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The potential for high spatio-temporal resolution microwave measurements has urged the

adoption of the signals of opportunity (SoOp) passive radar technique for use in remote sensing.

Recent trends in particular target highly complex remote sensing problems such as root-zone soil

moisture and snow water equivalent. This dissertation explores the continued open-sourcing of the

SoOp coherent bistatic scattering model (SCoBi) and its use in soil moisture sensing applications.

Starting from ground-based applications, the feasibility of root-zone soil moisture remote sensing is

assessed using available SoOp resources below L-band. A modularized, spaceborne model is then

developed to simulate land-surface scattering and delay-Doppler maps over the available spectrum

of SoOp resources. The simulation tools are intended to provide insights for future spaceborne

modeling pursuits.
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CHAPTER I

INTRODUCTION

1.1 Abstract

An overview of microwave remote sensing (MRS) for global land-scattering applications is

provided. Currently, L-band signals (between 1 and 2 GHz) are the lowest frequencies available for

active and passive remote sensing. Longer wavelengths are expected to benefit current remotely

sensed data products such as soil moisture (SM) while also creating the first directly-sensed

retrievals for data products such as root-zone soil moisture (RZSM). While active systems are

restricted from operating over many nations, signals of opportunity (SoOp) can enable new remote

sensing datasets at a global scale. This method presents unique modeling challenges due to the

use of non-cooperative, bistatic radar measurements. An overview of the benefits and challenges

for SoOp remote sensing is presented in light of creating modeling tools which can operate for

ground, air, and spaceborne-scale simulations of dynamic land surface properties and topography.

1.2 Motivation

The remote sensing community is constantly changing with respect to its capabilities, goals, and

ease of development for engineering systems. Remote sensing research and developments efforts

create new algorithms, software, and hardware that extend the field’s capabilities. As institutions

such as National Aeronautics and Space Administration (NASA) or the National Science Foundation

1



(NSF) declare their decadal goals, both researchers and manufacturers make efforts to attain those

goals. As surrounding areas of research grow, new technologies are made available to remote

sensing. For example, the decreasing costs of unmanned aerial system (UAS)s have afforded

researchers the ability to explore this field without large financial investment. [12, 29, 76]

These three patterns have naturally raised interest in MRS through SoOp. SoOp is a MRS

technique that exploits anthropogenic signal sources in a bistatic radar configuration. Conven-

tionally for MRS, SoOp remote sensing uses transmitters from space such as communication and

navigation satellites (e.g., Global Positioning System (GPS)) to make measurements from ground,

air, or space with a custom-built SoOp receiver. MRS has matured significantly since the 1950s

through radar and radiometry. SoOp, however, is currently positioned for enthusiastic adoption

within the science and engineering community.

From a MRS perspective, the orbits around Earth would ideally consist of scatterometers,

synthetic aperture radar (SAR) systems, and radiometers filling the microwave window to allow for

monitoring of Earth’s natural resources. However, radio frequency (RF) allocation is a resource

to be shared among commercial, governmental, military, and scientific interests in addition to the

necessary infrastructure for uplink/downlink communications. The current international frequency

bandwidths allocated to active/passive remote sensing is shown in Figure 1.1.

Different frequencies have different transmissivities which is an important property for MRS.

Frequencies around 1 GHz are used for sensing the upper layer of SM profiles and are known

to weaken rapidly within vegetation canopies with water content exceeding 5 𝑘𝑔/𝑚2. While

frequencies at 10 GHz have little volume scattering with snow, values around 20 GHz and higher

are largely dominated by volume scattering. Of great importance are very high frequency (VHF)
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Figure 1.1

United States RF allocation for active and passive remote sensing instruments. Note that allocated
bandwidths do not indicate that a satellite system exists in that frequency space. Taken from [1]; 1

July 2022.

and ultra high frequency (UHF) sources (around 100 to 900 MHz) which tend to transmit through

dense vegetation canopies and can interact with soil at deeper levels. This portion of the microwave

region is heavily used outside of the sciences which makes it difficult for passive techniques due to

interference. The large size, weight, and power (SWaP) constraints for creating a science-capable

active system is also a limiting factor for science missions.

Both software and hardware advances have made MRS with SoOp an affordable possibility for

ground, air, and spaceborne scales. Electronic miniaturization has encouraged the use of small
3



satellites (satellite masses less than 180 kg) and cube satellites, allowing for fleets of low-cost

satellite systems. Additionally, software architectures like GNU Radio and a host of commercially

available software-defined radio (SDR) systems allow for accessible experimentation with SoOp

across all scales.

While SoOp missions have been successfully executed for ocean applications and land missions

are underway, SoOp strategies for land applications are still under investigation. Simulations are

often reported over areas with simplifying assumptions such as low SM, vegetation, or topography

variation. Strategies for developing SoOp MRS techniques for general land purpose applications

require robust modeling and simulation (M&S) tools for handling the multiple biomes and surface

conditions across the Earth surface.

This dissertation details the advancement of Mississippi State University (MSU)’s SoOp co-

herent bistatic scattering model (SCoBi) model from a ground-based, single-soil layer model to a

spaceborne-capable, multi-layered soil model. The model’s capabilities for RZSM remote sensing

is presented with suggestions on optimal root-zone sensing techniques. A methodology for open-

sourced, end-to-end simulation of bistatic radar scattering over Earth terrain is presented using the

facet method (FM).

1.3 Literature Review
1.3.1 Root-zone Soil Moisture Considerations

RZSM generally refers to the upper 1-meter of soil in the context of MRS [3]. RZSM describes

the water available for a plant’s nutrient uptake nominally near its root system. Thus, RZSM has a

clear impact on several areas of science including hydrology modeling, thermal exchange between

the earth surface and atmosphere, and crop yield.
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Penetration depth is a common metric observed throughout the literature to denote how deep a

signal can ”see” into a soil moisture profile. L-band signals such as Soil Moisture Active/Passive

(SMAP) or Soil Moisture and Ocean Salinity (SMOS) are generally believed to have a penetration

depth of 5 cm for example while longer wavelengths should allow for deeper sensing into the

soil profile. This metric is one of the primary motivating factors in using signals below L-

band for RZSM retrieval. However, the common formulation for penetration depth is based

on a two-slab formulation consisting of an air slab (𝜀 = 1 − 𝑗0) and another slab of constant

dielectric [119]. This metric is insufficient as a ”root-zone” value as a single SM layer may not

capture the different SM values between the surface and root-zone. This is because the surface is

subject to evapotranspiration processes which may cause stronger diurnal fluctuations than those

seen deeper within the profile. While some researchers have examined this penetration depth issue

in the past [98], the single-layer formulation of penetration depth is still commonly cited within the

literature in recent years.

There is currently no global remote sensing tool that is capable of directly measuring RZSM.

Systems such as SMAP make use of L-band signals at wavelengths of approximately 20 cm, and

metrics for RZSM are produced based on the assimilation of brightness temperature measurements

with several Earth system modeling components (e.g., atmospheric circulation modeling, chemistry

transport, etc) [99]. In other words, current data products for RZSM are not capable of directly

sensing RZSM. For this reason, lower wavelengths such as P-band have garnered interest for the

global remote sensing of RZSM.

P-band signals have been studied in backscatter cases throughout the literature, often in support

of airborne campaigns such as Airborne Microwave Observatory of Subcanopy and Subsurface
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(AirMOSS) or BIOMASS [19,63,103,138]. While BIOMASS is expected to launch in late 2023, it

will not be allowed to operate over Europe, Central America, and North America due to operations

by the United States Department of Defense [17]. The use of SoOp is particularly exciting as it

can leverage signals available between 130 and 370 MHz for MRS [84] while circumventing these

radio spectrum restrictions.

The use of SoOp for RZSM retrieval has been assessed in recent years. SoOp has shown to

be sensitive to RZSM fluctuations from ground scale [47], and the SoOp Airborne Demonstrator

instrument verified that a P-band SoOp receiver can measure the reflected signals from the Mobile

User Objective System (MUOS) constellation. The SoOp Airborne Demonstrator showed these

measurements are sensitive to changing surface conditions and raised the technology readiness

level of this SoOp-based instrument from 3 to 5 [44]. This has lead the development of the SoOp

P-band Investigation (SNOOPI) system [48], a spaceborne experimental receiver which will assess

the capability of a P-band SoOp receiver to remotely sense changes in RZSM as well as snow

water equivalent (SWE). With SNOOPI’s launch date approaching, there is an expressed need for

modeling RZSM over large-scale earth topography from spaceborne scales using SoOp sources.

1.3.2 Spaceborne Modeling Considerations

Much research has been devoted to the topic of radar scattering from spaceborne scales. The

numerous methods found in the literature are choosing between the balance of computational

speed and physical accuracy. A perfectly accurate model would require perfect knowledge of all

phenomenon within the bistatic configuration. However, such information (if it were to exist)

would not only be unwieldy to store and automate, but the numerical evaluation of electromagnetic
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interactions for this perfect information at spaceborne scales would require exorbitant computational

resources to evaluate at any reasonable length of time. It is for this reason the literature varies in

its many methods.

The distinction of spaceborne electromagnetic scattering from its ground-based variant is (1)

the higher heterogeneity of the surface and (2) the multiple levels of surface roughness that impact

the received field. While the various dielectric layers and volumes of the surface can be handled

by discretizing a given model, the impact of surface roughness requires special consideration.

Many surfaces can be discretized into infinitely many combinations of roughness scales. For

example, smooth grasslands can be discretized from centimeter-level undulations to kilometer-

level undulations. For land surface applications, it is common practice to discretize the earth into

two- or three-level roughness regimes between centimeter and 100-meter scales of undulations for

simulation purposes.

For roughness scales where the surface is considerably smaller than the wavelength, small-

perturbation methods are often used to account for scattering towards the receiver. This method

requires that small surface roughness conditions (𝑘𝑠 ≪ 1) and low correlation length conditions

(𝑘𝑙 < 3) [119]. For conditions where the surface is considerably large compared to the wavelength,

the Kirchhoff approximation (KA) is employed. The KA is broken into two scattering regimes

wherein high surface roughness (𝑘𝑠 > 3) are accounted with the geometrical optics (GO) approx-

imation and slower surface undulations (𝑘𝑠 < 3) use a method known as the physical optics (PO)

approximation. These methods are ultimately approximations for the Stratton-Chu integral.

The integral equation method (IEM) was developed by Fung et al. to eliminate the need to

consider ”validity regions” for surface roughness conditions relative to the wavelength. It is a
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comprehensive model that uses both small perturbation method (SPM) and KA in addition to a

new formulation that bridges the validity region between these models. However, due to the com-

putational complexity of the model, most spaceborne applications for SoOp forego this formulation

in an effort to make roughness simulations over hundreds of square kilometers computationally

manageable.

Before discussing land applications, it is worth noting the trends in the more mature area of

ocean remote sensing with SoOp. GO is the current dominant method for calculating scattering

over ocean surfaces. This method makes use of ocean statistical properties to estimate the ocean

surface conditions. Because the model relies on ocean statistics instead of explicit modeling of the

sea surface, GO is a relatively efficient model. However, due to its reliance on statistical behavior,

the pathlength of the wave is not explicitly preserved and can no longer be deemed coherent. Ohio

State University has developed an incoherent model which uses Hagfor’s Law to expand the KA

to estimate specular and non-specular scattering up to a cutoff frequency for exponentially and

Gaussian-correlated surfaces [57]. This model has primarily been used for ocean applications, but

its observations on ocean surface roughness sensitivity have been used to suggest land surfaces

may have diffuse-dominant contributions in measurements [2].

1.3.3 Current Spaceborne Model Implementations

The current literature can be grouped by various methods used to estimate reflections, diffrac-

tion, and incoherent scattering from earth’s surface. We group these models into (1.) incoherent

methods, (2.) coherent methods, and (3). hybrid models.
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Xu et al. [125] uses a PO-based approach for land scattering. The model is deemed partially

coherent as a number of scattering facets will have coherently summed components and another

set of facets will be summed incoherently depending on the phase distribution of the surface. The

model uses three-scale surface roughness where, following the paper’s terminology, the surface

is defined by 𝑧 = 𝑓1(𝑥, 𝑦) + 𝑓2(𝑥, 𝑦) + 𝑓3(𝑥, 𝑦) where 𝑓1 defines centimeter-scale roughness, 𝑓2

defines roughness values greater than 5-cm and correlation lengths between 0.5 and 10 meters,

and 𝑓3 defines topography taken from DEMs. A three-dimensional Numerical Maxwell Model

(NMM3D) is used to calculate microwave roughness contributions and incoherent power while a

KA is used for larger, slow undulations. The model is capable of calculating scattering from small

facet-sizes (2 cm in size) but requires computation time on the scale of days using high-performance

computing clusters [52].

Park et al. makes use of a generalized end-to-end simulator titled GARCA/GEROS-SIM4Land

[87] to estimate radiative-transfer-based scattering over earth. It makes use of the previously

established Synthetic Aperture Interferometric Radiometer Performance Simulator (SAIRPS) [16]

for its foundation. The size of the facets used by this model appears to come directly from the

DEM provided. Under the evaluation in [87], the model appears to use facets of one arc-minute,

or approximately 1800-meters in size near the equator. It has been used for comparison against

TDS-1 measurements over areas of high topography.

Campbell et al. uses a GO-based technique for land scattering which has been titled improved

GO with topography (IGOT) [15]. The method is an application of Zavorotny’s GO [134] to land

surfaces with the distinction that land surfaces are deterministic in comparison to time-varying

sea surface conditions. The model is a two-component roughness model defined by the Digital
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Elevation Map (DEM) and a random component defining the roughness along the surface. The

GO method has also been used in land applications by other groups to estimate delay-Doppler map

(DDM)s. Xu et al. have also made use of a radiative-transfer-based implementation of geometric

optics to validate their scattering models [125]. It is found in Xu’s work that GO maintains good

agreement with their implementation of KA under their simulation assumptions when large facets

(≥ 30 m) are used.

Dente et al. make use of a hybrid model which combines radiative-transfer-based incoherent

modeling with coherent scattering to produce a total DDM [32, 33, 95]. The model uses different

models to calculate incoherent and coherent components of the received signal. The incoher-

ent component is evaluated through the advanced integral equation method while the coherent

component makes use of the KA. The coherent component assumes Gaussian-beam antennas for

transmitter and receiver to simplify the expression of the scattered field. This is used to evaluate a

normalized bistatic radar cross-section (NBRCS) of the scattering facet. The model is capable of

producing simulations over bare and vegetated surfaces with sloped terrain. The model was tested

over multiple spatial resolutions ranging from 100 to 1000 meters.

While not used explicitly in land applications, an implementation of the PO expression known

as the FM has been expressed in the literature. It is commonly used in applications such as planetary

sounding wherein frequencies between 1 and several hundred megahertz are used to model the

multilayered surfaces of low-dielectric planets such as Mars [50, 79, 82]. The FM was previously

implemented for ocean applications by Clarizia et al [26].
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1.3.4 The SoOp Coherent Bistatic Model (SCoBi)

The SCoBi model was open-sourced in 2018 to address several needs for SoOp applications.

The model is designed for ease of modification by representing the received field as network

scattering parameters which can be characterized as plane or spherical waves as needed [122]. This

explicit treatment of fields through scattering matrix representation allows for compact descriptions

of antenna purity; polarization rotation effects by transmitter, receiver, or external sources such

as ionospheric rotations; and polarization-specific gain patterns. The received field quantity 𝑏

is a 2 × 1 column vector representing co- and cross-polarized received signal quantities of units

𝑉/𝑚√
𝑍

where 𝑍 represents the system impedance. Thus, |𝑏 |2 directly results in the power of the

received signal for a given dielectric medium. The compact nature of this formulation is expressed

in [65, equations 4.a, 5, and 12].

Building on decades of research in vegetation scattering (e.g. [68, 104]) to produce an open-

sourced model for SoOp capable of modeling SoOp interaction through sparse media. Following

traditional approaches for the multiple scattering of waves, vegetation is modeled as a homogenous,

equivalent medium through Foldy-Lax theory, and the scattering from discrete elements is modeled

through a distorted Borne approximation where the total field in any given scattering direction is

considered to be the sum of the induced currents under Huygen’s principle while maintainging

far-field assumptions for transmitter and receiver.

Given the generalized structure of this framework, new modules can be created with relative

ease and integrated into the full formulation as described in [65]. Motivated by this, this dissertation

adds to this framework to address several areas of need in SoOp remote sensing. These needs can
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be briefly summarized as the need to model multilayer, dielectric profiles from ground, air, and

spaceborne scales as well as the need to succinctly model topography over very large areas.

1.4 Contributions

SoOp presents several distinct challenges for modeling in terms of efficiency. This dissertation

contributes several modeling and simulation tools and analyses to the literature to improve the

current SoOp modeling and retrieval capabilities as well as future SoOp constellation designs.

These contributions include:

• An open-sourced model designed to address multilayer RZSM applications for SoOp

• A design study which seeks an optimal RZSM retrieval configuration by using multiple SoOp
sources

• A numerical solution to the KA which maximizes computational efficiency for landscattering
applications

• A modeling framework which can enable analysis of RZSM, vegetation structure, and DDM
variability for spaceborne applications

These contributions in conjunction with one another create a progression from the original

SCoBi model which assumes a single SM layer under vegetation to a spaceborne model capable

of modeling vegetation and RZSM profiles simultaneously. Future applications of this model are

expected to help assess the impact of surface features on SoOp measurements from ground, air,

and space.

1.5 Outline

This dissertation primarily consists of journal publications submitted during the research phases

of this dissertation. Each section addresses a unique aspect of SoOp modeling challenges and

contain their own literature review and conclusions.
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Chapter II establishes the multilayer module of SCoBi. This module joins a physical optics

solution for Gaussian-distributed surfaces of centimeter-scale roughness with an iterative solution

for determining multilayer reflection and transmissions for arbitrary dielectric media. As single-

layer penetration depth is a common metric which motivates the use of SoOp below 1500 MHz,

we create an iterative penetration depth formulation for multilayer dielectric structure which more

accurately indicates the attenuation of SoOp through RZSM profiles. A simulation study is

performed to assess the variability of different SoOp sources for single and multilayer SM profiles.

Different frequency sources are shown to be a promising source of information for retrieval, and

the importance of dielectric contrast for layer reflections is clearly visualized.

Chapter III builds on Chapter II by assessing a potential RZSM method using a two-layer

representation of SM profiles. By using the Cramer-Rao lower bound (CRLB), we assess the

lowest possible retrieval error for different SM configurations and SoOp combinations. For a

two-layer profile, the top layer is denoted as surface SM and the second layer as RZSM. The use

of two or more frequency sources is found to be the most important configuration requirement for

achieving SMAP’s standard maximum retrieval error of 4%. Using one SoOp source above and

another below 1575 MHz results in extremely low CRLB for surface SM and generally retrievable

RZSM for moderately wet soils when the RZSM layer is situated at 30 cm.

