

The involvement of miR-21 in the molecular pathogenesis of Richter transformation

¹David Zhang, ¹Recep Bayraktar, ¹Kinga Nemeth, ¹George A. Calin

¹Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center

THE UNIVERSITY OF TEXAS ncerson Cancer Center

Making Cancer History®

Introduction

- RNA non-coding miRNAs are that play roles molecules in posttranscriptional gene regulation and in translation.
- Our preliminary data indicates that miR-21 is overexpressed in patients with Richter transformation (RT).
- Therefore, the investigating the role of miR-21 could be associated with the development of RT in patients with chronic lymphocytic leukemia (CLL).
- unknown.

Methods

- miR-21 KO cells were generated using CRISPR-Cas9 technology
- Genomic DNA extraction, PCR, and gel electrophoresis were conducted to genotype knockout cells.
- Sanger sequencing was conducted to sequence specific areas of knockout cells.
- RNA extraction, cDNA synthesis, and RT-qPCR were conducted to compare miRNA levels
- Cell viability was measured MTS assay.
- Flow cytometry was performed to determine the effects the miRNAs had on the cell cycle and apoptosis

Results

SSC

Figure 7. miR-21 KO cells induce apoptosis. (A) Flow graphs for MEC1 cell line (parental on left) (B) Flow graphs for RT5 cell line (parental on left) **MEC1 Cells**

Conclusions

- We confirmed the oncogenic role of miR-21 in CLL and Richter transformation.
- Potential targets for miR-21 should be identified for future research
- The pre-Richter mouse model can be used with miR-21 knockout cells for future investigations.
- Exploring the function and possible implications of miR-21 during the transition from CLL to RT is a crucial area of investigation since miR-21 could potentially serve as

Richter transformation/ diffuse large B cell lymphoma

Figure 1. *miR-21 is significantly upregulated at* the time of RT when compared to at CLL diagnosis.

Hypothesis

In this study, we hypothesized that miR-21 overexpression is related to the molecular pathogenesis of RT

Research Aims

- Generate knock-out (KO) miR-21 stable CLL and RT cells using CRISPR/Cas9 technology.
- Determine effects of miR-21 on the cell cycle, apoptosis, and cell viability

Figure 4. Sanger sequencing for miR-21 KO cells.

Figure 6. miR-21 KO cells induce proliferation **Figure 5.** *miR-21 expression levels for KO* of cells. cells.

therapeutic target.

Acknowledgments

I would like to thank my mentor, Dr. Recep Bayraktar, for his patience and unwavering support. I would also like to thank Kinga Nemeth for helping me in numerous circumstances throughout the research process. Dr. George A. Calin, my principal investigator, was also a tremendous help and support during the research process. Finally, I would like to thank Dr. Rey Trevino and the King's Foundation for making this whole experience possible for me.

References

1) Roosbroeck, Bayraktar, et al. (2019). The involvement of microRNA in the pathogenesis of Richter syndrome. Haematologica v. 104 (5). 2) Rossi, Davide, and Gianluca Gaidano. "Richter syndrome: pathogenesis and management." Seminars in oncology vol. 43,2 (2016): 311-9. doi:10.1053/j.seminoncol.2016.02.012 3) UCSC Gene Browser on Human. https://genome.ucsc.edu/cgibin/hgTracks?db=hg38&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType =default&virtMode=0&nonVirtPosition=&position=chr17%3A59841266%2D59841337&hgsi d=1668084494_Xnax7F8r5pscRAsSzNgiG5SaQSvu