

PLK4 as a Novel Therapeutic Target in TP53-mutant Acute Myeloid Leukemia MDAnderson

Cancer Center Sima Fay Koyfman,¹ Jingqi Pei, ² Po Yee Mak, ² Edward Ayoub, ² Michael Andreeff, ² Bing Z. Carter ²

MOLM-13 TP53-WT

Control

¹ Bryn Mawr College ² Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson **Cancer Center**

for 24 hr.

100

THE UNIVERSITY OF TEXAS

Introduction

Resistance to current therapies is one of the major challenges for the cure of *TP53*-mutant (mut) acute myeloid leukemia (AML). Polo-like kinases (PLK1-PLK5) are serine/threonine kinases that have vital regulatory functions in the cell cycle.¹ Previous studies reported that *TP53*-mut cancer cells, including lung cancer and AML overexpress PLK4.^{1,2} PLK4 overexpression could potentially contribute to drug resistance in these cells. Therefore, PLK4 could be a promising therapeutic target for TP53mut AML and potentially improve the efficacy of current therapies.

PLK4 inhibition induces polyploidy and apoptosis in TP53-mut AML

CFI-400945 induces apoptosis and enhances venetoclax efficacy in MOLM-13 Y220C TP53-mut cells

Hypothesis

Inhibition of PLK4 may exhibit antileukemia activity in TP53-mut AML, and potentially improve the efficacy of current AML therapeutic agents.

Methods

- Human MOLM-13 AML cells with TP53 wild-type (WT), TP53knockout (KO), or *TP53*-mut were treated with PLK4 inhibitor CFI-400945 and/or venetoclax at various doses for 24 and 48 hours.
- Cell cycle and polyploidy were measured using an Edu Click-it Kit and FXCycle.
- Apoptosis was measured using FACS-flow cytometry after cells were stained with Clv-PARP antibody or AnnexinV/7AAD.

>	Intracellul	ar pro	tein I	evels	were
			4		

	Рори	ilation	(%)	24	48 hr (4N+) (%)		48 hr (8N+) (%)		+)		
	TP5	3-WT	1.496		91.35			50.43			
	TP5	3-KO	7.34	88.12%			72.57				
	TP53	-Y220C	C 2.11		87.45		68.70				
	TP53-	53-R248Q 11.88		81.96			64.03				
		Clv-PAR	P Positivity	2	N	4N	81	J	16N		
		TP53-WT CT									
		TP53-WT CFI									
		<i>ТР53-</i> КО СТ									
		<i>TP53</i> -KO CFI									
		TP53-Y220C CT									
		TP53-Y220C CFI									
		<i>TP53</i> -R248Q CT									
		<i>TP53</i> -R248Q CFI									
		Low = 0%			High = 12%						
J 2. TP53 isogenic MOLM-13 cells were treated with 25 nM PLK4 inhibitor (CF											

Fig 400945) for 48 hr. A) FACS-flow cytometry analysis of cell cycle and total DNA content in MOLM-13 TP53 isogenic cells, also showing Clv-PARP. B) Polyploidy percentage in MOLM-13 TP53 isogenic cells using the live cell population. C) Normalized percentage of Clv-PARP+ population within each subpopulation.

CFI-400945 decreases viability in cells from a patient TP53-mut AML

0.6-

CFI-400945

P<0.05

Fig 5. CFI-400945 induces, at least in part caspasedependent apoptosis. 25 µM of z-VAD-FMK was added 1 hr before the MOLM-13 isogenic cells were treated with 10 nM venetoclax and 25 nM CFI-400945 (n=3) for 48 hr.

CFI-400945 and venetoclax combination induces more polyploidy and apoptosis in MOLM-13 TP53-mut compared to TP53-WT isogenic cells

measured by western blot.

Results

Increased PLK4 RNA levels in **TP53-KO** or mut compared to **TP53-WT AML cells**

Fig 1. RNA sequencing analysis of PLK4 transcript level in MOLM-13 TP53-WT, TP53-KO, and TP53-mut cells.³

Fig 3. *TP53*-mut AML patient sample was treated with CFI-400945 (n=1) for 48 hr. Blasts 85%.

Conclusions

- > TP53-mut or TP53-KO AML cells express higher PLK4 than the isogenic *TP53*-WT cells
- Inhibition of PLK4 induces polyploidy and cell death in TP53-mut cells
- > PLK4 inhibition-mediated cell death induction is further enhanced by combination with venetoclax
- PLK4 inhibition enhances the therapeutic efficacy of venetoclax in *TP53*-mut AML cells

Fig 6. Cell cycle analysis of TP53 isogenic MOLM-13 cells treated with CFI-400945 (25 nM) and/or venetoclax (10 nM) for 24 and 48 hr. A) FACS-flow cytometry analysis of cell cycle and total DNA content in MOLM-13 TP53 isogenic cells, also showing Clv-PARP. B) Polyploidy percentage in MOLM-13 TP53 isogenic cells using the live cell population. **C)** Normalized percentage of CIv-PARP+ population within each subpopulation.

References

¹Lee S.Y., et al. Polo-like kinases (plks), a key regulator of cell cycle and new potential target for cancer therapy. Dev Reprod. 2014 Mar;18(1):65-71.

² Kawakami M., et al. Polo-like kinase 4 inhibition produces polyploidy and apoptotic death of lung cancers. Proc Nat Acad Sci USA. 2018 Feb 20;115(8):1913-1918

³Boettcher S., et al. A dominant-negative effect drives selection of *TP53* missense mutations in myeloid malignancies. Science. 2019 Aug 9;365(6453):599-604

Acknowledgments

Thanks to Marites Melancon, Chandra Bartholomeusz, and Nancy Strange for their incredible hard work curating this summer experience.