Chapter IV contextualizes a solution of the Stratton-Chu integral for large-scale land appli-

cations using SoOp. The combined effects of variable bistatic geometry, surface conditions, and

the matched-filtering-like nature of SoOp cross-correlation in creating DDMs results in the need

to model areas upwards of 300 km from the specular point in order to model a DDM such as

Cyclone Global Navigation Satellite System (CYGNSS). Such scales will undoubtedly feature
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mixed surface slope distributions which may not be easily solved analytically. Here, we present a

nested facet method (NFM) which makes use of facets along an equal-area projection to estimate

signal scattering within the constraints of the KA’s limitation on surface roughness and radius

of curvature. This method allows for the nesting of multiple surface roughness types which can

enable the study of heterogenous surface areas over Earth. The model is proven capable of run-

ning large-scale simulations on consumer-grade computers through parallel CPU processing with

manageable computation time given the complexity of the surface heterogeneity.

Chapter V combines the modeling approaches of Chapters II and IV in addition to the model

of [65] to create a spaceborne framework generalized SoOp applications. This section describes

the model analytically and structurally to describe modeling outputs as well as the flexibility of

modeling capabilities. As DDMs are the primary measurements of spaceborne SoOp systems,

the model is structured to describe the scattered electric field and the simulated DDM. The model

is composed of 5 modules: (1.) a manager module for handling data input and output, (2.) a

geometry module for communication between several coordinate reference system (CRS), (3.) a

data mapping module for autonomous decision making of unknown surfaces variables, (4.) a

scattering module which determines the linearly polarized scattering matrix for both vegetated and

non-vegetated surfaces, and (5.) a generalized DDM module.

Chapter VI summarizes the conclusions of this dissertation. Future work is discussed to antici-

pate the needs of both this models capabilities as well as the general needs of the SoOp community.

Emerging trends such as transmissivity and snow analysis are discussed, and improvements to this

model are suggested in order to meet the needs of these future experiments.

14



CHAPTER II

GROUND-BASED MULTILAYER SCOBI MODEL

This section is inherited from the following publication [8]

D. Boyd, M. Kurum, O. Eroglu, A.C. Gurbuz, J. Garrison, B. Nold, R. Bindlish, J. Piepmeier, M.

Vega, ”SCoBi Multilayer: A Signals of Opportunity Reflectometry Model for Multilayer Dielectric

Reflections,” MDPI Remote Sensing, vol. 12, no. 11, pp. 3480, 2020. doi:10.3390/rs12213480

This article is published through MDPI Remote Sensing using a Creative Commons CC BY

4.0 license. The copyright of the article is retained by the authors who permit the use of this article

within the dissertation.

2.1 Abstract

A multilayer module is incorporated into SoOp coherent bistatic scattering model (SCoBi)

for determining the reflections and propagation of electric fields within a series of multilayer

dielectric slabs. This module can be used in conjunction with other SCoBi components to simulate

complex, bistatic simulation schemes that include features such as surface roughness, vegetation,

antenna effects, and multilayer soil moisture interactions on the reflected and measured signals.

This paper introduces the physics underlying the multilayer module and utilizes it to perform a

simulation study of the response of SoOp Reflectometry (SoOp-R) measurements with respect to

subsurface soil moisture parameters. For a frequency range of 100-2400 MHz, it is seen that the
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SoOp-R response to a single dielectric slab is mostly frequency insensitive, however, the SoOp-R

response to multilayer dielectric slabs will vary between frequencies. The relationship between

SoOp-R reflectivity and the contributing depth is visualized, and the results show that SoOp-R

measurements can display sensitivity to soil moisture below the penetration depth. By simulation

of simple soil moisture profiles with different wetting and drying gradients, the dielectric contrast

between layers is shown to be the greatest contributing factor to subsurface soil moisture sensitivity.

Overall, it is observed that different frequencies can sense different areas of a soil moisture profile,

and this behavior can enable subsurface soil moisture data products from SoOp-R observations.

2.2 Introduction

Recent investments into GNSS reflectometry (GNSS-R) for ocean applications have vitalized

research into SoOp-R for land-based remote sensing areas. The work of [51,56,102] has shown that

GNSS signals can be used to monitor ocean surface roughness and wind vectors from spaceborne

SoOp-R measurements. This success has inspired research in the use of the Cyclone Global

Navigation Satellite System (CYGNSS) GNSS-R constellation for geophysical remote sensing

[23, 28, 42] and the future SoOp P-band Investigation (SNOOPI) satellite which is a technology

validation mission of P-band reflectometry using SoOp-R to enable spaceborne remote sensing of

root-zone soil moisture (RZSM) and snow water equivalent snow water equivalent (SWE) [45].

These SoOp-R experiments inspire a need for modeling tools that provide insight into the interaction

between SoOp-R and geophysical parameters.

In recent years, there has been significant development in the use of signals of opportunity

(SoOp) sources within the 100 to 2400 MHz range. Specifically, popular frequencies and sources
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include Orbcomm’s private communication satellite system at I-band (137 MHz), the United States

Navy’s Mobile User Objective System (MUOS) at P-band (240-270 MHz and 360-380 MHz),

global navigation satellite system (GNSS) (≈ 1575.42 MHz), and the XM satellite radio system at

S-band (≈ 2338 MHz). Recent technology demonstrations and remote sensing experiments have

successfully leveraged these signals to detect geophysicals parameters such as soil moisture (SM)

and SWE [24, 44, 47, 48, 61, 94, 130].

It is common throughout the literature to cite the penetration depth of signals below L-band

as a motivating factor for the use of very high frequency (VHF) and ultra high frequency (UHF)

sources as tools for RZSM remote sensing [119]. For both radar and SoOp-R, the compounding

effects of propagation, reflection, and SM profile structure will produce a single microwave remote

sensing observable which describes all of these non-negligible components. Relating this profile-

encompassing measurement to SM values within the root-zone is, therefore, a truly difficult task

without proper intuition of the mechanisms which govern the SoOp interaction within the profile.

For this reason, robust modeling of these interactions is required.

The SCoBi [65] is a robust framework which allows for the modeling of many SoOp system

variables and scattering surface parameters. It is a publicly available model which has been

designed to be highly configurable to allow for additional modeling features [40]. Of particular

interest to the area of RZSM remote sensing using SoOp-R is the multilayer module which allows

for the modeling of arbitrary SM profiles. This module has been used in previous research for

investigating the SoOp-R response to RZSM [47], but its underlying physics and methodology has

not been introduced in the literature.
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This paper serves as a simulation study which investigates the SoOp-R response to RZSM as

well as introduces SCoBi’s multilayer module. The primary focus of the simulation is to understand

the interactions into the subsurface reflection processes which enable RZSM retrieval. To this end,

we observe the response of the SCoBi model to a single dielectric slab, variable configurations

of two dielectric slabs, and simple polynomial-based SM profile configurations. The governing

principles of the SCoBi model’s multilayer module are defined. Additionally, we discuss the

integration of this module within the publicly available SCoBi modeling and simulation (M&S)

package and briefly describe the package’s methods that are available for interested users to carry

out their own simulation studies.

This paper is divided as follows. Section 2.3 provides a generalized description of the multilayer

module and its capability to model RZSM profiles. Section 2.4 discusses the common methodology

of this paper across our simulations. Section 2.5 details our analysis of single-, dual-, and multi-

slab profiles to highlight relevant parameters. Section 2.6 includes a discussion of the results and

potential advancements of this research. Section 2.7 summarizes our results and provides our

conclusions.

2.3 Model

The SCoBi model is a fully polarimetric, bistatic scattering model which allows for a wide

number of configurable simulation environments for both the bistatic radar system and the scattering

surface [65]. SCoBi simulates a three-dimensional space containing a bistatic radar configuration

among a source transmitter, a reflecting surface, and a receiver. The SCoBi model determines

the received direct, specular, and diffuse components of the signal emitted from the transmitter.
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The model is capable of simulating custom receiver antenna patterns, arbitrary radar positions,

configurable vegetation canopies, and transmitter frequencies between I- and S-band.

In late 2018, Mississippi State University (MSU)’s Information Processing and Sensing (IM-

PRESS) publicly released the SCoBi M&S package under a GNU general public license as a means

for researchers to conduct simulation studies using SoOp-R in addition to providing a simple, all-

in-one interface for newcomers to the field. The SCoBi M&S package along with its documentation

is available for download at https://github.com/impresslab/SCoBi. The current version (v1.0.3)

features many capabilities such as comprehensive modeling of vegetation effects, bare terrain,

surface roughness effects, arbitrary antenna patterns, arbitrary bistatic geometry, and multilayer

soil moisture (SM) profiles. The current version is designed for ground-based and airborne ge-

ometry and, therefore, assumes a planar Earth surface. Additionally, the publicly available M&S

package does not currently feature incoherent reflection coefficient determination but is intended

for releasing in the future. More information on the M&S package can be found in [40].

In this section, we introduce the multilayer SM module that is used by SCoBi to determine

the reflection processes within a SM profile. We briefly review the relevant components of the

core SCoBi model which use the multilayer module. We then discuss this paper’s method for

determining penetration depth based on this multilayer module. Finally, the tools available in the

M&S package are discussed.

2.3.1 Reflection Processes from a Multilayered Dielectric Slab

The SCoBi multilayer module makes direct use of well-established principles which have seen

use in many layered structure applications such as radome design, the analysis and synthesis of
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speech, geophysical signal processing for oil exploration, the probing of tissue by ultrasound, and

the design of acoustic reflectors for noise control for many decades [86,116]. In order to determine

the reflection/transmission processes of an incident wave from or into a multilayered dielectric

structure, a matrix formulation of the matching at dielectric discontinuities and the propagation

within each layer are derived and the reflectivity is recursively solved in the upward direction.

Consider uniform plane waves which are normally incident on a multilayered dielectric structure

beneath a slab of mean vegetation medium as shown in Figure 2.1. The vegetation is replaced by

an equivalent dielectric constant of 𝜀𝑣𝑒𝑔 with a depth ℎ via discrete scatterer approach [68] while

the dielectric constant of air 𝜀𝑎𝑖𝑟 is unity. The boundary between air and vegetation layer is diffuse

since the fraction of vegetation to the total vegetation layer volume is small. The upper portion of

the profile (vegetation and air) represents all area above the SM profile wherein freespace path loss,

vegetation effects, and systematic influences shape the electromagnetic wave propagating from the

transmitter to the surface. The SM profile’s surface, designated as a point 𝑧 = 0 m, represents the

vegetation-surface boundary position, which is effectively equivalent to air-surface boundary since

the vegetation is a sparse medium. The SM profile is represented by a series of 𝑀 dielectric slabs

of thickness 𝑙𝑖, 𝑀 +1 interfaces, and a semi-infinite half-plane wherein the dielectric constant of the

𝑀 𝑡ℎ dielectric slab extends infinitely and downward in to the soil. Each slab features characteristics

such as its complex dielectric constant 𝜀𝑖 = 𝜀′
𝑖
− 𝑗𝜀′′

𝑖
, wave-number 𝑘𝑖 = 2𝜋/𝜆𝑖, wavelength 𝜆𝑖,

and complex characteristic impedance 𝜂𝑖. Waves which are propagating through a medium are

represented by electric fields (e.g., 𝐸′
𝑖− ). The subscripts + and − are used to denote the wave

modes propagating in the positive (downward) and negative (upward) 𝑧−directions. The prime (or

non-primed) fields indicate that quantities are defined right below (or above) each layer interface.
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Figure 2.1

Representation of propagation and reflection processes within a discretized soil moisture profile.

Critical values for this structure are the complex valued elementary reflection coefficient 𝜌𝑖 =

(𝜂𝑖 − 𝜂𝑖−1) /(𝜂𝑖 + 𝜂𝑖−1) and elementary transmission coefficient 𝜏𝑖 = 1 + 𝜌𝑖 across each dielectric

interface, where the dielectric contrast between layers is a dominant contributor. The reflection
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coefficient observed at the surface (Γ1 = 𝐸1−/𝐸1+) is determined through propagation of reflection

responses iteratively by initializing the elementary reflection coefficient at the bottom-most interface

of the profile with the assumption of no upward waves emanating from the semi-infinite slab. This

is called backward-layer recursion as it iterates from bottom to top with decreasing index order. For

each dielectric slab, both wave propagation and reflection processes are determined by matching

upward and downward fields at each layer and propagating the upward and downward fields from

one layer to the next as follows:


𝐸𝑖+

𝐸𝑖−

 =
1
𝜏𝑖


1 𝜌𝑖

𝜌𝑖 1



𝑒 𝑗𝛿𝑖 0

0 𝑒− 𝑗𝛿𝑖



𝐸(𝑖+1)+

𝐸(𝑖+1)−

 (2.1)

where 𝛿𝑖 = 𝑘𝑖𝑙𝑖 is phase thickness and 𝑙𝑖 is the thickness of the 𝑖𝑡ℎ slab. The first 2× 2 matrix factor

scaled by reciprocal of 𝜏𝑖 in the right side denotes matching matrix 𝑀 while the second 2×2 matrix

factor represents propagation matrix 𝑃. Multiplying the matrix factors out in Eq. 2.1, we obtain

recursions for the intermediate reflection coefficient at each layer boundary with the quotient of the

forward propagating wave 𝐸𝑖+ and backward reflected 𝐸𝑖− wave as:

Γ𝑖 =
𝐸𝑖−

𝐸𝑖+
=
𝜌𝑖 + Γ(𝑖+1)𝑒

−2 𝑗𝛿𝑖

1 + 𝜌𝑖Γ(𝑖+1)𝑒−2 𝑗𝛿𝑖
(2.2)

where Γ𝑖 is governed by the elementary reflection coefficient 𝜌𝑖, the phase thickness 𝛿𝑖, and the

intermediate reflection coefficient Γ(𝑖+1) of the previous slab.

To account for polarization and angle for oblique incidence case, the fields are separated into

transverse and longitudinal components with respect to the surface normal (the 𝑧−direction). The

transverse components satisfy the identical propagation and matching matrix relationships as in the
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case of normal incidence with exception of the modification of the media and wave characteristics

(e.g., the phase thickness 𝛿 −→ 𝛿𝑧 and the characteristics impedance 𝜂 −→ 𝜂𝑇 ) [86]. For oblique

incidence (i.e., 𝜃 from the surface normal), the longitudinal phase constant is given by 𝛿𝑧 = 𝑘𝑙 cos 𝜃

while the characteristics impedance for horizontal (H) and vertical (V) polarizations are given by

𝜂𝑇 = 𝜂/cos 𝜃 and 𝜂𝑇 = 𝜂 cos 𝜃, respectively. The final value (linearly polarized reflection coefficient

Γ1 at the surface) is then used in the SCoBi model as a component of the total reflectometry process

by including vegetation and system parameters.

2.3.2 Use of Multilayer Module within SCoBi

Having calculated the Fresnel reflection coefficient from the ground (Γ1), we now describe how

the core SCoBi model uses this term to calculate the total received SoOp-R measurement from the

compounding effects of the SoOp-R system and the ground environment. The core SCoBi model

makes use of several modules such as bistatic geometry, ground reflection, vegetation effects, and

multilayer dielectric structure modules. Note that in some cases such as vegetation and multilayer,

not all modules will be used during a simulation depending on the user’s simulation requirements.

The relationship between the ground reflections and core SCoBi model is explained for the specular

component and is used similarly for the incoherent component of the received signal. From an

arbitrary geometry, we observe that the signal reflected from the ground takes the form of a ground

reflection matrix:

𝑟
𝑔
(𝜃𝑠) =


Γ𝑔𝑝 0

0 Γ𝑔𝑞

 (2.3)
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where Γ𝑔𝑞 = Γ1𝑞𝑒
−2(𝑘0𝑠 cos(𝜃𝑠))2 is the 𝑞-polarized Fresnel reflection coefficient of the multilayer

dielectric structure as determined by Eq. 4.26 at the surface including the smooth surface roughess

represented by the surface root-mean square (RMS) height 𝑠. Here, it is assumed that the rough

surface under the vegetation is smooth, does not include topography, and follows Kirchhoff’s

approximation with a Gaussian height distribution. The angle 𝜃𝑠 denotes the angle of specular

reflection from the surface, and the subscripts 𝑝 ∈ {H, V} and 𝑞 ∈ {H, V}, and as a result, co- and

cross-polarized cases are treated simultaneously. From the perspective of the coherent scattering,

the reflections from a multilayer profile are embedded within the specular reflection matrix as a

matrix product of the incoming and outgoing vegetation transmission matrices 𝑡 and the ground

reflection matrix 𝑟
𝑔
, given below:

𝑟
𝑠
(𝒐̂+𝑠 , 𝒊−𝑠 ) = 𝑡 (𝒐̂+𝑠 ) · 𝑟

𝑔
(𝜃𝑠) · 𝑡 (𝒊−𝑠 ) (2.4)

where 𝒊−𝑠 and 𝒐̂+𝑠 are unit vectors describing the wave propagation in incoming and outgoing

directions. The supercripts + and − are used to denote the wave modes propagating away and

towards the specular point (SP). The ground reflection matrix is a function of the reflecting angle

at the SP 𝜃𝑠. Under a smooth surface assumption, this value will be equal to the wave’s angle of

incidence. This specular reflection coefficient can then directly be used by the core SCoBi model to

determine the coherent and incoherent components of the received SoOp-R signal. In the absence

of vegetation, the vegetation transmission matrix is an identity matrix. The coherent reflection

coefficient observed at the receiver terminals is given by
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Γ𝑐𝑜ℎ = 𝑔
𝑟

(𝒐̂+𝑠 ) · 𝑢
𝑠→𝑟

(𝒐̂+𝑠 )·

𝑟
𝑠
(𝒐̂+𝑠 , 𝒊−𝑠 ) · 𝑢

𝑡→𝑠
(𝒊−𝑠 ) · 𝑔

𝑡

(𝒊−𝑠 ) · 𝑒𝑡 (2.5)

where the transmit and receive antenna patterns are represented by 𝑔
𝑡

and 𝑔
𝑟

, respectively, while the

polarization basis transformations between SP-to-receiver and transmitter-to-SP are given by 𝑢
𝑠→𝑟

and 𝑢
𝑡→𝑠

. The nominal polarization state is given by 𝑒
𝑡
. Finally, the specular reflection processes

are captured by the 𝑟
𝑠

term. This 𝑟
𝑠

term contains all of the information for the subsurface

reflection processes which are the focus of this paper. A more detailed explanation of the core

model functionality is available in [65].

The incoherent reflection coefficient is determined similarly to the coherent case. The incoher-

ent reflection coefficient is calculated using several Monte Carlo simulations, and the multilayer

SM gradient is used in the calculation of observed scattering mechanisms (e.g., single, double,

and triple bounces) which affects the scattering matrix. More information on the incoherent signal

processes can be found in [65]. Details on creating scattering particles in addition to all other

simulation environment processes are outlined in [40], [39].

2.3.3 Penetration Depth Calculation

Penetration depth refers to the point within a dielectric media where the signal’s energy decays

to 1/𝑒 ≈ 36.8% from the amount available at the air-surface boundary layer. Penetration depth,

much like the reflection coefficient of a multilayer dielectric slab, is a single value which exists

in a large dynamic range depending on a SM profile’s soil texture and moisture content. While
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penetration depth does not indicate a precise limit to a SoOp-R system’s SM sensitivity, it is,

nevertheless, a useful metric for describing a SoOp-R system’s interaction with a SM profile.

The traditional method of determining penetration depth is given by the inverse of the medium’s

power absorption coefficient [119]. If a low-loss dielectric (small loss tangent) medium is assumed,

the resulting form is established [117].

