reactivity</u>		<u>RMSD-</u> root-mean-square deviation, measures the score, measures the alignment
	Download bound/unbound TCR complexes from RCSB PDB (38 pairs) ^[1] Image: Truncate TCR chains of all PDBs to only include CDR loop regionsImage: Perform RMSD ^[4] , TM- score ^[4] , and IDDT ^[5] tests between respective loops of bound and unbound TCR	Download cross- reactive/non-cross- reactive bound/unbound TCR complexes (31 cross-reactive pairs and 8 non- cross-reactive pairs) ^[1,6]	average distance between corresponding atoms and structural similarity between two protein structures Higher value indicates greater structural difference Lower value indicates greater structural difference IDDT- Difference Test, measures the distance differences between

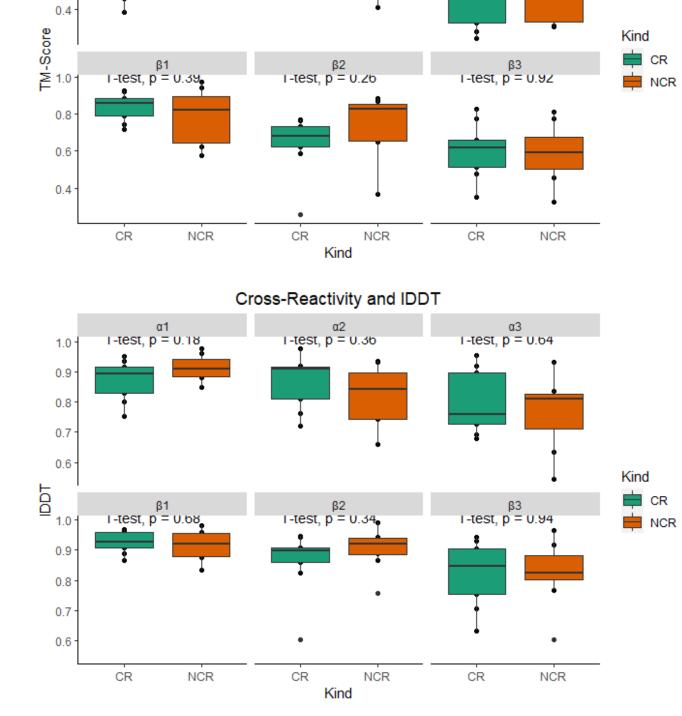

each variable region, there are three complementarity-determining regions (CDR1, CDR2, and CDR3).^[2]

While CDR1 and CDR2 more often interact with MHC helices, CDR3, the most structurally diverse of all loops, engages with peptides to a great extent.^[2] To advance therapeutic interventions, a greater understanding needs to be reached through the evaluation of structural flexibility and cross-reactivity of TCR.

(D) Lowest IDDT range in CDR3 α/β loops.

Conclusions

- <u>Aim 1:</u> CDR3 α/β loops display a greater degree of structural flexibility than other CDR loops.
- <u>Aim 2:</u> CDR3α/β loop-mediated structural flexibility is found in cross-reactivity.


Future Directions

- Increase the number of TCR complexes studied for more definitive conclusions.
- Implement more structural difference methods.^[9]
- Evaluate the role of MHC flexibility in cross-reactivity.

References

1. Waldman, et al. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 2020,

Figure 1: Structures of the TCR-pMHC complex. (A) TCR chains engage with peptide presented by MHC. (B) Structures as modeled by bound A6 TCR 1A07. (C) CDR loops of bound A6 TCR 1A07.

Kind

a2 1-test, p = 0.45

CDR3a

CDR3_β

β3 I-test, p = 0.92

α3 I-test, p = 0.58

CDR2d

CDR2β

Figure 3: Results for Aim 2: Cross-Reactivity.

(A) The backbone of CDR loops adopts different conformations among three A6 TCR bound to different peptides (gold: 1AO7 bound to LLFGYPVYV; blue: 3H9S bound to MLWGYLQYV; pink: 3PWP bound to LGYGFVNYI). (B) Greatest RMSD range (Å) in cross-reactive CDR3 α/β loops. (C) Lowest TM-score range in cross-reactive CDR3 α/β loops. (D) Lowest IDDT range in cross-reactive CDR3 α/β loops.

- 20:651-668. https://doi.org/10.1038/s41577-020-0306-5
- 2. Wong, et al. Comparative Analysis of the CDR Loops of Antigen Receptors. Front. Immunol., 2019, 10. https://doi.org/10.3389/fimmu.2019.02454
- 3. Mangani, et al. Learning from the nexus of autoimmunity and cancer. Immunity, 2023, 56(2):256-271.

https://doi.org/10.1016/j.immuni.2023.01.022

- 4. Zhang & Skolnick. TM-align: A protein structure alignment algorithm based on TM-score, Nucleic Acids Research, 2005, 33(7):2302-2309. https://doi.org/10.1093/nar/gki524
- 5. Mariani, et al. IDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 2013, 29(21):2722-2728. https://doi.org/10.1093/bioinformatics/btt473
- 6. Armstrong, et al. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem J., 2008, 415(2):183-196. https://doi.org/10.1042/BJ20080850
- 7. Klausen, et al. LYRA, a webserver for lymphocyte receptor structural modeling. Nucleic Acids Research, 2015, 43(W1):W349-W355. https://doi.org/10.1093/nar/gkv535
- 8. Petterson, et al. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 2004, 25(13):1605-1612. https://doi.org/10.1002/jcc.20084
- 9. Olechnovič, et al., Comparative analysis of methods for evaluation of protein models against native structures. Bioinformatics, 2019, 35(6):937-944. https://doi.org/10.1093/bioinformatics/bty760

Acknowledgments

Special thanks to the King Foundation and UTMDACC SHP for their support. Diagrams created with Biorender.com. Molecular graphics generated with UCSF Chimera.