

A Review of the Genomic Landscape of early cutaneous Squamous Cell Carcinoma

Hayden Schandua^{1,4}; Madison Taylor^{1,3}; Emelie Nelson¹; Priscilla Haff^{1,4}; Natasha Quailes²; Hung Doan MD, PhD³; Kelly Nelson MD³

¹McGovern Medical School, The University of Texas Health Science Center at Houston, ²University of Texas Rio Grande Valley School of Medicine, ³University of Texas MD Anderson Cancer Center, ⁴Cancer Prevention Research Training Program

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Introduction

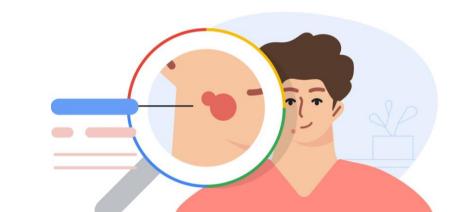
- Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer in the United States.¹
- However, it is less researched than melanoma due a common misconception about its nonlethal nature (cSCC has death tolls on par with melanoma),² and cSCC bears large mutational loads that are historically difficult to sequence and interpret due to UV radiation induced

Methods

What genes are involved in the early genetic progression of cSCC, including driver mutations in chronically UV-exposed skin and actinic keratoses?

What research has identified novel driver mutations in early cSCC that can be further researched to develop better diagnostic, prognostic, and therapeutic interventions?

Results

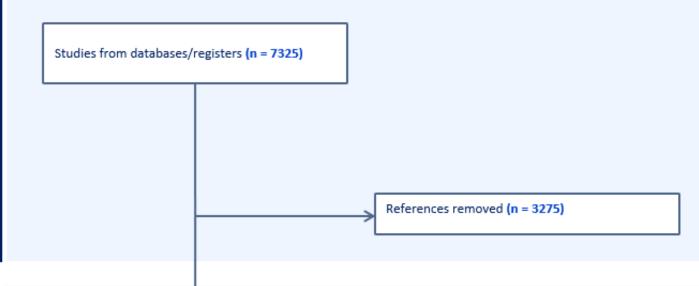

TP53SES (n=11) PIP (n=15) KA (n=10) AK (n=41) cSCCIS (n=26) cSCC (n=30)Clonal and subclonal mutations found in all precursorsExpansion of clonal and subclonal populationsSES (n=375) AK (n=18) cSCCIS (n=27)Large portion of mutations found in precursorsSES (n=375) AK (n=18) cSCCIS (n=40) cSCC (n=27)Large portion of mutations found in precursorsNOTCH1SES (n=1838) KA (n=6) AK (n=26) cSCCIS (n=12) cSCC (n=32)Large portion of mutations found in precursorsSimilar proportion of mutations to precursorsIS AKS (n=23) IC AKS (n=14) cSCC (n=32)IS AKS (n=23) IC AKS (n=14) cSCC (rastion, recursorsShowed upregulation in AK to cSCC transition, recursors	5,7,8,12 7,14,18,22 7,9,11,12,13, 16,18
AK (n=18) cSCCIS (n=40) cSCC (n=27)mutations found in precursorsMutations found in precursorsNOTCH1SES (n=1838) KA (n=6) AK (n=26) cSCCIS (n=12) cSCC (n=32)Large portion of mutations found in 	7,9,11,12,13,
KA (n=6) AK (n=26) cSCCIS (n=12) cSCC (n=32)mutations found in precursorsmutations to precursorsIS AKs (n=23) IC AKs (n=14)IS AKs (n=23) AK to cSCC transition,Showed upregulation in AK to cSCC transition,	
IC AKs (n=14) AK to cSCC transition,	
cSCC (n=15) contrasting most studies	21
NOTCH2SES (n=242) AK (n=10) cSCC (n=9)Large portion of mutations found in precursors	7,18
NOTCH3SES (n=3) AK (n=7) cSCCIS (n=3) cSCC(n = 10)Gains in copy number alterations in precursorsNo lesions found with similar gains	12
SES (n=234) Large portion of mutations found in precursors	18
FAT1SES (n=1712) AK (n=10) cSCC (n=9)Large portion of mutations found in precursorsSimilar proportion of mutations to precursors	7,9,18
CDKN2ASES (n=3) AK (n=7) cSCCIS (n=3) cSCC(n = 10)Loss in copy number alterations	12
AK (n=9)Greater number ofcSCCIS (n=9)mutations found incSCC (n=13)cSCC compared to AKand cSCCIS	13
AK (n=8)Greater portion ofcSCCIS (n=30)mutations in AK thancSCC (n=18)cSCCIS	14
SES (n=234) Greater number of mutations found in cSCC compared to NS	18
PIK3CA SES (n=1470) Activating mutations under positive selection, inactivating mutations under negative selection	9
RB1AK (n=17) cSCCIS (n=39) cSCC (n=31)Driver mutations in cSCCIS, not AKLimited new driver mutations	13,14
TGFBIS AKs (n=23)ProgressivelySignificantly moreIC AKs (n=14)downregulated in NS tomutated andcSCC (n=15)AK transitiondownregulated	21