𝛿𝑝 =
𝜆
√
𝜀
′

2𝜋𝜀′′ (2.6)

This method, while useful, is limited to a single uniform slab and determines the depth at which

the power of a signal reaches 36.8% as it propagates through a single slab at nadir incidence angle.

However, the case of layered media having transmission losses is more complicated. Alternatively,

the penetration depth can be modified by multiple dielectric discontinuities composing a SM

gradient as illustrated in [5, 13]. SCoBi uses a similar approach for the forward-scattering case

seen in SoOp-R by explicitly calculating the transmissivity into the soil layers. In order to analyze

the relationship between an arbitrary SM profile and the penetration depth, let us summarize the

main steps of the theoretical calculations.

Starting from the incident amplitude 𝐸1+ , the transmitted amplitude 𝐸′
𝑖+ from the soil surface

to the 𝑖𝑡ℎ soil layer can be written as

𝐸
′

𝑖+ = T𝑖𝐸1+ (2.7)

where T𝑖 is the intermediate transmission coefficient from the top of the soil to the 𝑖𝑡ℎ layer (in the

downward direction). Note that Eq. 2.7 differs from the elementary transmission coefficient 𝜏𝑖 since

it combines all the processes from top to the 𝑖𝑡ℎ interface. To determine the overall transmission
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response into the 𝑖𝑡ℎ layer, we start at the top interface with the relation 𝐸1− = Γ1𝐸1+ , where Γ1 is

first obtained via Eq.4.26. We then successively apply inverse of the matching 𝑀 and propagation 𝑃

matrices given in Eq. 2.1 to obtain Eq. 2.7. This is called forward layer recursion as it iterates from

surface to the 𝑖𝑡ℎ layer into the soil with increasing index order. The downward-going transmissivity

is defined as the fraction of energy transferred to the 𝑖𝑡ℎ layer relative to the surface and is equal to

|T𝑖 |2 Re (𝜂0/𝜂𝑖). It is calculated using Poynting’s theorem and taking the ratio of (time-averaged)

transmitted power density at the 𝑖𝑡ℎ interface (Re(1/2𝜂𝑖) |𝐸
′

𝑖+ |
2) to (time-averaged) incident power

density on the surface (1/2𝜂0 |𝐸1+ |2). Assuming fine discretization between boundary layers, the

penetration depth can be determined by denoting the layer boundary at which the transmissivity

reaches ≈ 36.8%. The major difference of this approach from the traditional calculation (Eq. 2.6)

is its applicability to layered profiles in which one can analyze the penetration depth as a function

of SM profile, incidence angle, and polarization.

2.3.4 Simulation Tools and Soil Moisture Profile Representations

Several simulation tools are given in the SCoBi M&S package that allow the user to explore

potential SM profile structures. After providing SM samples and soil texture information to the

simulator, the SM values are converted to complex dielectric constant values using one of three

provided SM dielectric functions: the Wang model [121], the Dobson-Peplinski model [35,90], and

the Mironov model [78]. The Wang model is an empirical model developed using data measured

at 1.4 and 5.0 GHz, making it ideal for simulations at L- and C-band under similar soil texture

conditions. The Dobson-Peplinski model is an empirical model that has been designed using

measurements made between 0.3 and 18 GHz. Finally, the Mironov model is a semi-empirical
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model that has been validated over a range of 0.3 to 26.5 GHz [77]. Previous studies have shown

that the performance accuracy of each model will vary depending on the frequency and soil

condition of any given measurement, and, thus, a user may require the use of multiple dielectric

models depending on the measurement conditions [75, 129]. The simulator is designed to handle

both an ”experiment-based” environment where only a small number of SM values are known

via in-situ measurements or cases where each SM value is explicitly defined. To this end, the

SCoBi simulator features multiple SM fitting functions which are used in conjunction with the SM

dielectric functions.

Currently, four functions exist for mapping SM as a function of depth within the profile: a

discrete slab model, a 2nd-order polynomial, 3rd-order polynomial, and a logistic function fit.

Given a set of SM values, the model computes the dielectric constant for each SM point, and

the dielectric constant between each SM point is fit depending on the selected function. For the

dielectric slab fit, each slab extends from the given soil depth to the midpoint between its nearest

neighbor. This is performed for all values excluding the values between the surface and the first

SM value which will assume the value of SM nearest to the surface. The slabs, themselves, are

composed of multiple smaller interfaces as defined by the soil discretization of the user’s choice.

If the user defines SM for each depth corresponding to the discretization level, each SM value will

be explicitly defined, and a midpoint will not be created. The polynomial fits are the least-squares-

best-fit for the dielectric constant of the profile as specified by the user. The logistic fit is that of an

iterative, traditional logistic regression model [55].

To illustrate the SM profile fitting function, the four dielectric fitting functions are visualized

in Figure 2.2 using the input parameters of Table 2.1 to define the profile according to the Mironov
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model with a soil discretization of one millimeter. It should be noted that these values only depict

the relative permittivity of the fitting functions. The second-order and third-order polynomial fitting

functions place a regression line corresponding to the respective polynomial order given a set of

SM samples. Because the number of SM samples match the number of polynomial coefficients,

the third-order polynomial is able to perfectly fit each SM sample provided. The third-order

polynomial also depicts the simulator’s “lower boundary” as the polynomial fit required to create

this curve results in values below the dielectric constant of air. The dielectric slab fit depicts the

simulator’s slab fitting technique which extends the dielectric constant up to the mid-point between

each provided SM sample. The logistic fitting function places a logistic curve between each SM

sample before remaining constant for the depth remaining after the final provided SM input.

Table 2.1

Example Soil Moisture Profile Information

Depth Soil Sand Clay Soil Bulk
(cm) Moisture Ratio Ratio Density (𝑔/𝑐𝑚3)

5 10% 10% 31% 1.4
10 30% 10% 31% 1.4
20 20% 10% 31% 1.4
40 40% 10% 31% 1.5

2.4 Methodology

Having detailed the SCoBi model and simulator’s functionality for modeling multilayer SM

profiles, this subsection details the methodology and simulation description for our study of the

subsurface reflection processes that will enable RZSM profile inversion. Additionally, we would

like to explore the relationship between penetration depth and the response of a SoOp-R system
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Figure 2.2

Discretized soil moisture profile representation in SCoBi model and simulator package. Each
profile is fit using defined dielectric constant values (shown as black points) over a discretized

profile. For clarity, only the relative permittivity is shown.

to a profile’s depth. For this reason, we will establish the following methodology for obtaining

accurate, repeatable SoOp-R simulations using SCoBi.

In order to maintain focus on the response to RZSM and subsurface SM variation, neither

surface roughness or vegetation effects are considered. For all simulations, the Mironov model is

used [78]. This SM dielectric model is a function of only three variables: frequency, volumetric

SM, and the soil’s volumetric clay percentage. For most simulations, the clay content is restricted
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to 31% for most simulations in order to simulate a loamy soil as typically seen in soils intended for

crop yield. Each profile is discretized into 1-millimeter interfaces. This is done in order to simulate

a continuous SM profile with respect to the incident signal wavelength as opposed to using large

dielectric slabs. This discretization is used in this study to create larger dielectric slabs from smaller

components (e.g., a 5-cm thick dielectric slab would be composed of 50 one-millimeter slabs of

identical dielectric constant values.) This means that the propagation and reflection processes are

determined every one millimeter (i.e., account for propagation losses every millimeter and, when

applicable, observe signal reflections at dielectrically discontinuous boundary layers.) Unless

stated otherwise, all simulations occur at normal incidence. The receiver is assumed to be at

low altitude where the earth surface curvature is negligible. As soil substrate composition is

widely regarded as having negligible scattering effects in this frequency region, only coherent

contributions are considered for these simulations. Because of these simplifications, the observed

reflection coefficient (Γ𝑐𝑜ℎ from Equation 2.5) is equal to the surface reflection coefficient (Γ1 from

Equation 4.26.) No incoherent contributions are simulated.

The simulation study in Section 2.5 will examine multiple SM profile configurations as explicitly

defined by the M&S package’s discrete slab fit function. We examine multiple SM profiles and the

SoOp-R response for frequencies between 100 and 2400 MHz. While only a discrete number of

communication/navigation sources exist within this region, characterizing the general frequency

response in this region is within the general scope of this section. Nearly all simulations are

performed at normal incidence.

While some simulations will make use of a frequency sweep across the 100-2400 MHz spec-

trum, some simulations will take place at discrete frequencies. Due to the popular usage of these
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bands within SoOp-R experiments throughout the literature, the frequencies at 137.5, 255, 370,

1575.42, and 2338.75 MHz are used for these visualizations.

During simulations involving penetration depth, it is worth noting that the penetration depth is

dependent on the polarization of the incidence signal. SCoBi defines these values in terms of linear

polarization. For all simulations in this study, the penetration depth is derived from the horizontal

component of the emitted signal though we note that for these configurations at normal incidence,

neither penetration depth nor reflectivity will change with respect to polarization.

2.4.1 Single Slab Study

Before understanding the multilayer case, it is important to understand how SoOp-R behaves

given a single slab of SM. While many simulation studies have been conducted for understanding

traditional back-scattering, single-frequency radar systems in relation to SM [18, 67, 85, 103, 109,

118], this study seeks to characterize the forward-scattering, multi-frequency SoOp-R response to

various SM profile configurations and controllable receiver variables.

For the initial simulation, we examine the SoOp-R response to a single dielectric slab with

values between 5 and 50% SM. The constant SM value extends infinitely from the surface of the soil

downwards. All incident signals assume a right-hand circular polarized transmitter. The incident

angle along the surface is taken at normal incidence in nearly all simulations. The dielectric

constant of SM with respect to frequency is also examined.
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2.4.2 Dual Slab Study

We now analyze the response to two dielectric slabs. Two studies are performed: a study

showing the SoOp-R response of dual-slab profiles to (1) depth of the second slab, (2) frequency

and incidence angle, and (3) soil texture.

In these dual slab simulations, two parallel slabs of soil moisture are placed on top of one

another where the first slab acts as a constant SM layer from the air-surface boundary to a defined

depth, and the second slab extends semi-infinitely downward. While we acknowledge that such a

simple representation may not represent the ”true” response of SM profiles to SoOp sources, the

analysis of dual-slab profiles allows us to more easily comprehend the new contributions induced

by multilayer SM slabs.

For the first study, the first slab will take values of 20, 30, and 40% SM, while the underlying

slab is fixed at a value of 50% SM. While such levels of difference in SM may be uncommon, this

is done in order to maximize potential reflections beneath the upper slab and visualize signatures

which can be extended into more realistic SM profiles. The primary observables seen in this study

will be that of the resultant reflection coefficient, the penetration depth, and the transmissivity of

the signal as it passes through the 1-millimeter interfaces across the two dielectric slabs. Only two

constant dielectric slabs will be present for each SM profile configuration. This is done in order

to quantify the effect that varying the position of a second dielectric slab has on the measured

reflectivity.

While penetration depth provides an indication of the location within the profile that a signal’s

energy falls to 36.8% of its incident energy, direct analysis of a SoOp system’s reflectivity response

to different SM profile configurations can provide an understanding of the limitations of a SoOp
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receiver system. In order to provide a metric for monitoring SoOp-R’s change in reflectivity as

a function of the position of a second dielectric slab beneath a constant SM slab, we seek to

determine a depth within the two-layered SM profile where the reflectivity falls below a defined

threshold. This depth, referred to as a ”saturation depth” for this study, is obtained by lowering the

second slab into the profile to such an extent that changes in reflectivity can no longer be observed

as a function of the second slab’s location to a user-defined threshold level. In our example,

it is assumed that reflectivity does not vary significantly beyond one meter. Over the range of

1 to 2 meters, a mean value of the reflection coefficient is obtained by averaging the reflection

coefficients for multiple two-layer SM profile configurations to obtain a “saturated reflectivity.”

We then iterate backwards from the bottom-most layer towards the surface and establish a depth at

which the reflectivity deviates by a user-specified amount from the saturated reflectivity. For the

purposes of our problem, we assume that our system can confidently determine reflectivity up to

1% accuracy. Thus, we seek to use this metric to determine the depth at which the two-slab profile

sees fluctuations in coherency that are greater than 1%.

For the second part of this study, fixed dual-slab profiles will be analyzed with respect to

frequency and incidence angle. The profiles consist of a first slab with a dielectric constant value

derived from the Mironov SM dielectric model, and the lower layer is an arbitrary, high-dielectric

constant value beneath the SM layer. The lower layer dielectric constant is defined by the Mironov

dielectric model for 50% SM. Two slabs are shown as an example at 10% SM and 30% SM. The

four profiles consist of the first slab extending from the surface (0 meters) to the second slab at 0.2,

0.3, 0.4, and 0.5 meters. The horizontal component of the incident wave is analyzed with an angle

of normal incidence to determine the transmissivity and penetration depth values.
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In the third portion of this dual-slab study, the effect of soil texture on SoOp-R measurements

is discussed. Soil texture, typically defined as the amount of sand, silt, and clay shared within a

soil layer, is a dependency for many soil dielectric mixing models. SM content is generally the

dominating variable for these mixing models due to water’s high permittivity, and the distribution

of water content within the soil volume can vary the dielectric constant. The use of soil texture

and SM as soil dielectric modeling inputs is a common technique dating backing to the 1980s.

The Mironov model used by this paper is a function of frequency, SM, and clay content. In

this section, the impact of clay uncertainty on SoOp-R measurements is reported using a study

of two slabs. The slabs are are separated by a dielectric interface located at 15 cm. Two profile

configurations are used. The first and second dielectric slabs contain 15 and 30% SM in one

configuration. 30 and 15% SM are used in another configuration for slab 1 and slab 2. Because

the Mironov model is only a function of clay, the change in reflectivity is visualized across a range

of 5 to 45% clay content within the first and second slab. Because soil dielectric constant behaves

non-linearly in the Mironov dielectric model as a function of SM and clay, the results are plotted

by taking the absolute difference between clay content configurations and the ”true” clay content

value (25% for both slabs.) The results visualize how different combinations of clay values can

produce similar reflectivity values when the clay content of the first and second slab’s clay content

is varied.

2.4.3 Arbitrary Profile Study

After performing simulations on both single and dual-slab profiles, we now view the response

of SoOp-R to profiles which feature dielectric constant changes at nearly every interface. In other
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words, this study seeks to visualize the subsurface contributions from a variable, arbitrary SM

profiles on the reflection coefficient. Specifically, we show how the reflection coefficient changes

between layers as the iterative method computes the reflection coefficient from the bottom-most

interface as it ascends towards the surface. To this end, we visualize three components: several

SM profiles, the elementary reflection coefficient derived from the dielectric contrast between each

interface, and the intermediate reflection coefficient taken from Eq. 4.26 viewed at the 𝑖𝑡ℎ interface

of each SM profile. The intermediate reflection coefficient values (Γ𝑖) are terms used to solve

for the surface reflection coefficient (Γ1) that are influenced by the subsurface SM structure. We

note that SoOp-R measurements cannot directly measure the intermediate reflection coefficients at

these subsurface interfaces. However, such a simulation can help visualize the effects that highly

discretized dielectric constant gradients have on multifrequency SoOp-R signals as they propagate

through a complex, smoothly-varying SM profile under the SCoBi modeling assumptions.

In the previous studies, we examine SM profiles consisting of either one or two distinct dielectric

constant values within the profile. We now examine SM as a function of either 1st- or 2nd-degree

order polynomial fitting. We choose the following format to mathematically describe SM profiles

as provided in [109]:

𝜃𝑆𝑀 (𝑧) = 𝑎2𝑧
2 + 𝑎1𝑧 + 𝑎0 (2.8)

Where 𝑎2, 𝑎1, and 𝑎0 represent polynomial coefficients, and 𝑧 represents the SM profile depth in

meters. In addition to these parameters, the SM profile is bounded between 3 and 50% volumetric

SM for any given polynomial coefficient. The discretization of 𝑧 assumes an interface every 1

millimeter. Under such a discretization, the subsequent results should allow us to visualize the
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contributions of heterogeneous areas in the upper portion of the profile [137], which are known to

be significant in altering the reflected energy, as well as from deeper portions of the profile.

While it is clear that SM profiles are shaped by many factors including thermal and capillary

processes, we use a polynomial function in order to approximate an arbitrary, high-resolution

profile under easily configurable conditions. It is not the intent of this simulation to model highly

realistic SM profiles, however, it is our goal to depict variable, simple SM conditions with easily

depicted changes in the SM gradient to illustrate how SoOp-R measurements behave as arbitrary

profiles change.

2.5 Results

This section contains the results of three simulation studies: simulations performed using a

single SM value for a semi-infinite dielectric slab, a two-slab study of penetration depth, frequency,

and incidence angle, and a study of subsurface reflection coefficient changes using arbitrary profiles

represented by simple lines and polynomials. Each of these simulations allows us to look at different

aspects of SoOp-R’s response to changes in the specular, forward-scattering reflection coefficient

as well as the interactions with RZSM.

2.5.1 Single Slab

Figure 2.3 depicts the behavior of the real and imaginary reflection coefficient as well as

reflectivity for a frequency sweep between 100 MHz and 2400 MHz with 1 Hz resolution. The

commonly referenced SoOp-R sources are depicted as black dashed lines at the corresponding

frequency location along the x-axis. In addition to the response of SM, the response of the same

frequencies to pure water is shown in Figure 2.3(a) using the model shown in [119]. Between
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Figure 2.3

Real, imaginary, and magnitude square of the measured reflection coefficient. The color gradient
shows the reflection coefficient values for soil moisture between 5 and 50%, and the cyan line

shows the reflection coefficient values of water for the given frequency range. The black, dashed
lines show the position of the commonly referenced SoOp-R sources, and the red dashed line

shows the lower validation region of the Mironov dielectric model. All measurements are
performed at normal incidence.

300 MHz and 2400 MHz, the real component of the reflection coefficient is largely frequency

insensitive. If the real component of the reflection coefficient is considered as a function of SM,

it can be seen that the real component of the reflection coefficient increases in magnitude as a

function of SM content. For the imaginary portion of the measurement, theSoOp-R values take on

a curvature with respect to frequency, and for most values above 1000 MHz, the values are largely
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the same. When examining the reflectivity, similar frequency regimes above and below 300 MHz

can be seen.

While the reflectivity does appear to vary below 300 MHz, all values above 300 MHz appear

to primarily be a function of SM with little response to changes in frequency. To investigate this,

the dielectric constant values produced by the Mironov model are simulated using the same SM

and frequency values in Figure 2.3. The results are depicted in Figure 2.4 below alongside the

dielectric constant of pure water. For the reader’s convenience, the single-layer penetration depth

values for the corresponding dielectric constant values is plotted in Figure 2.4 using Eq. 2.6.

It is clear that the reflectivity values observed in Figure 2.3c behaves nearly identically to the

general pattern of the real component of the dielectric constant seen in Figure 2.4. It can generally

be observed that the real component of the dielectric constant is a more dominating component,

especially beyond 500 MHz. Thus, the frequency insensitivity observed in the SM dielectric

constant creates a generally flat SoOp-R response across frequencies.

As stated previously, the Mironov model [78] is a physics-based approach to determining the

dielectric constant of SM that has been validated for frequencies between 300 MHz and 26.5 GHz.

While the values have been largely verified over this range, values below 300 MHz, as denoted

by the dashed, red line in Figure 2.3 and 2.4, are not guaranteed because the dielectric model for

these frequencies was created by fitting dielectric constant measurements to calculations derived

from the generalized refractive mixing dielectric model. As such, values below 300 MHz should

be used cautiously as these dielectric constant values have not been validated by measurements.

