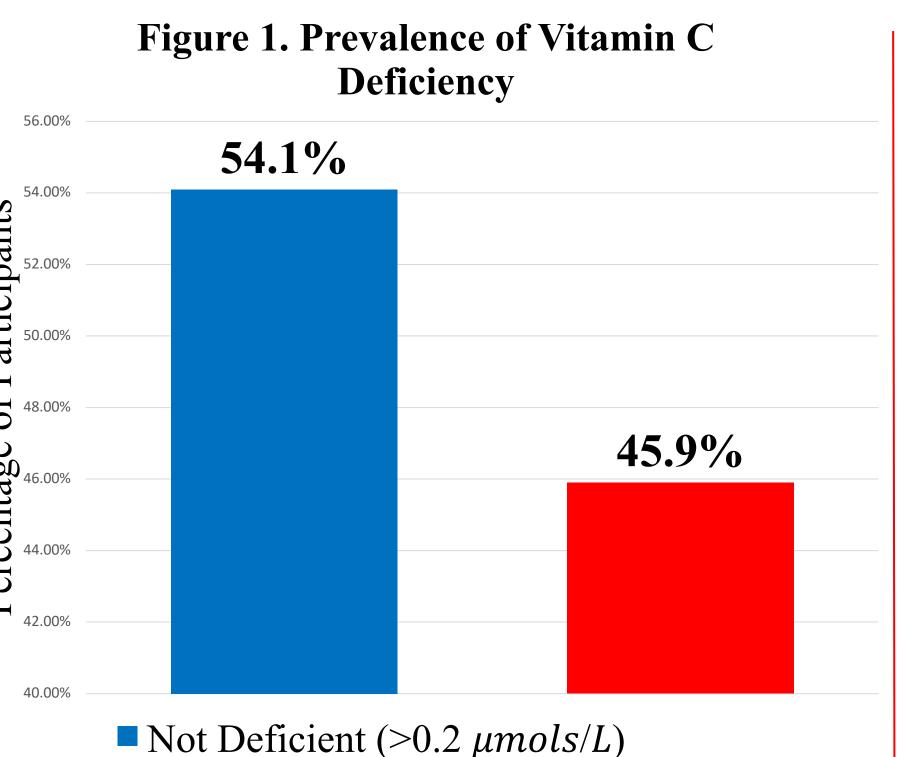


Identifying the Prevalence of Vitamin C Deficiency and Examining the Associated Factors in Children, Adolescents, and Young Adults with Cancer Katharine Stevens¹; Miriam B Garcia, DO²; Karen Moody, MD²; Kimberly Kresta, APRN²; Eduardo Gonzalez Villarreal²; Grace Waterman²; Scherezade K. Mama, Dr.PH³; Maria Chang Swartz, PhD, MPH²

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Harvard College¹; MD Anderson, Department of Pediatrics², MD Anderson, Department of Health Disparities Research³


Background

- Vitamin C deficiency is estimated to occur in up to 70% of patients with cancer.¹
- Vitamin C deficiency is associated with lower quality of life and faster progression of disease in patients with cancer.^{2,3}
 - It is also correlated with higher infection rates, anemia, bone pain, muscle degeneration, and even delayed wound healing.⁴
- Cancer-related and treatment-related hormone and metabolism disturbances and an overall decreased dietary intake of vitamin C all contribute to the high

Methods

Statistical Methods:

- Descriptive statistical analysis used to describe the cohort's characteristics
- Logistic regression used to determine associations between demographic, lifestyle, clinical characteristics and vitamin C deficiency
- Backward selection was used to determine the final multivariable model

Results

- Multivariable model shows that age at diagnosis, sex, surgery, and number of hospitalizations all contributed significantly to the model.
- Female sex and having had cancer surgery both decrease odds of being deficient
- For every one unit increase in age and number of hospitalizations, odds of deficiency also increase.

Conclusions

Nearly half of the children and AYAs with cancer • in our study were vitamin C deficient, and the mean vitamin C serum level was $0.56 \ \mu mols/L$. Between 5-6% of children and adolescents in the US are vitamin C deficient⁷ and the mean vitamin C serum level is $0.51 \ \mu mols/L.^{5}$

prevalence of vitamin C deficiency among the cancer patient population.⁵

- Thus far, research on vitamin C deficiency has been conducted almost exclusively in adult populations.
- Vitamin C deficiency has unique and potentially severe consequences in pediatric, adolescent, and young adult (AYA) populations with cancer due to their unique developmental needs^{1,6} requiring research focused specifically on children with cancer.