Results

- Most studies concluded that *TP53*, *NOTCH*, and *FAT1* mutations were vastly common in normal skin, precursors, and cSCC suggesting lesser oncogenic deregulation.
- **CDKN2A** had the most **conflicting data across studies** suggesting further investigation is needed.
- Many studies concluded that clonal and subclonal populations exist harboring

changes.³

- Current literature addressing cutaneous squamous cell carcinoma focuses on malignant and metastatic progression as opposed to early genetic progression and predisposition, the latter offering new intervention opportunities as many therapeutic interventions for advanced disease are not effective or poorly tolerated.⁴
- Exploring the genetic
 progressions from normal to precancer
 to malignancy provides foundational
 knowledge to drive research
 in diagnostic and therapeutic
 interventions to enhance the quality of
 care in cutaneous squamous cell
 carcinoma.



•

Developed a Systematic Literature Review addressing this knowledge gap

Included : Publications from January 2000 - June 2023, not limited by geography, full text availability in English, and inclusion of natural language terms for the concepts of cutaneous squamous cell carcinoma and genetic mutations. MEDLINE, EMBASE, Cochrane Library, and PubMed sensitivity was tested by

the ability for preliminary search strategies to include known, relevant citations. A Covidence library was created to manage and deduplicate the citations.

Table 2: Common Driver Genes in early cSCC formation. (SES=sun
exposed skin, PIP=P53 immunopositive patch, KA=keratoacanthoma,
AK=actinic keratosis, cSCC=cutaneous squamous cell carcinoma,
cSCCIS=cSCC in situ, IC=immunocompetent, IS=immunosuppressed)

Gene	Lesions Studied	Deregulation in Precursors	Deregulation in cSCC	Reference
FOSL1, BNC1	SES (n=23) AK (n=59) cSCC (n=46)		Increased expression compared in cSCC to SES and AK	10
NEK10	SES (n=23) AK (n=59) cSCC (n=46)	Decreased expression in AK compared to SES	Decreased expression in cSCC compared to cSCC	10
ID4	NSES (n=60) SES (n=60) NS (n=202) cSCC (n=202)	Promoter methylation increased in SES compared to NSES	Increased promoter methylation in cSCC compared to NS	15
MIR21, MIR31	NS (n=21) AK (n=21) cSCC (n=21)	Progressively upregulated in AK compared to NS	Progressively upregulated in cSCC compared to AK	7
MIR497	NS (n=9) SES (n=15) AK-KIN1/2 (n=6) AK-KIN3 (n=6) cSCC (n=19)	Progressively downregulated along NS to AK-KIN3 transition	Progressively downregulated along AK to cSCC transition	19
uc011fnr.2	NS (n=3) AK (n=2)	Downregulated in AK compared to NS		17
MEF2A	NS (n=12) AK (n=33) cSCCIS (n=11) cSCC (n=35)	Identified as a key transcriptional regulator in basal undifferentiated keratinocytes*		20
CACNA1	IS AKs (n=23) IC AKs (n=14) cSCC (n=15)	Harbors greater mutations in AK compared to NS		21
KCNK5	IS AKs (n=23) IC AKs (n=14) cSCC (n=15)	Downregulated and harbors greater mutations in AK compared to NS		21
HMCN1	IS AKs (n=23) IC AKs (n=14) cSCC (n=15)	Mutated in large portion of AKs		21
SLFN	SES (n=10) cSCCIS (n=10)	Positive selection for mutant clones		22
NEURL1	SES (n=10) cSCCIS (n=10))	Increased expression in cSCCIS compared to SES		22
HEPHL1, FBN2, TCN1, SULF1/2	NSES (n=6) SES (n=6) AK (n=6) cSCC (n=6)		Significantly more expressed in cSCC compared to AKs or NES	23