Ultimately, it can be observed that the response of SoOp-R to SM is proportional to the dielectric

model used for SM. This experiment was performed with the Dobson-Peplinski model, and the
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Figure 2.4

Behavior of real and imaginary dielectric constant for multiple soil moisture values as a function
of frequency in addition to penetration depth information from Eq. 2.6. The color gradient shows
the dielectric constant for soil moisture between 5 and 50%, and the cyan line shows the dielectric
constant of water for the given frequency range. The black dashed lines show the position of the
commonly referenced SoOp-R sources, and the red dashed line shows the lower validation region

of the Mironov dielectric model.

same frequency insensitivity was observed. The Wang model was derived from L- and C-band

data only and is not applicable for this frequency sweep simulation.

Understanding that the magnitude of the reflection coefficient from a uniform SM slab does not

change drastically across our observed frequency spectrum, we note that the imaginary component
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of the soil dielectric constant will govern the rate at which these frequencies suffer propagation

loss. Different frequencies, by merit of the SM dielectric constant’s imaginary component, can

potentially observe differences in SoOp-R response to SM profiles based on their moisture content

as a function of depth. To investigate this, we now examine the response of SoOp-R to two dielectric

slabs in multiple configurations.

2.5.2 Dual Slab Study
2.5.2.1 Saturation Depth of Descending Slab

Using the saturation depth methodology described in Section 2.4, the response of SoOp-R

systems at frequencies of 137.5, 255, 370, 1575.42, and 2338.75 MHz is simulated over a series of

two slab configurations. Simulations are performed where the first slab uses SM values of 20, 30,

and 40%. The results of this simulation are depicted in Figure 2.5.

In the left column of Figure 2.5, we observe the change in reflectivity as the second slab of

50% SM descends into the SM profile. The right column shows the penetration depth for each SM

profile configuration as a function of the location of the dielectric boundary between the first and

second slabs. The resulting reflectivity alternates about the ”saturated reflectivity” as a function of

depth similar to an attenuating sinusoid. This is expected since propagation effects are the primary

mechanism that changes reflectivity in this simulation. However, we note that such strong coherent

behavior largely exists due to the simple multilayer waveguide structure used in this simulation and

that physical SM profiles may not exhibit this exact behavior.

The dramatic increases in penetration depth seen when the second slab lies within the upper 20

centimeters of the profile is dominantly driven by the real component of the reflection coefficient

approaching zero. This is a property of the coherent nature of the SoOp-R signals. Thus, for
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Figure 2.5

(Left column) Changes in reflectivity due to moving a secondary slab beneath a single dielectric
slab and (right column) the corresponding penetration depth for each dual-slab configuration.
Each row assumes that the first slab’s SM value is 20, 30, and 40% SM respectively, and all

simulations assume a second slab SM of 50% SM.

specific SM profile configurations, large values of transmission occur whenever the phase of the

reflected signal causes either the real or imaginary component of the reflection coefficient to trend

towards zero. For all simulated frequencies, we can observe that variations in both penetration

depth and reflectivity are largely saturated before the configuration reaches 1 meter in depth.

Using the aforementioned methodology, the colored points along each separate frequency plot

in the left column of Figure 2.5 represent the determined saturation depth. By assuming that our
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SoOp-R system can detect changes up to ±1% in reflectivity, we observe that reflectivity is affected

by changes in dielectric constant occurring at depths deeper than the penetration depth shown in

the right column of Figure 2.5 as well as the penetration depth provided by Eq. 2.6. For example,

values at 370 MHz under a 20% SM slab is expected to have a penetration depth of 17.9 cm

using the traditional penetration depth equation for a single slab (Eq. 2.6). However, by moving a

secondary slab beneath this surface slab, we observe SoOp-R responses up to 54.5 centimeters.

Overall, these results suggest that despite the dominantly frequency-independent nature of

SoOp-R measurements in relation to SM content, different frequencies are capable of observing

changes in reflectivity values based on frequency-dependent propagation and matching properties

of a wave traveling through a multilayered medium. Thus, RZSM is potentially measurable by a

SoOp-R system by using different wavelengths. Although the method of determining a ”saturation

depth” would be more difficult to apply to SM profile configurations that are more complex than

a two-slab structure, the general insights obtained show that the contributing area of reflections

can extend beyond the penetration depth of a profile. If multiple frequencies can be leveraged,

values within the SM profile can potentially be obtained through inversion techniques based on

differences in the coherence of the observed reflectivity.

2.5.2.2 Frequency and Angle Response of Dual Slab Configurations

Figure 2.6 depicts the a heatmap of the transmissivity for a frequency sweep of four distinct SM

profiles. The white line denotes the location of the second layer across each simulation, and the

red curve denotes where the energy has fallen to the level considered to be the penetration depth

(≈ -4.3 dB). Additionally, the magenta line shows the location where the energy has fallen to 10%
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Figure 2.6

Frequency sweep of 4 two-layer profiles. The white lines represent the location of the second
layer. The red line represent the penetration depth of the configuration, and the magenta line

depicts where the transmittance reaches 10% of its original energy. The first slab SM is 10% for
the upper four subplots and 30% for the lower four subplots. The second slab SM is 50% for all

subplots.

(-10 dB). For the color axis, the transmissivity of the incident signal is depicted and is bounded

between 0 and -20 dB in order to visualize certain coherence properties of this study.

For lower frequencies, the penetration depth occurs near the location of the second dielectric

slab. Across the frequency sweep, we can visualize the effects of phase thickness in the calculation
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of the reflection coefficient. As the high dielectric constant value descends into the profile, the

transmittance of the signal oscillates more rapidly across the frequency spectrum. When the SM

of the upper layer is increased, we observe higher signal attenuation in addition to faster oscillation

across the frequency spectrum.

Across each subplot, the colorbar visualizes the energy of the signal up to the point where 1%

(-20 dB) of the energy from the surface remains. It can be observed across the frequency sweep that

the transmitted energy and penetration depth varies as a function of frequency despite the previous

simulations showing frequency-independence. The coherency effects which cause the penetration

depth to fluctuate are largely suppressed at frequencies above L-band for all simulations, and this

fluctuation can be further suppressed by increased SM content or larger distance between areas

of dielectric contrast. This indicates that, regardless of coherence effects, the use of different

frequencies can be leveraged to sense subsurface changes in dielectric constant given a sufficiently

sensitive SoOp-R system.

In addition to this frequency sweep, we visualize the transmissivity and penetration depth

of a 370 MHz signal as a function of incidence angle as depicted in Figure 2.7. Across all slab

configurations, we observe that the penetration depth rapidly approaches zero around 70° incidence.

This aligns with many experiments which ignore observations near 70° incidence. Though not

depicted, simulations show that the general trend of the effect of changing incidence angle does

not vary with frequency. Thus, the significance of different incidence angles for a given profile is

that it reduces the total transmissivity of the signal into the SM gradient and, therefore, reduces the

contributing area of the SM profile towards the receiver.
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Figure 2.7

Incidence angle sweep of 4 two-layer profiles at 370 MHz. The white lines represent the location
of the second layer. The red line represent the penetration depth of the configuration, and the

magenta line depicts where the transmittance reaches 10% of its original energy. The upper slab
SM is 10% for the upper four subplots and 30% for the lower four subplots. The second slab SM

is 50% for all subplots.

2.5.2.3 Clay Content Response to Dual Slab Configurations

Figure 2.8 depicts the difference between multiple clay content combinations and the reflectivity

of a dual slab configuration at 25 % for the first and second soil slabs. The center pixel of each

image in Figure 2.8 shows a value of zero in natural units (−∞ in dB), and all surrounding pixels
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show how reflectivity differs from the configuration at the center pixel. However, the colorbar has

been fixed to a range of -40 to -15 dB to show meaningful data. These values are plotted for each

of the five frequencies at 137.5, 255, 370, 1575.42, and 2338.75 MHz for two distinct SM slab

combinations. The top row of subplots shows a configuration of 15% SM for slab 1 and 30% for

slab 2. The second row of subplots shows a configuration of 30% SM for slab 1 and 15% for slab

2.

Figure 2.8

Relative difference between reflectivity measurements as a function of clay content within two
soil slabs for different frequencies. The upper slab is 15 cm in height, and the second slab is

semi-infinite. The top row of subplots show a configuration for SM values of 15 and 30% for slab
1 and 2, and the bottom row uses SM configurations of 30 and 15% for slab 1 and 2.

Lines of pixels in Figure 2.8 are displayed which represent largely minor differences in reflec-

tivity values (< −35dB.) In most cases, these largely similar reflectivity values can be created by

simultaneously varying both slab 1 and slab 2’s clay content. However, for higher frequencies

and higher SM content, the reflectivity measurements will be insensitive to the second slab. This
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behavior is exhibited in the two lower-right subplots for surface SM of 30% and frequency values

of 1575 and 2338 MHz. It can be seen that these lines are all highly dependent on frequency, SM,

and clay content.

In general, one can expect higher reflectivity differences for lower SM values due to the

dominance of the SM parameters contributions on the dielectric constant. Beyond this observation,

simple relationships between reflectivity and clay content are difficult to quantify for the Mironov

model. This is because increasing clay content will generally lower the soil dielectric contrast and

increase its loss factor. The joint effects of SM and clay are non-linear, and this behavior produces

the non-linear lines of pixels below −35 dB.

2.5.3 Arbitrary Profile

Figure 2.9 depicts nine different SM profiles which vary as a function of depth. The leftmost

column of subplots (Figure 2.9a, d, and g) depicts a linear, wetting SM profile. The middle column

of subplots (Figure 2.9b, e, and h) depicts a linear, drying SM profile. The rightmost column of

subplots (Figure 2.9c, f, and i) depicts a second-order polynomial curve for a SM profile fit. Figure

2.9i displays the upper and lower SM boundaries as discussed in Section 2.4.3. Each subplot

indicates the polynomial coefficients used to create the depth-dependent SM profile using Eq. 2.8.

From these SM profiles, we calculate the elementary reflection coefficients between dielectric

boundary layers in the subsurface of the SM profile in Figure 2.10. The primary driver of elementary

reflection coefficients is the difference, or contrast, between two adjacent dielectric slabs. Because

of the high level of discretization used in this study (a new slab every millimeter), the magnitude

square of the elementary reflection coefficient values is shown in decibels for easier visualization
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Figure 2.9

Example soil moisture profiles represented by polynomial-based equations indicated by the title
of each subplot. Profiles a, d, g represent a positive, linear soil moisture profile. Profiles b, e, h

represent a negative, linear soil moisture profile. Profiles c, f, i represent a second-order
polynomial fit.

at low dielectric contrast. Whenever minimal dielectric contrast is present (i.e., adjacent dielectric

slabs possess nearly the same dielectric constant value), the elementary reflection coefficient

approaches zero. We see that in all cases, the elementary reflection coefficient value is greater for

areas of lower SM content and is lower for areas of higher SM content. With the shape of these

elementary reflection coefficients depicted, we now observe how the intermediate solution for the

total reflection coefficient of the entire SM profile is determined.
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Figure 2.10

Elementary reflection coefficient in the subsurface of the soil moisture profiles of Figure 2.9.
Each subplot shares a common legend indicating the frequency of each reflection coefficient.

Contributions from the air-surface interface are not depicted.

In Figure 2.11, we show the subsurface, intermediate reflection coefficients at each interface for

each profile in Figure 2.9. As discussed in Section 2.3 in the description of Eq. 4.26, the reflection

coefficient is initialized from the bottom of the profile with the value of the elementary reflection

coefficient, and the joint reflection and propagation effects are determined in order to calculate

the intermediate reflection coefficient at the 𝑖𝑡ℎ interface as it ascends towards the surface of the

profile. Our most general observations can be made with Figure 2.11a. For the lowest frequencies

at 137, 255, and 370 MHz, the coherency of the signal is clearly depicted. The coherent nature is

generally suppressed in the wetting SM profiles, while the coherency can be clearly visualized in
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the drying profiles. This is likely due to the overall lower SM content of the drying profiles. For all

cases of higher frequency signals at 1575 and 2338 MHz, the reflection coefficient varies greatly,

but generally follows the same path towards the surface as the lower frequency values. From these

results, it is expected that at higher discretization levels, these higher frequency values will show

smoother variations. As is expected, the reflection coefficient for lower frequencies tends to have

a higher value than its high frequency counterparts.

Viewing each column of subplots in Figure 2.9, we observe that the SM profile increases as

a function of depth more rapidly from subplot to subplot. This in turn produces higher dielectric

contrast and higher values of subsurface reflection coefficient values in Figure 2.11. Thus, the

total observed reflection coefficient seen by a SoOp-R system which seeks to resolve RZSM will

be most largely affected by the rate at which SM changes with respect to depth in a profile.

As noted previously, we observe an area of no change in SM in Figure 2.9i. This same

depth location produces an interesting phenomenon in the intermediate reflection coefficient of

Figure 2.11i. Once the reflection coefficient reaches this portion, the value begins to degrade as

it rises towards the surface. This is explained by the two processes which govern the reflection

coefficient estimation: propagation and reflections. When there is no change in dielectric constant,

no reflections will occur. Thus, each frequency observes an attenuated loss in reflection coefficient

value due to propagation loss, with the greatest loss occurring with higher frequencies. Once the

reflection coefficient calculation observes non-zero elementary reflection coefficients, the dielectric

discontinuities will contribute to reflections observed by the SoOp-R system.

Figure 2.10 also visualizes the non-linear losses accrued by the reflected energy within the

profile. Comparing Figure 2.10a to Figure 2.10b, we see that as the lower frequency reflectivity
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values approach the surface in Figure 2.10a, the reflectivity increases and contributes to the

overall observed reflectivity at the surface. For Figure 2.10b, the reflectivity value decreases as it

approaches the surface due to the drying SM profile. For this subplot, even the lower frequencies

are more easily altered by propagation processes which contribute to the oscillatory behavior across

the calculated reflectivity values. However, comparing Figure 2.10b to Figure 2.10e, we observe

that these reflection coefficient values are less susceptible to the oscillatory behavior. This is due

to the larger dielectric contrast which allows for contributions arising from reflection processes to

become more dominant across each layer.

This simulation, overall, shows the importance of dielectric contrast. As the previous simu-

lations have shown, different frequencies are capable of observing differences in SoOp-R mea-

surements due to differences in both the coherence of the reflection coefficient as well as a given

frequency’s tolerance to propagation losses as determined by a frequency’s dielectric loss proper-

ties. If greater dielectric contrast between layers is observed, there will be more opportunity for the

reflected signal’s energy to be reflected towards the receiver. Conversely, if the SM profile changes

slowly, fewer reflections will be produced, and the effects of propagation loss will be more strongly

pronounced.

2.6 Discussion

The SCoBi model used in these simulations is highly modular and designed to examine a

wide variety of SoOp-R scenarios. By allowing the user to model their own SM profile, vegeta-

tion canopies, antenna radiation patterns, and bistatic configuration, it is our intent to provide a

simple, configurable M&S package to model and design SoOp-R experiments using fundamental
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Figure 2.11

Intermediate reflection coefficient solution in the subsurface of the soil moisture profiles of Figure
2.9. The reflection coefficient is initialized by the bottom-most elementary reflection coefficient
and determined as the signal travels upward through the profile. Each subplot shares a common
legend indicating the frequency of each reflection coefficient. Contributions from the air-surface

interface are not depicted.

microwave theory based on Maxwell’s equations. Interested parties are encouraged to use the

codes available in this package to adapt to their M&S needs. The SCoBi multilayer module is

currently being used in modeling and simulations in support of the SNOOPI experiment [45],

RZSM inversion research being conducted at Purdue University [10], and farmland SM remote

sensing at Mississippi State University.

The version of SCoBi used in this study is designed for low-altitude applications. A SCoBi

update is in development in support of future SNOOPI measurements which includes more com-
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prehensive tools that are appropriate for spaceborne applications. Specifically, a future release of

SCoBi is in development which will utilize a grid of several flat-earth approximations superim-

posed over a Digital Elevation Map (DEM) to calculate the total received electric field emerging

from each facet. Since the absolute phase of the signal is preserved, the total topographic effects

will be considered a superposition of each grid along the DEM. This expected update will enable

analysis with respect to topographical relief, spherical Earth surface scattering, and incoherent

contributions from surface roughness effects. While coherency can be reasonably assumed under

smooth surface assumptions at low altitudes, topographic relief has been shown to be a significant

factor in GNSS-R applications for spaceborne applications [33,88]. Thus, the results of these sim-

ulations must be carefully considered for spaceborne applications where incoherent contributions

from factors such as topography may be dominant. Future studies which discuss the signatures

and dynamic range of signal contributions from topography, surface roughness, and vegetation

would be highly beneficial to the literature for understanding the utility of the different available

frequencies.

In addition to surface roughness effects, rough layering between dielectric slabs within the

profile have not been included in this study. This methodology has been incorporated into the

study of radar backscatter previously. Given a two-layer model, it has been shown that the

subsurface layer roughness can have a measurable impact on the overall reflected energy [37,110].

It is suggested that subsurface layer roughness should be used when a significant shift in soil

texture composition occurs [64]. However, the SM profiles in this paper assume a homogenous

soil texture composition in nearly all simulations. If prior information is known about uneven
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dielectric variations within the profile, we note that such subsurface layer roughness values should

be considered.

As discussed in Section 2.5, the measured reflectivity is a function of both wave propaga-

tion effects and reflections along dielectric discontinuities. As shown in Figure 2.4, the relative

permittivity for the examined frequency region is largely identical, and the loss factor is largely

frequency insensitive above 1000 MHz. Because of this frequency insensitivity, the dielectric dis-

continuities across the vertical SM gradient will be the same, and this will produce nearly identical

values of reflections at each boundary layer. However, because of the frequency dependence of the

propagation effects, different frequencies will observe different responses to a SM gradient based

on reflections towards the receiver as shown in Figure 2.11. For this reason, we conclude that

multiple frequencies can leverage the differences observed in the measured reflection coefficients

to determine subsurface SM values.

Our simulations exhibit the behavior of SoOp measurements given a SM profile represented by

a single slab, two slabs, and an arbitrary number of slabs. By following this process of increased

layering, we can clearly visualize that the dielectric boundaries produce identical reflections given

a single air-surface interface as shown in Figure 2.3. When looking at two dielectric slabs, we

can observe that the position of the dielectric slabs within the profile will cause the SoOp-R

observation to become frequency dependent. From these two simulations, we can obtain all

of the components to rationalize the behavior of the SoOp-R response to complicated profiles

represented by n-degree polynomials and, therefore, any SM model based on the profile’s dielectric

properties and layering structure. While this paper presented several simple representations of the

SM vertical profile, this research can be further explored by examining the feasibility of SoOp-

55



R-enabled SM inversion using hydrologically-based SM models. Inclusion of parameters such as

hydraulic potential, evapotransporation modeling, hydraulic conductivity, and soil pressure head

can assuredly be beneficial for the creation of SM data products, however, such profile-specific and

hydrology-focused simulations are beyond the scope of this paper. Additionally, this simulation

did not account for surface roughness or vegetation effects, and this was done in order to provide

a focused insight into the simplified case of SoOp-R reflections from a bare soil profile. Future

studies could further this research by characterizing the impact of various vegetation structures and

surface roughness parameters on the measured SoOp-R signal.