Aims

- 1. Determine the prevalence of vitamin C deficiency in children/AYAs with cancer.
- 2. Examine the factors associated with vitamin C deficiency in children/AYAs with cancer.

Methods

Study Design:

Prospective, cohort study

Patients:

lesu	lts
------	-----

Deficient ($\leq 0.2 \ \mu mols/L$)

Fable 1. Demographics and Variables of Interest (n ⁼	1=108)	
--	----------------	--

Variables	Count (%)		
Sex			
Male	64 (59.3%)		
Female	44 (40.7%)		
Race/Ethnicity			
Non-Hispanic White	56 (52.3%)		
African American	15 (14%)		
Hispanic	28 (26.2%)		
Asian	4 (3.7%)		
Other Race	4 (3.7%)		
Vital Status as of 7/2023			
Not Expired	79 (73.1%)		
Expired	29 (26.9%)		
Type of Tumor			
Blood cancers	40 (37.0%)		
Non-CNS Tumors	56 (51.9%)		
CNS Tumors	12 (11.1%)		
Radiation (yes)	(47.2%)		
Surgery (yes)	(62.0%)		
Chemotherapy (yes)	(97.2%)		
	Mean (±SD)		

- Many of the associated risk factors match what was expected based on current publications.³
 - These included male sex and the number of hospitalizations.
 - In addition, increased age was associated with increased risk of deficiency.
- Overall, these results highlight patient subsets at higher risk of vitamin C deficiency, which may prompt earlier intervention and avoid adverse effects of deficiency by assessing levels at diagnosis and throughout treatment.
- Further research is necessary to determine effects of certain cancers or treatments on vitamin C deficiency.

Responsible Conduct of Research

All individuals who assisted underwent human subjects to training to ensure that the patient data used for this research was protected and used safely

- Pediatric and AYA cancer patients
- Age range: 6 39 years old
- Data extracted between 6/28/2019 and 7/30/2023 from Epic

Variables of Interest:

- Vitamin C Level (**Primary Outcome**) • Not Deficient (>0.2 $\mu mols/L$)
 - Deficient ($\leq 0.2 \ \mu mols/L$)
- Demographic Factors
 - Age at diagnosis, sex, race, ethnicity
- Lifestyle Factors
 - Average steps per day (Fitbit)
- Clinical Factors
 - Vital status
 - Tumor type
 - Surgery, radiation, chemotherapy (yes/no)
 - Number of hospitalizations

Age at Diagnosis Vitamin C (Serum) Level Number of Hospitalizations

Factors associated with Vitamin C deficiency:

- Using only patients with complete data (n=71), we conducted purposeful variable selection for the population based on p value of 0.10 through univariate analysis.
- Univariate analysis showed that sex (p=0.006), surgery (p=0.000), and number of hospitalization (p=0.024) were associated with Vitamin C deficiency.
- Additionally, age at enrollment, average steps per day, type of cancer, surgery (yes/no), and number of hospitalizations met the purposeful variable selection criteria.

Table 2. Results (n=71)				
		95% CI f	or EXP(B)	
Variable	Exp(B)	Lower	Upper	
Age on Study	1.1268*	1.007	1.260	
Gender (female)	0.088*	0.018	0.422	
Surgery (yes)	0.255*	0.069	0.945	
Number of	1.118*	1.023	1.220	
Hospitalizations				
Average Steps	1.000	1.000	1.000	

and properly.

References

- . Lima de Araújo, L. Nutrición hospitalaria 2012; 27:496-503
- Abiri, B. & Vafa, M. Nutrition and Cancer. 2020; 73:1282-2392
- White, R. et al. Nutrients. 2020; 12
- Yeom, C. et al. *Journal of Korean Medical Science*. 2007; 22:7-11
- Mayland, C., et al. *Palliative Medicine*. 2005; 19:17-20
- 6. Schleicher, R. et al. American Journal of Clinical Nutrition. 2009; 90:1252-1263
- Hampl, J. et al. American Journal of Public Health. 2004; 94:870-875

Acknowledgment

The research described was supported in part by a cancer prevention educational award for Katharine Stevens supported by the National Cancer Institute (R25 CA056452, Shine Chang, Ph.D., Principal Investigator).

17.7 (6.2) 0.56 (0.32) 11.6 (7.9)