common driver mutations in precursors and will not evolve into cSCC until it has gathered considerably greater mutational burden, compared to precursors.

 Many studies addressing polyclonality in cSCC conclude that epigenetic and non-genomic regulation play large roles in cSCC oncogenesis.

Discussion

- The genetic evolution from healthy skin to cSCC is a multifaceted process involving intricate molecular alterations, especially considering years of background UV exposure.
- Our findings highlight the importance of whole and larger genome sequencing in identifying novel driver mutations associated with AK and cSCC

References

		ור		MIR21, MIR31	NS (n=21) AK (n=21) cSCC (n=21)	Progre upregu compa
eening s	Studies screened (n = 4050)	}→)	Studies excluded (n = 3870)	MIR497	NS (n=9) SES (n=15) AK-KIN1/2 (n=6) AK-KIN3 (n=6)	Progre downr NS to transit
	Studies sought for retrieval (n = 180)		Studies not retrieved (n = 0)	uc011fnr.2	cSCC (n=19) NS (n=3)	Downr
	Studies assessed for eligibility (n = 180)		Studies excluded (n = 161)		AK (n=2)	compa
			See QR code for exclusion criteria	MEF2A	NS (n=12) AK (n=33) cSCCIS (n=11) cSCC (n=35)	Identif transc in basa undiffe keratir
				CACNA1	IS AKs (n=23) IC AKs (n=14) cSCC (n=15)	Harbo mutati compa
	Studies included in review (n = 19)]		KCNK5	IS AKs (n=23) IC AKs (n=14) cSCC (n=15)	Downr harbor mutati compa
ole	1: PRISMA Diagram			HMCN1	IS AKs (n=23) IC AKs (n=14) cSCC (n=15)	Mutate of AKs
				SLFN	SES (n=10) cSCCIS (n=10)	Positiv mutan
				NEURL1	SES (n=10) cSCCIS (n=10))	Increa in cSC SES
				HEPHL1, FBN2, TCN1,	NSES (n=6) SES (n=6) AK (n=6)	

Table 3: Novel Driver Genes in early cSCC formation. (SES=sun exposedskin, NSES=non-sun exposed skin, NS=normal skin, AK=actinic keratosis,KIN=keratinocyte intraepithelial neoplasia, cSCC=cutaneous squamous cellcarcinoma, cSCCIS=cSCC in situ, IC=immunocompentent,IS=immunosuppressed). *refers to a non-deregulation description

progression. The **identified genes** and **dysregulated pathways** provide **potential targets** for therapeutic **interventions** to prevent or treat cSCC.

- Furthermore, this study underscores the growing **significance of personalized medicine**, as the **genetic heterogeneity** observed in cSCC may benefit from tailored, individualized intervention.
- Continued **research** into the **genetic and epigenetic** evolution of early **cSCC** will enhance our understanding of skin cancer pathogenesis and aid in developing more **effective diagnostic** and **therapeutic** strategies.