2.7 Summary and Conclusion

This work presents the multilayer module of the SCoBi model and simulator. The SCoBi

multilayer module enables the modeling and simulation of user-defined SM profiles using well-

established, fundamental electromagnetic theory. The inclusion of the multilayer module in the

SCoBi framework is designed to allow users to conduct comprehensive SoOp-R simulations of

RZSM regardless of their scientific background. When paired with SCoBi’s other modules, SCoBi

can enable multifaceted analysis of SoOp-R simulations with respect to surface SM, RZSM, surface

roughness effects, vegetation, bistatic geometry, and many other modeling considerations for land

remote sensing. The details of the model as well as the simulator functionality are described.

This paper presents an analysis of the multifrequency SoOp-R response to RZSM represented

by multilayer dielectric slabs with variable depth, SM content, and discretization. The analysis

uses the recently-developed Mironov model to represent the complex SM dielectric constant within

each layer. We provide the following general observations:
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From our simulations, we observe that the dielectric constant value of SM is largely frequency

independent for the examined frequency range of this study. While this study uses the Mironov

model primarily to determine the dielectric constant value of SM, this phenomenon is observed in

the Dobson-Peplinksi SM dielectric model as well. We observe that the coherence of these signals

can be leveraged in order to observe changes in subsurface SM.

Penetration depth is briefly examined for a simple, two-dielectric slab simulation series. While

penetration depth is often cited in literature to indicate a general area at which SM may be retrieved,

this paper discusses an example method of determining a profile-specific sensing depth by moving

a dielectric slab down a profile and observing the position where the reflectivity is less than the

SoOp-R system’s confidence threshold for reflectivity measurements. If a SoOp-R system can

confidently measure reflectivity to a desired precision level, the depth at which SM may be sensed

can be much greater than the suggested penetration depth.

The effect of variable clay content within the Mironov soil dielectric model is examined. As

the Mironov model is a function of only frequency, clay content, and SM, the clay content of

the Mironov model is the only parameter available to describe soil composition. When this clay

content is varied for two soil slabs, we find that many combinations of clay content can result in

similar resulting reflectivity values. This suggests the importance of soil texture classification in

order to minimize errors induced by uncertainty in soil texture.

We also examine the effects of profiles which vary in SM as a function of depth. It can be

observed that the dielectric contrast between layers is the driving force for responses to subsurface

SM. If a portion of the profile features no variation in dielectric constant, only propagation loss

occurs, and no energy will be reflected towards the receiver in order to be sensed. The lower
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frequencies can take advantage of higher penetration and sense dielectric contrast deeper into

the soil whereas higher frequencies have a limited response over shallow regions of the soil.

This further emphasizes the importance of leveraging more than one frequency source to retrieve

subsurface SM.
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CHAPTER III

CRAMER-RAO BOUND FOR GROUND-BASED MULTILAYER INVERSION

This section is inherited from [11] with copyright (©) belonging to the IEEE 2020. It is

reprinted, with permission, from:

D.R. Boyd, A.C. Gurbuz, M. Kurum, J. Garrison, B. Nold, R. Bindlish, J. Piepmeier, M.

Vega, ”Cramer-Rao Lower Bound for SoOp-R-Based Root-Zone Soil Moisture Remote Sensing,”

IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, vol. 13,

pp.6101–6114, 2020. doi:10.1109/JSTARS.2020.3029158. © 2020 IEEE.

3.1 Abstract

SoOp Reflectometry (SoOp-R) is a maturing field for geophysical remote sensing as evidenced

by the growing number of airborne and spaceborne experiments. As this approach receives more

attention, it is worth analyzing SoOp-R’s capabilities to retrieve subsurface soil moisture (SM) by

leveraging communication and navigation satellite transmitters. In this research, the Cramer-Rao

lower bound (CRLB) is used to identify the effects of variable SoOp-R parameters on the best

achievable estimation error for root-zone soil moisture (RZSM). This study investigates the use of

multiple frequency, polarization, and incidence angle measurement configurations on a two-layered

dielectric profile. The results also detail the effects of variable SM conditions on the capability of

SoOp-R systems to predict subsurface SM. The most prevalent observation is the importance of
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using at least two frequencies to limit uncertainties from subsurface SM estimates. If at least two

frequencies are used, the CRLB of a profile is retrievable within the root-zone depending on the

surface SM content as well as the number of independent measurements of the profile. For a depth

of 30 cm, it is observed that a CRLB corresponding to 4% RZSM estimation accuracy is achievable

with as few as 2 dual-frequency-based SoOp-R measurements. For this depth, increasing number

of measurements provided by polarization and incidence angle allow for sensing of increasingly

wet SM profile structures. This study, overall, details a methodology by which SoOp-R receiver

system can be designed to achieve a desired CRLB using a trade-off study between the available

measurements and SM profile.

3.2 Introduction

SoOp-R within remote sensing refers to the process of leveraging available transmitter sources

to perform remote sensing of a geophysical parameter such as ocean surface roughness, sea

ice detection, SM, vegetation biomass, or snow water equivalent [51, 102, 133]. The field has

experienced many successful ocean-based applications, experiments, and missions from a dedicated

research community since the late 1990s [46, 72, 102, 115]. This success has since inspired land-

based remote sensing applications for SM and snow water equivalent [23, 24, 48, 61, 62, 94, 130].

One of the most prominent benefits of the signals of opportunity (SoOp) method is its capability

to leverage the available frequency sources from non-cooperative, anthropogenic transmitters to

perform measurements. This is achievable in a cost-efficient manner when compared to traditional

radar developments by removing the size, weight, and power (SWaP) constraints required for an
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onboard transmitter. Thus, there is great interest in applying the available frequency sources for

ground-based, airborne, and spaceborne applications for remote sensing.

RZSM is a highly sought geophysical observable due to its wide impact across many fields

of Earth science such as hydrology, weather forecasting, and crop-yield estimation [3]. RZSM,

as the name suggests, is defined as the water content available to a given vegetation’s root-uptake

system within a SM profile. Since the root-zone of a given vegetation structure can vary based

on root length, the root-zone typically refers to the upper 1 meter of a SM profile when discussed

irrespective of a particular plant. RZSM data products are a critical resource for hydrological

modeling [4].

Within the remote sensing community, remote sensing via radar backscatter is currently the

most studied field for determining RZSM. Radar backscatter’s sensitivity to surface SM has been

explored as early as the 1970s [118]. This field has advanced to include successful airborne

missions using synthetic aperture radar (SAR)-based P-band remote sensing systems to provide

RZSM products [19,109]. Studies using radar backscatter at this frequency have detailed the effect

of multilayer backscatter for the purpose of RZSM inversion [63].

Recent experiments and simulation studies suggest that multi-frequency observations should

be used in resolving RZSM from SoOp-R microwave remote sensing techniques [11]. Some of

the most commonly referenced SoOp sources include the Orbcomm communication constellation

centered at 137 MHz, the United States Navy’s Ultra-High Frequency Follow-On system centered at

255 MHz and the Mobile User Objective System (MUOS) centered at 370 MHz, global navigation

satellite system (GNSS) sources which feature publicly available codes at 1575.42 MHz, and the

XM Satellite Radio constellation at 2338 MHz.
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While simulations have clearly shown that SoOp-R measurements observe the effects of RZSM

when simulating multilayered dielectric structures [8], it is helpful to determine the estimation

accuracy of differing SoOp-R configurations on RZSM profiles. Such studies can help design

future SoOp-R experiments as well as provide insight on the potential uncertainty embedded

within inversion algorithms. To the author’s knowledge, no such research has been performed for

the use of forward-reflected signals for the purpose of RZSM estimation.

A common technique to compare the performance of any unbiased estimator is the use of the

CRLB [58]. The CRLB is a popular statistical signal processing technique which expresses a lower

bound on the estimation variance providing the best benchmark we can ever expect to achieve with

an unbiased estimator. An estimator achieving CRLB is efficient, and it is the minimum variance

unbiased estimator for a given model. The CRLB is useful in parameter estimation for remote

sensing as it provides a robust metric for characterizing different measurement configurations

and its impact on an unknown parameter [30, 96, 101]. Application of the CRLB to the RZSM

problem allows us to determine the estimation bound of any estimator given the same modeling

and simulation environment.

This paper seeks to determine the estimation accuracy for RZSM for a number of simple SM

profile configurations and bistatic SoOp-R scenarios. The simulations consist of many two-slab

configurations for RZSM estimation in which the combination of frequencies, incidence angles, and

polarizations of signals are considered to achieve the most optimal estimation accuracy possible.

The modeling and simulation environment as well as the CRLB calculations are presented in

Section 3.3. The simulations are presented in Section 3.4 and are discussed in Section 3.5. Our

concluding remarks on the study are presented in Section 3.6.
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3.3 Modeling and Theory

This section presents the theory and modeling for the CRLB study used by this paper. Section

3.3.1 details the model used to produce the SoOp-R measurements as a function of both ground

and system variables. Section 3.3.2 presents our implementation of the CRLB for this paper. All

data presented is simulated.

3.3.1 SoOp-R and Environment Modeling

The model used to simulate the bistatic SoOp-R environment and resulting measurements is

the SoOp coherent bistatic scattering model (SCoBi) model v1.0.3 [38,65]. The SCoBi model is a

fully polarimetric simulation tool that allows for comprehensive modeling of the ground reflecting

surface, geometry, antenna configurations, and cross-channel noise processes. Since the model

is based on analytical wave theory, the amplitude and phase information of the coherent signal is

preserved through the simulation process. For bare soils, the reflection coefficient is calculated

through an iterative process by which the propagation and reflection processes of a signal incident

upon a series of dielectric slabs is calculated directly from Maxwell’s equations. The SCoBi model

is capable of modeling many features such as multiple SM dielectric representations, vegetation

structures, and surface roughness effects.

While the received signals are generally composed of contributions from vegetation, topogra-

phy, surface roughness, soil type, and water bodies under a typical spaceborne bistatic scenario,

we assume a dominantly specular signal over a bare surface SM profile for the purposes of this

study. The multipath reflection coefficient Γ𝑐𝑜ℎ is calculated from the following relation.

63



Γ𝑐𝑜ℎ = 𝑔
𝑟

(𝒐̂+𝑠 ) · 𝑢
𝑠→𝑟

(𝒐̂+𝑠 )·

𝑟
𝑠
(𝒐̂+𝑠 , 𝒊−𝑠 ) · 𝑢

𝑡→𝑠
(𝒊−𝑠 ) · 𝑔

𝑡

(𝒊−𝑠 ) · 𝑒𝑡 (3.1)

where 𝑖 and 𝑜 describe the incoming and outgoing directions of the wave propagation, 𝑔
𝑟

and 𝑔
𝑡

are

the receiver gain and transmitter gain respectively, 𝑢
𝑠→𝑟

and 𝑢
𝑡→𝑠

represent the polarization basis

transformation between specular-point-to-receiver and transmitter-to-specular-point respectively,

𝑟
𝑠

is the specular reflection matrix, and 𝑒
𝑡

is the nominal polarization state. More details on the

derivation of the reflection coefficient and its constituent parameters can be found in [65].

This problem assumes specular-dominant contributions based on the system geometry and

previous research findings [41]. For this study, we assume a fixed altitude and azimuth. Because

of the flat, homogeneous slabs that are used in this study, many parameters will have negligible

effect on the received signal. Under a specular reflection assumption where the surface roughness

is within the Rayleigh scattering regime, the contributing area of the spatial footprint is restricted to

the first Fresnel zone [133], which varies as a function of frequency, incidence angle, and platform

altitude. However, because the reflecting surface is assumed to be semi-infinite and homogeneous

within each layer, factors such as spatial resolution and azimuth direction can be ignored.

A simplified depiction of the modeling and simulation environment for this paper’s simulations

is shown in Figure 3.1. The receiver is pointed directly towards the specular point, and no

antenna losses are simulated. The primary system variables considered are transmitter frequency,

transmitter incidence angle (equal to the surface scattering angle for bare soils), and receiver

polarization. While some communication satellite systems use left-hand circular polarization (L),
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all transmitter polarizations in this study are fixed at right-hand circular polarization (R) in order

to more easily describe the co- and cross-polarization relationships with the CRLB.

Figure 3.1

Simplified geometry of this paper’s modeling and simulation environment. The unknown SM
variables are designated as 𝛽1 and 𝛽2 for the first and second SM slabs. No surface roughness is
assumed. An initial slab is assumed to contain constant SM from the surface until the dielectric
discontinuity at location 𝑑. The SM content (𝛽2) at depth 𝑑 is considered to be the root-zone for

this study. © IEEE 2020.

For simplicity and ease of understanding, the SM profile is represented by two layers: a surface

SM value extending from the air-surface interface to the next dielectric discontinuity and a second

slab extending downward infinitely across the half-space. The dielectric value of these two slabs

is calculated using the Mironov dielectric model [78]. This model is parameterized by volumetric

SM and soil clay content. The latter of which is assumed to be 31% for this study. As previously

mentioned, surface roughness is not considered.

The general geometry in this simulation study, while capable of being modeled in SCoBi,

is simplified to constant values. SCoBi is capable of modeling antenna beam patterns as well
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as losses from polarization mismatch and antenna cross-talk. However, full consideration of the

bistatic geometry between the transmitter, receiver, and specular point should be considered when

implementing such an analysis. Since such a study would require fixed points of reference relative

to the location of transmitters, antenna beam direction (including both incidence and azimuth

angle), and the physical location of the receiver, we choose to assume these values are negligible

so that the results are generalized for SoOp-R applications.

Soil texture is an important parameter in establishing the dielectric of soil because soil texture

can change the distribution of water content within a soil layer. Clay content, the configurable

parameter for the Mironov soil dielectric model, changes the dielectric of soil nonlinearly. However,

because soil texture does not change significantly over time like SM, it is common to assume that

it is static as we do in this study.

3.3.2 Cramer-Rao Lower Bound Model

The CRLB is considered to be one of the simplest methods for placing a lower bound on the

variance of any unbiased estimator. It also provides a way for determining the minimum variance

unbiased estimator. In the case of a deterministic modeling and simulation scenario, the CRLB

presents the ultimate performance of an unknown parameter estimator for the given set of specific

model inputs. Although CRLB defines the performance bound, the maximum likelihood estimator

(MLE) is an asymptotically efficient attaining CRLB.

Since all of our information about estimating the RZSM parameter is embodied in the observed

measurements and the underlying probability distribution function (PDF) for that data, the CRLB
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that defines the estimation accuracy also depends on the PDF. We use the SCoBi model to simulate

the coherent reflection coefficient measurements.

We first discuss the parameterization of our forward model and simulation environment for the

CRLB calculation. After having fixed certain parameters within the SCoBi model, the remaining

controllable variables are described. The controllable parameters will be contained in the vector

𝒙 = [ 𝑓 , 𝜃𝑖𝑛𝑐, 𝑞] where 𝑓 is the frequency of the transmitter and receiver, 𝜃𝑖𝑛𝑐 is the incidence

angle of the signal at the air-surface boundary, and 𝑞 is the polarization of the receiver antenna.

The unknown parameter vector representing the SM of the upper and lower layers is given by

𝜷 = [𝛽1, 𝛽2]. The output reflection coefficient Γ𝑐𝑜ℎ from (3.1) is computed using the forward

SCoBi model 𝑓𝑆𝐶𝑜𝐵𝑖 (𝒙; 𝜷). The output measurement 𝑦 is the sum of our model output and

measurement noise 𝑛.

𝑦 = 𝑓𝑆𝐶𝑜𝐵𝑖 (𝒙; 𝜷) + 𝑛 (3.2)

The measurement noise in (3.2) is assumed to be a zero-mean, white Gaussian process for the

reflection coefficient with a common variance of 𝜎2. As the reflection coefficient is a complex

number, the noise power is assumed to be distributed evenly across the real and imaginary compo-

nents of the signal. Selecting a noise term for the reflection coefficient should adequately reflect

typical noise values observed by SoOp-R systems.

The SCoBi model output buried in Gaussian noise is treated as a multivariate probability

distribution function whose inputs are defined by the measurement vector 𝒚, system input vector

𝒙, and unknown parameter vector 𝜷 as defined in (3.3).
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𝑝(𝒚; 𝒙, 𝜷) = N( 𝑓𝑆𝐶𝑜𝐵𝑖 (𝒙, 𝜷), 𝜎2𝑰) (3.3)

Under these conditions, the CRLB for parameter 𝜷𝒊 is found as the [𝑖, 𝑖]-th element of the

inverse of a matrix

var
(
𝛽
)
≥

[
𝑭−1(𝜷)

]
𝑖𝑖
= 𝐶𝑅𝐿𝐵(𝜷𝒊) (3.4)

where 𝑭(𝜷) is the 𝛼 × 𝛼 Fisher information matrix that is defined by

[𝑭(𝜷)]𝑖 𝑗 = −𝐸
[
𝜕2ln 𝑝(𝒙; 𝜷)
𝜕𝛽𝑖𝜕𝛽 𝑗

]
(3.5)

for 𝑖, 𝑗 = 1, 2, . . . , 𝛼 where 𝛼 is the total number of unknown parameters [58]. In our case,

representing the unknown RZSM with 𝜷 = [𝛽1, 𝛽2] for upper and lower layers, 𝛼 = 2 and the

matrix 𝑭(𝜷) is 2 × 2. However, the presented CRLB model is able to handle any given number of

unknown parameter settings.

In addition, since our model is a complex, multivariate Gaussian [59, 108], calculation of the

Fisher information matrix can further be simplified using

𝑭𝒊 𝒋 =
2
𝜎2ℜ

([
𝜕 𝑓𝑆𝐶𝑜𝐵𝑖 (𝒙, 𝜷)

𝜕𝛽𝑖

]𝐻 [
𝜕 𝑓𝑆𝐶𝑜𝐵𝑖 (𝒙, 𝜷)

𝜕𝛽 𝑗

])
. (3.6)

3.4 Simulation Study

The following study presents multiple simulations which examine the resultant CRLB when the

input for the modeling and simulation environment is changed. Specifically, the five main variables

of interest are frequency, incidence angle, polarization, SM content, and SM slab position. As

some simulations require slightly different environments to illustrate the effect of certain inputs, the

methodology for each simulation is presented alongside the associated results. Working under the
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assumption that the square root of the lower-bound is directly comparable to SM retrieval accuracy

constraints, all results will depict the
√
𝐶𝑅𝐿𝐵. For all figures depicting the

√
𝐶𝑅𝐿𝐵 along the

y-axis, each subplot shows the value as a percentage instead of natural units.

All simulations share certain common features. The
√
𝐶𝑅𝐿𝐵 is calculated using measurements

from the combination of all available inputs (e.g., a simulation at 3 frequencies, 2 angles, and 2

polarizations will produce 12 measurements to determine the
√
𝐶𝑅𝐿𝐵.) All measurements use a

common noise variance 𝜎2 based on a reflectivity noise floor of −34 dB. This value is chosen based

on the distribution of 2017 and 2018 CYGNSS reflectivity observations over land [42]. While it is

likely that different communication systems will observe different noise distributions, a common

noise variance for all frequencies will help focus the simulations on a generalized characterization

of the impact of the receiver system variables. Nearly all measurements are performed using a

SM profile consisting of two slabs where the first slab extends from the air-surface interface to a

depth 𝑑 in centimeters. When the 5 commonly available SoOp-R transmitters at 137.5, 255, 370,

1575.42, and 2338 MHz are used as variable parameters in subsequent figures, these frequencies

are denoted as 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 in order to achieve efficient spacing within the figures.

The following study intends to show the reader the benefits of using different combinations of

frequencies, polarizations, and incidence angles for different SM values and RZSM depth positions.

Similar to the concept of dropout in neural network regularization, this study begins with a large

number of measurements and removes parameters that are unnecessary to obtain the desired RZSM

retrieval estimation accuracy. The number of parameters used is larger than what can be expected

from most experimental applications. However, by visualizing ”smooth”
√
𝐶𝑅𝐿𝐵 gradients from

the use of a large number of measurements, it is our intention to more easily visualize the influences

69



of frequency, polarization, and incidence angle to the reader by removing these parameters and

observing their impact on the
√
𝐶𝑅𝐿𝐵 calculation.

3.4.1 CRLB as Function of Depth and Frequency

In this section, the relationship between the
√
𝐶𝑅𝐿𝐵, frequency, and sensing depth is examined.

In the context of this paper, the sensing depth refers to positions within the root-zone where the

second slab’s SM content (𝛽2) can be sensed within a desired degree of error. A target
√
𝐶𝑅𝐿𝐵

that is less than or equal to 4% will be the primary focus since this is a commonly targeted goal for

surface SM estimation.

While penetration depth is a good metric for establishing a general depth where signal contri-

butions can be sensed, the most commonly used penetration depth formula assumes a single SM

value for the entire profile and, therefore, cannot account for the reflection properties of multilayer

dielectric structures. For this reason, the
√
𝐶𝑅𝐿𝐵 will be used directly to determine depths where

RZSM can be sensed with a desired 4% accuracy.

To establish a reasonable depth for RZSM estimation with this paper’s system configuration,

two initial cases are presented. First, a scenario where 120 SoOp-R measurements are used

to determine the
√
𝐶𝑅𝐿𝐵. For the second scenario, we then restrict the measurements to only

five values. These two simulations are used to illustrate the range of potential RZSM depths 𝑑

where a
√
𝐶𝑅𝐿𝐵 estimation accuracy of 4% can be achieved. While it is unlikely to obtain 120

measurements over short temporal spans in field applications, this initial number of parameters

allows us to visualize the
√
𝐶𝑅𝐿𝐵 while mitigating anomalies that stem from an undesirable

combination of measurements.
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The
√
𝐶𝑅𝐿𝐵 is calculated across the upper 1 meter of an example SM profile. For a two

slab profile, the second slab is lowered within the profile to examine the effects that the location

of the second slab (i.e., the RZSM slab) induce on the
√
𝐶𝑅𝐿𝐵. Because there are only two

layers, this can also be described as moving the position of the single dielectric discontinuity

within the profile deeper into the soil. Two configurations are used in this study. One configuration

assumes 120 reflection coefficient measurements from the combination of values resulting from the

5 frequencies, 6 incidence angles equally spaced from 20° to 70°, and the 4 receiver polarizations

(X, Y, L, and R.) The second configuration assumes 5 measurements collected at the 5 available

frequencies with each measurement occurring at L-polarization and a 20° incidence angle.

Figure 3.2 presents the resultant
√
𝐶𝑅𝐿𝐵 values for the RZSM (𝛽2) estimates. The x-axis

indicates the location of the dielectric discontinuity within the profile. Each subplot within the

figure indicates the SM content of the second slab (i.e., RZSM), while the different colored lines

represent the SM value of the first slab (i.e., surface SM.) The upper-left and upper-right subplots

within the figure indicates the first measurement configuration using 120 measurements, while

the lower-left and lower-right subplots indicate the second measurement configuration of only 5

measurements.

It is immediately apparent that the depth for resolving RZSM 𝛽2 is dependent on the SM

profile and receiver configuration. An important factor for this behavior is the nature of subsurface

reflection properties which are dominantly controlled by the dielectric contrast of subsurface

slabs [11]. As the size of the surface SM slab increases, the waves propagating through the first

slab will undergo more attenuation processes which make RZSM retrieval more difficult. If we

observe a RZSM value of 20%, we find that the point at which our RZSM estimation reaches ± 4%
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Figure 3.2

Root-zone soil moisture
√
𝐶𝑅𝐿𝐵 as a function of depth. The upper two subplots show the√

𝐶𝑅𝐿𝐵 from the combination of five frequencies (137, 255, 370, 1575.42, and 2338 MHz), six
angles (20, 30, 40, 50, 60, and 70°), and four polarizations (X, Y, L, R) producing 120

measurements. The bottom two subplots show five measurements from (137, 255, 370, 1575.42,
and 2338 MHz at L-polarization and 20° incidence. © IEEE 2020.

accuracy is at 71, 45, 30, and 24 cm for surface SM values of 20, 30, 40, and 50% volumetric soil

moisture (VSM). Given five measurements, this same estimation accuracy is achieved at depths of

41, 27, 20, and 15 cm for the same SM and RZSM values. This simulation, therefore, shows the

potential, variable depths at which we can estimate RZSM for a specified accuracy range of ± 4%.

The
√
𝐶𝑅𝐿𝐵 for surface SM estimates 𝛽1 were also calculated alongside each value for 𝛽2,

although they are not depicted. The surface SM estimates show that the surface SM
√
𝐶𝑅𝐿𝐵 is

always lower-bounded significantly lower than the desired accuracy range of ± 4% as expected.

When changing from 120 measurements to 5 measurements, the worst-case 𝐶𝑅𝐿𝐵 changes from

less than 0.4% to roughly 1%. Thus, the multi-frequency measurements are capable of resolving

the surface SM regardless of the SM content or location of the dielectric discontinuity within these

simulations.
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Having established the effect that depth has on the
√
𝐶𝑅𝐿𝐵 when 5 frequencies are used

for many SM profiles, we now examine the effect of frequency combinations and RZSM depth

simultaneously. Figure 3.3 depicts the resultant
√
𝐶𝑅𝐿𝐵 for these simulations for the RZSM

(𝛽2). The results are restricted to example SM profiles featuring relatively high SM content. The

frequencies used are 137, 255, 370, 1575, and 2338 MHz which are represented by the letters a,

b, c, d, and e along the 𝑥-axis of each subplot. The depth of the slab position is indicated along

the 𝑦-axis. Within the simulation, the slab is moved in 1 cm increments down the SM profile. The

upper-left and upper-right subplots feature a surface SM of 20% and a RZSM value of 10% and

30% respectively. The lower-left and lower-right subplots feature a surface SM of 30% and a RZSM

value of 20% and 40% respectively. This is performed to visualize a consistent dielectric contrast

with respect to SM value for each row of subplots. While this paper is interested in understanding

depths where a 4% estimation error can reliably be obtained, the results are thresholded up to a

maximum
√
𝐶𝑅𝐿𝐵 of 10% to provide understanding of the increasing estimation error with respect

to depth, frequency combinations, and SM profile structure.

The results of Figure 3.3 show distinct changes with respect to SM content as well as the number

of frequencies used. The visually striking group of pixels which exceed the
√
𝐶𝑅𝐿𝐵 threshold of

10% in this image are observed at frequencies of 1575 and 2338 MHz (d and e). Due to the shorter

wavelengths, these signals show limited configurations where RZSM can be sensed. For example,

in the upper-right subplot of Figure 3.3, the
√
𝐶𝑅𝐿𝐵 derived exclusively from 1575 MHz reaches

high error values around 22 cm, and the 2338 MHz signal reaches high error values around 12 cm.

By lowering the RZSM slab further into the profile, contributions from these depths are buried in

noise.
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Figure 3.3
√
𝐶𝑅𝐿𝐵 of RZSM as a function of depth and frequency for wet SM profiles. Frequency

combinations are noted along the x-axis where a, b, c, d, and e correspond to 137, 255, 370, 1575,
and 2338 MHz respectively. Each frequency samples measurements in X and Y polarization as
well as at 20, 45, and 70° incidence. The location of the second slab is shown on the y-axis, and

the value of the resultant
√
𝐶𝑅𝐿𝐵 is shown by the color bar. © IEEE 2020.

Across the range of frequency combinations along the 𝑥-axis, the
√
𝐶𝑅𝐿𝐵 for measurements

using a surface SM value of 20% remain far below the 10% threshold up to the 𝑦-axis limit of 45

cm for most dual-frequency combinations. Whenever the surface SM is increased to 30%, only

portions of the dual-frequency combinations can sense below the maximum
√
𝐶𝑅𝐿𝐵 threshold,
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and the RZSM value can be seen to alter the depth where this threshold is reached for frequency

combinations. This threshold indicates an area where the signal becomes buried by our system

noise and can no longer be confidently used in RZSM estimation. As visualized in the lower-left

subplot, the use of multiple frequencies can allow for RZSM estimation deeper into the profile than

the maximum depth of a single frequency’s estimation capabilities.

There are multiple depths where the RZSM can be estimated using a single frequency when the

SoOp-R signal remains above the noise floor. As mentioned previously, this is caused by frequency

and depth-dependent properties of the signal’s interaction with the profile. While this indicates

that an estimator which can achieve a desirable
√
𝐶𝑅𝐿𝐵 from a single frequency might exist, this

estimator is likely insufficient for handling changes in the SM gradient.

Throughout Figure 3.3, there are many instances of abrupt changes in
√
𝐶𝑅𝐿𝐵 along different

depths. For example, a sharp increase in
√
𝐶𝑅𝐿𝐵 occurs at 33 cm for 137 MHz (a) and at 30

cm for 255 MHz (b) in the upper-left subplot. This occurs for two reasons. When the Jacobian

matrix is calculated with respect to the unknown SM parameters, certain depths will exhibit limited

change with respect to SM. Because of the coherency of the reflection coefficient, we note that this

generally occurs at a point where the reflection coefficient has reached a maximum or minimum

with respect to depth. Thus, there are depths where perturbing the forward model with respect

to SM will observe limited change due to the frequency-dependent coherency fluctuations of the

reflection coefficient. The resulting matrix multiplication and inversion of the Fisher-information

matrix based on these points of insensitivity to perturbation generate the large
√
𝐶𝑅𝐿𝐵 values

seen. Because these points are dependent on the SM profile layering, frequency, and SM content,

it is difficult to know where these insensitive points will appear prior to measurements. For this
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reason, we suggest the leveraging of multiple frequencies to make efficient use of these coherency

effects.

It is evident from these simulations that longer wavelengths are generally better estimators than

shorter wavelengths. The use of the lowest frequency (137 MHz, a) generally provides the deepest

estimation levels as shown in the upper-left subplot. When combined with another frequency,

most
√
𝐶𝑅𝐿𝐵 fluctuations are eliminated. For estimation of RZSM, the combination of the three

lowest frequencies (abc) tends to provide the deepest estimation. The inclusion of the two higher

frequencies (abcde) is seen to eliminate most large fluctuations in
√
𝐶𝑅𝐿𝐵 across all depths. Thus,

for deeper RZSM estimation, the use of 137 MHz is suggested.

Similar to the previous simulation, the surface SM’s
√
𝐶𝑅𝐿𝐵was calculated for each frequency

and depth combination shown in Figure 3.3. There results, in most cases, resulted in estimation

error far below 0.5%. However, it should be noted that shorter wavelengths (L-band or higher)

performed more consistently at estimating surface SM as longer wavelengths are generally more

sensitive to variations in subsurface SM.

In summary, the use of multiple frequencies for estimating RZSM is important for repeatable,

accurate estimation of
√
𝐶𝑅𝐿𝐵with longer wavelengths proving to be the most useful for estimation

at deeper points in the profile. From a physics-based perspective, it is known that the use of a single

frequency can result in ambiguity with respect to depth contributions due to propagation effects

and the sinusoidal oscillations of reflection coefficient values as a function of depth. By using

multiple frequencies, there is a higher probability of observing depth-dependent signal interactions

within the profile, enabling better and more consistent estimation. In the following simulations,

the combination of the two lowest frequencies (137 and 255 MHz) as well as combinations of
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a low and higher frequency (370 and 1575 MHz) are depicted to further illustrate the impact of

frequency-specific combinations on estimation accuracy.

3.4.2 CRLB as a Function of Variable and Configurable System Parameters

Within this section, we observe the impact of incidence angles and polarization on
√
𝐶𝑅𝐿𝐵.

Based on the previous results, a fixed depth of 30 cm is chosen colorredfor all subsequent analyses as

this location shows good estimation accuracy despite increased SM content and reduced frequency

observations. For each simulation, we observe the impact that combinations of polarization and

incidence angle have on the resultant
√
𝐶𝑅𝐿𝐵 while the remaining parameters are fixed.

3.4.2.1 Varying Angle

The effect of using different incidence angles on the
√
𝐶𝑅𝐿𝐵 is visualized in Figure 3.4. Each

measurement uses two polarizations (X and Y) and a combination of frequencies to calculate the
√
𝐶𝑅𝐿𝐵. The left-most column depicts the combination of all five frequencies, the middle column

depicts the combination of 137 and 255 MHz, and the right column depicts the combination of 370

and 1575.42 MHz. Each row represents a different SM value for the second dielectric slab.

The general shape of the
√
𝐶𝑅𝐿𝐵 value across the incidence angle sweep is worth discussing

from this figure. When all five frequencies are used, no angle performs better than another if the

simulation stays away from the grazing angle. However, as we go beyond 75°, the performance of

the estimation begins to degrade dramatically. This is in agreement with many spaceborne radar

quality control filtering processes to limit measurements near 65°. For the simulations in this

study, it is suggested that angles below 75° can be used with relatively equal and positive impact

for estimating RZSM.

77



Figure 3.4

Root-zone soil moisture
√
𝐶𝑅𝐿𝐵 as a function of incidence angle. Each column represents a

combination of frequency values where the combinations are (137, 255, 370, 1575.42 and
2338.75 MHz), (137 and 255 MHz), and (370 and 1575.42 MHz.) Each frequency value is
indicated by the letters a, b, c, d, and e in ascending order. Each measurement uses X and Y

polarizations. Each row indicates the value of the SM in the second slab, and the color of each
line shows the SM in the first slab. © IEEE 2020.

The middle and right columns separate the problem into two groups of dual frequency com-

binations. As demonstrated earlier, it is more difficult to estimate moist soils (especially at 30%

or above) given reduced frequency measurements. However, the use of the two lowest available

frequency values provides the most optimal estimation for the fewest visualized parameters. In

contrast to the
√
𝐶𝑅𝐿𝐵 values using 5 frequencies, the values using two frequency measurements

feature larger fluctuations in the
√
𝐶𝑅𝐿𝐵 at different surface SM values and at different incidence

angles. This is explained by the shifting insensitivity of certain frequencies to a given SM profile

configuration which impact the
√
𝐶𝑅𝐿𝐵. When more frequency observations are added, the abrupt

changes in
√
𝐶𝑅𝐿𝐵 seen in the dashed line are resolved. Thus, the reduced sensitivity at certain

angles is a combination of frequency-dependent and SM profile-dependent properties.
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The impact of using different frequency combinations and different incidence angle combina-

tions are shown in Figure 3.5 across multiple SM profile configurations. The incidence angles

used are 20, 45, and 70°, and the frequency values and notation are the same as those used in

3.3. As performed previously, each measurement uses all combinations of available frequency,

polarization, and incidence angle values. The polarization values used are X and Y.

Figure 3.5

Root-zone soil moisture
√
𝐶𝑅𝐿𝐵 as a function of frequency. Frequency combinations are noted

along the x-axis where a, b, c, d, and e correspond to 137, 255, 370, 1575, and 2338 MHz
respectively. The second slab is fixed at 30 cm below the air-surface boundary. The colored lines
show combinations of incidence angle measurements corresponding to the legend at the top of the

figure. © IEEE 2020.

Whenever the SM content, primarily the surface SM, is drier, the use of multiple incidence

angles is limited. The benefit of using multiple angles, as well as multiple frequencies, is tied most

directly to the surface SM content. As higher surface SM causes more reflections at the surface

(and, therefore, less energy traveling towards the second slab), the use of multiple measurements

becomes more important. As the surface SM increases, the improvement seen by using multiple
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incidence angles is also shown to be highly important. Thus, Figure 3.5 shows the benefit of using

multiple incidence angles as SM content within the profile increases.

While previous simulations have shown the combination of the lowest frequencies tends to

produce the most efficient estimator, the lower-left-most subplot of Figure 3.5 shows that the

combination 𝑎𝑏 (137 and 255 MHz) does not perform as well as all other combinations of 137

MHz with another frequency. This is reaffirmed by the lower-left subplot of Figure 3.2 where 255

MHz is shown to be an unideal estimator for a slab fixed at 30cm in the SM profile. This stresses

the importance of frequency-, depth-, and SM-dependent interactions in the
√
𝐶𝑅𝐿𝐵 calculation.

Because incidence angle alters the amount of energy transmitted into the SM profile, it can

be thought of as adjusting one’s sensitivity to the depth of the profile. For this reason, multiple

combinations allow one to have adjusted sensitivity to the profile, allowing for better estimation at

different depths. This property justifies the improved
√
𝐶𝑅𝐿𝐵 with respect to increasing number

of incidence angles as shown in Figure 3.5.

3.4.2.2 Varying Polarization

The effects of combining four polarization states of the receiver are shown in Figure 3.6. Within

the upper-left and upper-right subplots, all five frequencies are used, and angles of 20, 45, and

70° incidence are used. Within the lower-left and lower-right subplots, the effect of reducing

measurements to a pairing of 137 and 255 MHz (shown in the solid line) and the pairing of 370

and 1575.42 MHz frequencies (shown in the dashed line) is depicted. The x-axis indicates the

polarization of the receiver and the number of combinations used for a maximum of 2 polarizations

across X, Y, R, and L polarizations.
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Figure 3.6

Root-zone soil moisture
√
𝐶𝑅𝐿𝐵 as a function of polarization. Each measurement uses incidence

angles of 20, 45, and 70°. The top row uses all available frequencies (137, 255, 370, 1575.42 and
2338 MHz) denoted by the letters abcde. The bottom row depicts two separate dual frequency

combinations. The combination represented by the solid line uses 137 and 255 MHz as denoted
by the letters ab. Dashed lines use 370 and 1575.42 MHz as denoted by the letters cd. The x-axis
value represents the receiver’s polarization measurement used by each frequency and incidence

angle measurement. © IEEE 2020.

Since the wave of a specular, incident signal on the air-surface boundary tends to induce a 90°

phase shift and change the polarization state,
√
𝐶𝑅𝐿𝐵 values that only use R polarization do not

provide much benefit for the calculation of the
√
𝐶𝑅𝐿𝐵 at 20° incidence. However, the remaining

L, X, and Y information provides significant benefit, especially at higher SM conditions. Unlike

Figure 3.4 and Figure 3.5 where the resulting
√
𝐶𝑅𝐿𝐵 changed depending on the SM profile, the

√
𝐶𝑅𝐿𝐵 here seems to only be scaled as the SM profile varies. When the number of frequencies

is reduced, we observe the same trend in the changing
√
𝐶𝑅𝐿𝐵 as a function of polarization

but with a higher
√
𝐶𝑅𝐿𝐵 value caused by eliminating important information from the CRLB

calculation. Ultimately, the effect of polarization appears to be relatively independent of frequency

as each line shown observes the same shape at different amplitudes as controlled by the polarization
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information. In general, the use of the cross-polarized signal (L-polarization for these simulations)

provides the most information. Additional polarization information, however, can be useful in

estimation of more wet soils as shown in the lower-right subplot for the line representing 30%

surface SM.

While there is clearly increased performance when the RZSM value increases from 10 to 20%,

this behavior is caused by the interaction of the signals with the provided multilayer dielectric

structure. This SM-profile-specific behavior is illustrated most clearly in the following section.

3.4.3 CRLB as a Function of Soil Moisture

For this simulation, the
√
𝐶𝑅𝐿𝐵 as a function of surface SM and RZSM is visualized for selected

SoOp-R configurations. Figure 3.7 depicts the second slab’s
√
𝐶𝑅𝐿𝐵 of a two-slab configuration

at 30 cm under varying SM conditions. The upper and lower SM slabs are swept across SM from

5 to 50% in 1% increments. Six receiver configurations are depicted. Each subplot in the left

column uses information provided by X- and Y-polarized signals as well as three angles (20, 45,

and 70°.) Each subplot in the right column uses information provided by L-polarized signals at

20° incidence only. The top row of subplots uses all five frequencies, the middle row of subplots

use two frequencies (370 and 1575 MHz), and the bottom row of subplots use two frequencies

(137 and 255 MHz). The number of total measurements are depicted in the title of each subplot.

Thus, the total number of measurements range from 5 to 30 for the top row of subplots, and the

two remaining rows range from 2 to 12 measurements.

These simulations most clearly show the relationship between the number of measurements,

SM, and frequency for calculating the
√
𝐶𝑅𝐿𝐵 of RZSM at 30 cm. The upper-left simulation using
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Figure 3.7

Root-zone soil moisture
√
𝐶𝑅𝐿𝐵 as a function of surface and root-zone soil moisture. All

subplots in the left column use X and Y polarizations and 3 angles (20°, 45°, and 70°.) All
subplots in the right column use L polarization and a 20° angle. The top row uses all available
frequencies (137, 255, 370, 1575.42 and 2338 MHz) denoted by the letters abcde. The middle

row uses two frequencies (137 and 255 MHz) denoted by the letters ab. The bottom row uses two
frequencies (370 and 1575 MHz) denoted by the letters cd. The title of each subplot denotes the

number of measurements used in each configuration. © IEEE 2020.

the most observations shows an ideal case where 30 measurements are taken at many frequencies.

For this measurement configuration, the ± 4%
√
𝐶𝑅𝐿𝐵 is achieved across a range of surface and

root-zone SM combinations where (35, 15)% and (26, 50)% serve as the two endpoints achieving
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this desired threshold. This subplot also shows that the
√
𝐶𝑅𝐿𝐵 at 30 cm will achieve, at its worst,

a 5% error for any combination of SM values for the provided range.

By reducing the number of measurements from 30 to 5 as shown in the upper-right subplot, we

can visualize the effect of using fewer measurements with multiple frequencies. By comparing the

upper-left subplot the upper-right subplot, it can be seen that the
√
𝐶𝑅𝐿𝐵 values all shift downward

along the RZSM axis and to the left on the surface SM axis. After accounting for this shift, the

shape of the image representing the CRLB values at each location is generally maintained. In

other words, the use of multiple frequencies is able to perform similar estimation at the tradeoff

of lower SM values overall. The endpoints of the curve achieving a 4%
√
𝐶𝑅𝐿𝐵 with surface SM

and RZSM values is (30, 5)% and (20, 50)%.

The mid-left and lower-left subplot visualizes the impact on the
√
𝐶𝑅𝐿𝐵 by using only 2

frequencies with a total of 12 measurements from combinations of polarization and incidence angle.

When the upper-left subplot of 30 observations from 5 frequencies is used as reference, the shape

of the
√
𝐶𝑅𝐿𝐵 image is shown to change significantly. Where the two upper subplots visualize

a point where all succeeding surface SM values yield a
√
𝐶𝑅𝐿𝐵 beyond 10%, the colorredtwo

images here create a sort of blind-spots between surface SM values where the
√
𝐶𝑅𝐿𝐵 increases

significantly before decreasing again at a higher SM value (e.g., between 25 and 35% surface

SM in the lower-left subplot.) This is caused directly by the sensitivity of the frequencies used

to calculate the
√
𝐶𝑅𝐿𝐵. Thus, increasing the number of frequency sources has the effect of

smoothing out the blind-spots for SM combinations in the profile. This simulation reconfirms

the frequency-dependent behavior observed in Figure 3.3. Generally, however, the endpoints of
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surface and root-zone SM values achieving a 4%
√
𝐶𝑅𝐿𝐵 are (35, 15)% and (32, 38)% for the

mid-left subplot and are (28, 15)% and (18, 50)% for the lower-left subplot.

The mid-right and lower-right subplot show the effects of reducing the 12 measurements from

the mid- and lower-left subplot down to 2. When this occurs, the endpoints achieving a 4%
√
𝐶𝑅𝐿𝐵 are (34, 9)% and (21, 50)% for the mid-right subplots and (24, 5)% and (12, 50)% for

the mid-lower-right subplots. The general shape of the mid- and lower-left subplot is maintained,

but the reduced number of measurements from polarization and incidence angle make the limit the

desired
√
𝐶𝑅𝐿𝐵 to shallower depths.

Overall, it is observed that reducing frequencies produces a more varied error
√
𝐶𝑅𝐿𝐵. When

either polarization observations or incidence angle measurements are reduced, the maximum

RZSM value corresponding to the calculated
√
𝐶𝑅𝐿𝐵 threshold is also reduced. However, the

overall shape of the image is maintained.

This simulation also visualizes how the
√
𝐶𝑅𝐿𝐵 calculation is specific to frequency-dependent

interactions with the multilayered SM profile structure. As shown in the middle and lower subplots,

large patches in the SM / RZSM values where one might expect a linear change in the
√
𝐶𝑅𝐿𝐵

result in large fluctuations. Even without such large changes, each subplot shows small fluctuations

in the
√
𝐶𝑅𝐿𝐵 where the value either increases or decreases in somewhat unexpected ways. This

behavior was previously displayed in Figure 3.6 when the
√
𝐶𝑅𝐿𝐵 value decreased despite the

RZSM value increasing. This behavior is caused by the sensitivity of the different wavelengths to

changes in the profile’s dielectric. It can be reasonably assumed that, given a sufficient number of

frequency sources, these unexpected fluctuations in
√
𝐶𝑅𝐿𝐵 can be eliminated.
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3.5 Discussion

The results of this paper assist in visualizing the range of potential inversion accuracy for a

wide variety of SM configurations and SoOp-R configuration scenarios. In order to mirror the

commonly target 4% estimation accuracy of SM seen across multiple SM-centric remote sensing

missions, this paper primarily focuses on analyzing where a 4%
√
𝐶𝑅𝐿𝐵 value is achieved. The

range at which this is achievable is highly dependent on the RZSM depth, the SM content of the

profile, and the SoOp-R configuration. The results suggest that if one were to follow this modeling

pursuit of a two-layer dielectric slab, a RZSM data product should potentially include an indication

of the location in the profile where the SM is being sensed due to the sensing depth being highly

variable. The simulations shown provide a framework which can potentially aid in SoOp-R receiver

design for characterizing system performance at varying ground and receiver-system conditions.

This paper works under the assumption that the SoOp-R measurements experience complex

Gaussian noise. While there is precedent in the literature for assuming that the noise for such a

SoOp-R-based SM measurement is Gaussian [132], this may not be the case for all circumstances.

Different scattering surfaces could potentially induce different noise distributions which would

require different assumptions for CRLB studies.

The same noise variance is used for each frequency in this paper. It is unlikely that the

noise variance for each system will be identical in reality as the different frequencies / transmitter

systems will have independent features that will effect the SNR of the SoOp-R system. For example,

different coherent integration times could easily change the total SNR for the system. At this time,

the authors are unaware of any noise characterization that has been performed on these systems

for SoOp-R applications. While this paper helps to establish the general impact that multiple
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parameters have on the estimation accuracy, noise variances tailored to each system will help

characterize future studies more accurately for the currently available communication systems.

While incidence angle alters the available energy incident upon the surface, incidence angle does

not significantly effect the SoOp-R measurement. Because of this, there does not appear to be any

incidence angle which provides a more optimal solution if results are contained in a region that does

not approach grazing angle. Similarly, the benefit of multi-polarization measurements for RZSM

estimation is largely from the addition of observed measurements. Assuming that the polarization

is not co-polarized relative to a circularly-polarized transmitter, any standard polarization choice

will produce comparable results for lower SM values. As SM content increases, the differences

will become more pronounced. For a circularly-polarized source, the optimal antenna in terms of

obtaining the minimum
√
𝐶𝑅𝐿𝐵 will use cross-polarization.

A critical assumption made by this paper is that two discrete values representing SM and RZSM

are unknown parameters to be solved simultaneously. However, there are many representations

and approaches which can be used to solve for RZSM. For example, by fixing the surface SM value

based on available data products from resources such as Soil Moisture Active/Passive (SMAP) and

Soil Moisture and Ocean Salinity (SMOS) missions, the CRLBcan assuredly be further improved.

Alternatively, many inversion-based RZSM papers assume that SM is represented by several

discrete layers in the profile (as opposed to the two used here) which can be parameterized by

SM mapping functions. The decision by this paper to use two slabs was chosen, in part, to easily

visualize the joint effects of known and unknown parameters on estimation accuracy. Further

research can explore the impact of discretization of the SM profile on the CRLB, but this is beyond

the scope of this paper.
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Surface roughness is a critical variable that not only decreases the reflection coefficient, but it

also contributes to non-negligible incoherent scattering once the roughness exceeds the Rayleigh

scattering criterion. In particular, the compounding effects of surface roughness and topography

could be significant over contributing areas within a spaceborne receiver’s footprint while will

generally be on the order of several hundreds of meters. While previous research has observed

successful surface SM estimation from GNSS-R signals under a dominantly coherent signal as-

sumption [21, 105, 128], the effects of topography and surface roughness deserve an in-depth

analysis for these spatial scales [31, 34, 53]. Under a moderately SMooth surface assumption (≈

1.5 cm), coherent signals at L-band and lower will be minimally effected by surface roughness.

However, S-band signals will likely be dominantly incoherent at such scales. The joint usage

of coherent and incoherent signals should be explored for a variety of topographies and surface

roughness values to understand how these components can be leveraged for geophysical parameter

estimation from spaceborne platforms.

3.6 Summary and Conclusion

This research presents the study of the
√
𝐶𝑅𝐿𝐵 for SM within a two-layer SM profile by means

of SoOp-R measurements. The profiles and measurements are created using the open-source

modeling and simulation package SCoBi. Within this study, 30 cm is established as a reasonable

depth for RZSM estimation. This study investigates the use of the SoOp-R parameters frequency,

polarization, and incidence angle for simultaneous estimation of surface SM (𝛽1) and RZSM (𝛽2.)

These parameters are used because engineers possess some degree of control in the design process

of a SoOp receiver system.
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The depth at which RZSM can achieve a
√
𝐶𝑅𝐿𝐵 of 4% is examined by observing the

√
𝐶𝑅𝐿𝐵

as a function of depth for multiple SM profile configurations and two SoOp-R configurations.

The two SoOp-R configurations both use 5 frequencies where the first configuration uses 120

measurements from a combination of 6 angles and 4 polarization measurements while the second

is restricted to observations at L-polarization and 20° incidence. The 4% lower bound is achieved

at 45 cm for the configuration using 120 measurements and 27 cm for a configuration using 5

measurements for a SM profile composed of 30% surface SM and 10% RZSM.

The combined effects of frequency and depth are visualized in Figure 3.3. The results show

that an estimator using a single frequency which achieves low
√
𝐶𝑅𝐿𝐵 values may exist. However,

changes in the slab position and SM content will consistently cause sharp changes in
√
𝐶𝑅𝐿𝐵 at

potentially unforeseeable depths due to nature of SoOp-R interaction with the profile. The addition

of a single frequency will largely eliminate these abrupt changes in
√
𝐶𝑅𝐿𝐵. Longer wavelengths

are seen to be the most significant factor in increasing the depth at which RZSM can be estimated

as one would expect. Based on the problem configuration, this paper chooses to examine the effects

that polarization, incidence angle, and SM content play on the
√
𝐶𝑅𝐿𝐵 for RZSM content at 30

cm as this depth provides reasonable estimation above the noise floor for this system.

For polarization and incidence angle measurements, it is found that both variables are helpful

in estimating moderately wet SM content. As for polarization, the
√
𝐶𝑅𝐿𝐵 is calculated from

a combination of 5 frequencies and 3 angle measurements (20, 45, and 70°) as well as at 2

frequencies (both pairings of 137 and 255 MHz as well as 370 and 1575.42 MHz) with the

same angle measurements. It is observed that polarization observations largely perform the same

assuming that the receiver is not co-polarized with respect to a circularly polarized transmitter.
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However, increasing the number of polarizations used does improve the
√
𝐶𝑅𝐿𝐵 moderately. For

incidence angles, it is found that incidence angles between 0 and 75° ensure stable
√
𝐶𝑅𝐿𝐵when all

5 frequencies are used. When the frequencies are reduced, some frequency-dependent uncertainties

can occur with respect to incidence based on the wavelength’s interaction with different SM profile

configurations at different angles.

A sweep for multiple SM profile configurations is examined under different SoOp-R configura-

tions. It is found that RZSM at 30 cm can achieve a
√
𝐶𝑅𝐿𝐵 of 4% with as few as 2 measurements

given sufficient SM profile configurations. When the number of frequencies is limited, the 4%

threshold between surface SM and RZSM borders will become increasingly nonlinear, however,

this border is made more linear with increasing frequency combinations. RZSM with a
√
𝐶𝑅𝐿𝐵 of

4% can be estimated when both surface SM and RZSM are 30% given 30 measurements. If only

two frequencies are used, RZSM can be estimated with 4%
√
𝐶𝑅𝐿𝐵 if surface SM and RZSM are

limited to 20% for a combination of 370 and 1575 MHz while a pairing of 137 and 255 MHz can

achieve this
√
𝐶𝑅𝐿𝐵 at 30% surface SM.
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CHAPTER IV

A NESTED FACET METHOD OF THE KIRCHHOFF APPROXIMATION FOR

LARGE-SCALE LAND SCATTERING

This section is inherited from the following journal publication under review [7]

D. Boyd and M. Kurum, ”A Nested Facet Method of the Kirchhoff Approximation for Large-

Scale Land Scattering,” IEEE Transactions on Geoscience and Remote Sensing, 2023. in review

4.1 Abstract

A nested facet method (NFM) of the Kirchhoff approximation is developed for land applications

using signals of opportunity (SoOp). This NFM follows the form of a tree data structure wherein a

planar facet is superimposed with a series of child facets. The electric field of a parent facet is taken

as the coherent sum of each child facet. The method is found to be flexible and efficient for use on

consumer-grade computers, offering significant performance boosts compared to direct integration

methods and is easily parallelizable. This solution to the Stratton-Chu integral can provide flexible

scattering solutions in areas where analytical or statistics-based solutions may struggle to find an

appropriate distribution of the surface.
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4.2 Introduction

Microwave remote sensing at global scales has primarily been lead by active radar and passive

radiometer applications. As a broad categorization, passive radiometer systems are designed to

measure naturally emitted microwave signals from earth surfaces, while active systems such as

synthetic aperture radar (SAR) will generate and measure anthropogenic signals. Passive techniques

generally feature coarse spatial resolution due to the incoherent averaging of very weak signals

over a receiver footprint. SAR systems are generally high spatial resolution but are limited by

size, weight, and power (SWaP) constraints for spaceborne systems in addition to international

frequency spectrum management. In scenarios where active signals are desired, the repurposing

of globally available navigation and communication transmitters for bistatic microwave remote

sensing, hereafter referred to as signals of opportunity (SoOp), has shown to be a successful

avenue for microwave remote sensing.

The use of SoOp and GNSS reflectometry (GNSS-R) for Earth surface geophysical variable

retrieval is a maturing research area. Government-supported research such as the HydroGNSS

mission and SoOp P-band Investigation (SNOOPI) technology demonstration are nearing launch

and are expected to provide surface and root-zone soil moisture data products respectively [49,120].

Private companies such as Spire and Muon Space are also supporting the development of global

navigation satellite system (GNSS)-based data products [22, 73]. New land-sensing technologies

and applications within SoOp are being explored such as the SoOp-SAR concept [131], GNSS-

transmissometry [66], and GNSS-R-based machine learning data products [70]. SoOp has shown

to be sensitive to several key variables for environmental and hydrological remote sensing due

to the wavelength variety available to receivers. For example, the use of signals between I-
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and S-band show potential for improving root-zone soil moisture data products [60]. Larger

wavelengths also exhibit sensitivity to snow-water equivalent through phase techniques [106]. The

larger wavelengths of SoOp sources can also aid sensing in densely vegetated areas and even

assist in estimating vegetation optical depth [66, 124]. These increasingly complex environments,

in addition to the large areas under consideration during delay-Doppler map (DDM) generation,

demand comprehensive modeling tools to meet their computational challenge. For the scope of

this paper, the computation time of surface scattering and bistatic radar cross-section (BRCS) is of

primary interest.

A recent comparison of several scattering models was published in [14] by means of comparing

the results to a Cyclone Global Navigation Satellite System (CYGNSS) ground track. Given the

uncertainties with Digital Elevation Map (DEM)-scale slopes and surface soil moisture variability,

each model captures the general changes in DDM and peak reflectivity across the track. Current

models are primarily solutions of the Kirchhoff approximation (KA) [113, Chapter 2] which is

applicable for slow varying surfaces with large radius of curvature. These models can be described

as purely coherent, incoherent, or mixed based on their formulation.

Analytical models generally make use of surface statistics to describe the average response of

the scattered signal. This generally requires making assumptions about the probability distribution

function (PDF) of the surface topography. The most prominent method of this form is the Zavorotny-

Voronvich GO model (ZV-GO) model developed for ocean applications [135]. This model assumes

an arbitrary surface distribution and computes the expected field intensities. The ZV-GO has been

modified for use in land applications through the improved GO with topography (IGOT) [74] which

follows the surface decomposition technique of [111] to decomposes the surface into a deterministic
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component taken from DEM data and random components describing both microwave roughness

scales and intermediate roughness scales. Once the surface PDF is properly characterized, statistical

models such as ZV-GO and IGOT boast extremely fast computation times. These models are strictly

incoherent which can be limiting for certain SoOp data products.

Dente et. al have used a hybrid approach to determine the forward scattered electric field [31,34].

The field is segmented into distinct coherent and incoherent calculations. The coherent component

is found through a solution of the Kirchhoff approximation where a planar surface is illuminated

by a spherical wavefronts transmitted and received by Gaussian antenna patterns. The incoherent

component uses the advanced integral equation method. In both cases, a microwave roughness

scale is imposed on the facet. This solution found agreement with Technology Demonstration

Satellite-1 (TDS-1) DDMs using 300-m facets to describe very large surface areas.

Tsang et. al [114] have developed several solutions to the KA, each seeking a different tradeoff

between speed, accuracy, and generalizability of the solution [100, Table 1]. Each model assumes

three roughness regimes: a microwave scale, a DEM scale, and an intermediate scale between

the microwave and DEM scales. The original method is a direct numerical solution of the KA

discretized across a 2-cm grid [53]. The fine-scale partially coherent patch model makes use of

the facet method (FM) to solve the KA where the coherent term is computed by the facet method

and the incoherent term is solved through Monte Carlo averaging of the intensities [126]. The

analytical Kirchhoff solution assumes a three-layer roughness model where the intermediate and

microwave roughness scales have an assumed homogenous, joint correlation function. Encouraging

results have been found for select simulations by assuming an exponentially distributed microwave

roughness and a Gaussian distributed intermediate roughness [100, equation 92].
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These models are all solutions to the KA and make use of the tangent-plane approximation in

some capacity. Due to the complexity of land surface topography distribution, the development

of flexible and efficient numerical solutions are worth exploring as SoOp land data processing

matures.

This paper provides a generalized solution to the FM based on the results of [27] within

the context of large-scale land remote sensing. The behavior of the model over simple surface

geometries is explored, and the computational load of the model is discussed. The model is shown

to be accurate under appropriate surface roughness conditions and computationally efficient under

evaluation.

Section 2 provides the solution to the facet-method-based KA (FM-KA) and develops a gen-

eralized solution of child facets nested within the coordinate reference system (CRS) of a parent

facet denominated as nested facet method (NFM). Section 3 provides a discussion of the com-

ponents that comprise the general FM-KA and NFM and their impact on simulations. Section

4 provides analysis on the accuracy and computational cost of the FM-KA and NFM. We then

provide concluding remarks on the applicability of this model.

4.3 Nest Facet Method Formulation
4.3.1 Coordinate System and Variable Conventions

As this model deals with the scattering of fields from parallelogram-shaped facets, we begin

by describing facet properties and the CRS conventions used in this model. In this paper, bold

variables (e.g., w) indicates a vector and a hat operator (e.g., ŵ) indicates a unit vector. A facet

will be denoted as 𝑘𝑎 where 𝑘 is the 𝑘-th facet on a surface 𝑓𝑎 (𝑥, 𝑦). The integer 𝑎 indicates the
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equal-area projection regime for the surface 𝑓𝑎 (𝑥, 𝑦) and is further explained in Section 4.3.2. We

now focus on describing the properties of the facet 𝑘𝑎 as depicted in Figure 4.1.

Figure 4.1

A single facet 𝑘𝑎 over an equal-area projected CRS using forward-scattering alignment
conventions. The legend describes the incidence and azimuth angles for the incoming unit vector

î− and the outgoing unit vector ô+.

The facet 𝑘𝑎 exists over an equal-area Cartesian CRS where the length of each grid element in

the 𝑥− and 𝑦− directions are 𝐿𝑥 and 𝐿𝑦 respectively. The CRS of Figure 4.1 denotes the x̂, ŷ, and ẑ
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unit vectors in their respective positive directions and are also visualized through the black dotted

lines extending from the center of the equal-area projection. Each facet has an associated incident

vector î− and an outgoing vector ô+ where the superscripts + and − indicate the direction along

the 𝑧-axis. These vectors are indicated in the legend of Figure 4.1. Additionally, the incidence

and azimuth angles 𝜃 and 𝜙 associated with vectors î− and ô+ are indicated by the subscripts

𝑖 and 𝑜 respectively. Each angle is depicted in Figure 4.1 and are denoted in the legend. As

indicated by the scattering vector of Figure 4.1, a forward-scattering alignment convention is used.

Additionally, the arcs from the between the the incidence and outgoing vectors are drawn with

respect to the appropriate axis. Incidence angles are assumed to always be positive and in the

domain 𝜃 ∈ [0, 90]° while azimuth angles exist in the domain 𝜙 ∈ [−180, +180]° where a positive

angle indicates clockwise rotation about the 𝑧-axis.

For each facet, the incline with respect to the 𝑧-direction for the 𝑥- and 𝑦− axis are equal to

the slope and aspect variables 𝛼 and 𝛽 respectively. The surface assumes an equal-area projection

𝐿𝑥𝐿𝑦, but the total area of the facet is determined by the vectors of the parallelogram denoted in

pink in Figure 4.1 where the dotted lines point to the surface vector values. The total area of any

given facet can be determined by its 𝑥− and 𝑦− gradients through 𝐿𝑥𝐿𝑦
√︁
𝛼2 + 𝛽2 + 1.

4.3.2 Model Overview

An overview of this paper’s NFM is given in Figure 4.2. This method uses a three-scale hierarchy

of surfaces 𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦) and 𝑓3(𝑥, 𝑦) which represent DEM-scale resolution, intermediate-

resolution, and microwave-resolution topographies respectively.
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Figure 4.2

Overview of the facet method implementation. (a) A large scale surface is provided. (b) The
large-scale surface is decomposed into user-defined subsurfaces. (c) The received field is

determined by scattering from the subsurface facets. (d) Microwave-scale effects are incorporated
to each facet through reflection coefficient definition.

A large-scale surface is assumed in Figure 4.2(a) which makes use of topography resolutions

typically provided by publicly available DEM sources (i.e., ≥ 30[m]). This surface is the first

roughness scale provided to the system and is denoted as 𝑓1(𝑥, 𝑦) wherein a set of 𝑥 and 𝑦 coordinates

explicitly provide the surface height along the 𝑧-axis. For the use case of SoOp Reflectometry

(SoOp-R) over Earth surfaces, 𝑓1(𝑥, 𝑦) corresponds to the ellipsoidal height of a surface. On
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𝑓1(𝑥, 𝑦) are a total number of facets 𝐾1 and a given facet 𝑘1 ∈ [1, 𝐾1]. Each facet 𝑘1 has the

associated CRS properties and variables discussed in Section 4.3.1. Each facet 𝑘1 is the parent

of a child surface with intermediate topography scale. The facet 𝑘1 highlighted in blue of Figure

4.2(a) is the parent of the child surface visualized in Figure 4.2(b).

An intermediate-scale surface is presented in Figure 4.2(b). In the context of an ellipsoidal

height mapping of 𝑓1, this intermediate surface is intended to convey relevant roughness conditions

between the extent of the 𝑓1(𝑥, 𝑦) surface and microwave roughnesses which can affect the chosen

wavelength used in the Kirchhoff approximation. As this is the second surface used in this model, it

is denoted as 𝑓2(𝑥, 𝑦). 𝑓2(𝑥, 𝑦) represents a child surface whose origin is imposed on a parent facet

center from 𝑓1(𝑥, 𝑦). When discussing a specific instance of a surface over the 𝑘-th facet of 𝑓1(𝑥, 𝑦),

we denote the surface as 𝑓2,𝑘1 (𝑥, 𝑦). However, any surface of topography-scale 𝑓2(𝑥, 𝑦) is always

the child surface of a parent facet 𝑘1 and the notation 𝑓2(𝑥, 𝑦) can be safely considered shorthand

for 𝑓2,𝑘1 (𝑥, 𝑦) unless stated otherwise. For all facets 𝑘2 on the surface 𝑓2(𝑥, 𝑦), the amplitude of the

wavefront over 𝑓2(𝑥, 𝑦) is assumed to be constant due to the large ranges provided by spaceborne

transmitter and receiver positions. This assumption will allow us to make simplifications to the

solution of the FM-KA as later discussed in Section 4.3.4. A single facet 𝑘2 on surface 𝑓2(𝑥, 𝑦) is

highlighted in red in Figure 4.2(b) and its scattering properties are shown in Figure 4.2(c).

For the facet in Figure 4.2c, all of the facet variables and properties discussed in Section 4.3.1

(e.g., surface slopes, effective area, etc.) are applicable to the facet 𝑘2. All facets along 𝑓2(𝑥, 𝑦)

are, therefore, directly integrable.

The scattering geometry of Figure 4.2(c) presents incident and scattering vectors î−
𝑘2

and ô+
𝑘2

respectively. Under the parallel ray approximation, the incident and scattering unit vectors for each
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child facet 𝑘2 approximately equal to its parent facet 𝑘1 of surface 𝑓1(𝑥, 𝑦) atop which 𝑓2(𝑥, 𝑦)

is placed. As such, the parent facet’s unit vector for incident and outgoing rays can be used

accordingly and are directed towards the center of each facet. Based on this setup, the strength of

the scattering can be easily understood by the bisector of the incident and scattering vectors. This

is often referred to as the halfway vector in optics and will be denoted as ŵ𝑘2 (c.f., [135, equation

7].) The strength of the reradiated electric field from the individual facet is at its maximum when

the surface normal n̂𝑘2 and bisector ŵ are aligned.

The calculation of the scattered field in Figure 4.2(c) makes use of Fresnel reflection coeffi-

cients. The Fresnel reflection coefficient can have information pertaining to surface and subsurface

properties included into its calculation. Figure 4.2(d) illustrates this by having both centimeter-

scale roughness and multilayer dielectric effects embedded into the coefficient. As this is the third

roughness scale introduced, we denote it as 𝑓3(𝑥, 𝑦).

While many assumptions are used to simplify the solution for the electric field, the first two

roughness scales 𝑓1(𝑥, 𝑦) and 𝑓2(𝑥, 𝑦) are not required to follow a particular distribution in order

to solve for the electric field. To illustrate this, the surface in Figure 4.2(a) was generated using

Perlin noise [92] while the secondary surface in Figure 4.2(b) was generated using a Weierstrass-

Mandelbrot function [43, eq. 3.47]. This property could prove useful in recreating radio realistic

surfaces which may be difficult to solve analytically. With that being said, the microwave roughness

𝑓3 surface characterization follows a Gaussian distribution as discussed in Section 4.3.5
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4.3.3 Model

This implementation of the KA follows solutions to the far-field Stratton-Chu integral as

provided by [26, 107, 117]. With the assumed time factor of exp( 𝑗𝜔𝑡), the integral is defined by

E𝑜 = K𝑘𝑎 ô+ ×
∫ [

n̂ × E𝑖,𝑞 − 𝜂𝑠ô+ ×
(
n̂ × H𝑖,𝑞

) ]
exp

(
𝑗 𝑘0r · (ô+ − î−)

)
𝑑𝑆

(4.1)

where

ô+ is the outgoing scattering vector traveling upwards along the local CRS z-axis

î− is the incoming incident unit vector traveling downwards along the local CRS z-axis

n̂ is the local surface normal for a surface

r is the local position vector in Cartesian coordinates

𝜂𝑠 is the impedance of the surface

E𝑖,𝑞 is the electric field on the surface normalized by 𝐸0 induced by an incoming incident vector

H𝑖,𝑞 is the magnetic field on the surface normalized by 𝐸0

E𝑜 is the outgoing electric field

Additionally, the incident phase and spreading loss terms at the surface center are

K𝑘𝑎 = − 𝑗𝐸0𝑘0
exp(− 𝑗 𝑘0𝑅𝑡𝑘𝑎 + 𝑅𝑟𝑘𝑎)

4𝜋𝑅𝑡𝑘𝑎𝑅𝑟𝑘𝑎
(4.2)

where 𝑅𝑡𝑘𝑎 is the range from the transmitter to facet center 𝑘𝑎 and 𝑅𝑟𝑘𝑎 is the range from facet

center 𝑘𝑎 to receiver respectively.

This definition of Stratton-Chu assumes that coherent summation is achievable by accounting

for the phase difference induced by the range r · î−
𝑘𝑎

which is feasible under the constraints of

the parallel ray approximation. The Stratton-Chu integral describes the solution of a scattered
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electromagnetic wave over a given surface. The solution detailed in the subsequent sections

discretize a large surface into multiple rectangularly segmented areas where equation 4.1 can be

applied and coherently summed to establish a solution for a scattered wave. We begin by solving

this equation for a general case.

4.3.3.1 General Solution of the Facet Method

The model assumes multiple topography scales as depicted in Figure 4.2. While the specific

implementation assumes two scale features, we will describe the FM-KA for a given arbitrary

topography scale 𝑎. In other words, this model only implements values for 𝑎 ∈ [1, 2]. Regardless

of the number of topography levels, we can describe the total, coherently summed field over a

surface of the equal-area projection scale 𝑎 as the total electric field received from each facet 𝑘𝑎

over a total number of facets 𝐾𝑎 along the surface 𝑓𝑎 (𝑥, 𝑦).

Etotal
𝑠 =

𝐾𝑎∑︁
𝑘𝑎=1

E𝑘𝑎 (4.3)

Where each parent facet 𝑘𝑎 ∈ [1, 𝐾𝑎] can be described as the summation of several child facets

𝑘𝑎+1 ∈ [1, 𝐾𝑎+1].

E𝑘𝑎 =

𝐾𝑎+1,𝑎∑︁
𝑘𝑎+1,𝑘𝑎=1

E𝑘𝑎+1,𝑘𝑎 (4.4)

For legibility, we will assume that 𝑘𝑎+1 and 𝐾𝑎+1 are shorthand for 𝑘𝑎+1,𝑘𝑎 and 𝐾𝑎+1,𝑘𝑎 as the

child facet 𝑘𝑎+1 must naturally be associated with a parent facet 𝑘𝑎. For example, any facet 𝑘2 along

the surface 𝑓2(𝑥, 𝑦) must belong to a parent face 𝑘1 from the domain 𝑓1(𝑥, 𝑦). The wavenumber
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𝑘0, however, is not associated with this notation denoting facets and retains its definition of 2𝜋/𝜆0

where 𝜆0 is the wavelength within the medium of transmission.

The local horizontal and vertical polarization bases can be described with respect to the surface

normal of each facet 𝑘𝑎 along 𝑓𝑎 (𝑥, 𝑦). We write theses polarization basis vectors with respect to

the ray incident along facet 𝑘𝑎 from the transmitter as î−
𝑘𝑎 ,𝑖

, the vector from scattering element 𝑘𝑎

to the receiver as ô+
𝑘𝑎 ,𝑖

, and the surface normal along 𝑘𝑎 as n̂𝑘𝑎 . The polarization basis vectors are

then

ĥ𝑘𝑎 ,𝑖 =
î−
𝑘𝑎

× n̂𝑘𝑎���î−
𝑘𝑎

× n̂𝑘𝑎
��� (4.5a)

v̂𝑘𝑎 ,𝑖 = ĥ𝑘𝑎 ,𝑖 × n̂𝑘𝑎 (4.5b)

ĥ𝑘𝑎 ,𝑜 =
n̂𝑘𝑎 × ô+

𝑘𝑎���n̂𝑘𝑎 × ô+
𝑘𝑎

��� (4.5c)

v̂𝑘𝑎 ,𝑜 = n̂𝑘𝑎 × ĥ𝑘𝑎 ,𝑜 (4.5d)

To maintain consistency with an arbitrary polarization bases 𝑝𝑞 (e.g., 𝐸𝑝𝑞 in [119, eq. 5.15])

and to provide simpler notation, we write these polarization bases with respect to the arbitrary

polarization of the incident wave 𝑞

q̂𝑘𝑎 ,𝑖 =


ĥ𝑘𝑎 ,𝑖 𝑞 = h

v̂𝑘𝑎 ,𝑖 𝑞 = v

(4.6a)
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q̂𝑘𝑎 ,𝑜 =


ĥ𝑘𝑎 ,𝑜 𝑞 = h

v̂𝑘𝑎 ,𝑜 𝑞 = v

(4.6b)

Given a surface defined by a Cartesian system with components 𝑋𝑘𝑎 , 𝑌𝑘𝑎 , 𝑍𝑘𝑎 , the gradients

along 𝑥- and 𝑦-axes for this surface are given by 𝛼𝑘𝑎 and 𝛽𝑘𝑎 . The size of each rectangular facet 𝑘𝑎

is denoted along the equal-area projection 𝑋𝑌 plane by 𝐿𝑥,𝑘𝑎 and 𝐿𝑦,𝑘𝑎 for a given surface 𝑓𝑎 (𝑥, 𝑦).

We now find a solution of the electric field over a single facet 𝑘𝑎. Taking the solution of [117, eq.

12.11-12.16] for linear polarization bases of arbitrary orientation 𝑞, the inner cross-products of

equation 4.1 which describe the electric and magnetic fields on a facet 𝑘𝑎 can be solved under the

tangent-plane approximations as as

n̂𝑘𝑎 × E𝑖,𝑞 = (1 + Γ𝑔ℎ) (q̂𝑖,𝑘 · ĥ𝑘𝑎 ,𝑖) (n̂𝑘𝑎 × q̂𝑘𝑎 ,𝑖)

− (1 − Γ𝑔𝑣) (n̂𝑘𝑎 · î−𝑘𝑎) (q̂𝑘𝑎 ,𝑖 · v̂𝑘𝑎 ,𝑖)ĥ𝑘𝑎 ,𝑖 (4.7a)

𝜂(n̂𝑘𝑎 × H𝑖,𝑞) = −(1 − Γ𝑔ℎ) (n̂𝑘𝑎 · î−𝑘𝑎) (q̂𝑘𝑎 ,𝑖 · ĥ𝑘𝑎 ,𝑖)ĥ𝑘𝑎 ,𝑖

− (1 + Γ𝑔𝑣) (q̂𝑘𝑎 ,𝑖 · v̂𝑘𝑎 ,𝑖) (n̂𝑘𝑎 × q̂𝑘𝑎 ,𝑖) (4.7b)

where Γ is a Fresnel reflection coefficient. The reflection coefficients used in this term are further

developed in equation 4.24.

By making use of the stationary-phase approximation, we can eliminate the dependence of the

integration term of equation 4.1 from the surface fields of equation 4.7 (see [117, eq 12.20 and

12.21]). Additionally, we observe the presence of the unit angle bisector within equation 4.1 as
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ŵ𝑘𝑎 =
ô+
𝑘𝑎

− î−
𝑘𝑎���ô+

𝑘𝑎
− î−

𝑘𝑎

��� (4.8)

where we further define it in relation to the incident wave number as

w𝑘𝑎 = 𝑘0(ô+𝑘𝑎 − î−𝑘𝑎) =
[
𝑤𝑥,𝑘𝑎 𝑤𝑦,𝑘𝑎 𝑤𝑧,𝑘𝑎

]⊺
(4.9)

We now group all terms not dependent on the integral which describe the total electric field

along the surface induced by a 𝑞-polarized source as

u𝑞 = (ô+𝑘𝑎 × (n̂𝑘𝑎 × E𝑞 − ô+𝑘𝑎 × 𝜂(n̂𝑘𝑎 × H𝑞))) (4.10)

This allows us to rewrite equation 4.1 as

E𝑜,𝑞 = u𝑞
∫

exp( 𝑗r · w)𝑑𝑆 (4.11)

Because the surface 𝑆 is explicitly defined by a directly integrable Cartesian CRS, we can

perform a change of variables using the relation

𝑑𝑆 =

√︃
𝛼2
𝑘𝑎

+ 𝛽2
𝑘𝑎

+ 1𝑑𝑥𝑑𝑦 (4.12)

which allows us to express equation 4.11 as

E𝑜,𝑞 = K𝑘𝑎u𝑞
∬

exp( 𝑗r · w)
√︃
𝛼2
𝑘𝑎

+ 𝛽2
𝑘𝑎

+ 1𝑑𝑥𝑑𝑦 (4.13)

Following [27, eq. 10], we express the solution of the integral over a rectangular facet of length

𝐿𝑥,𝑘𝑎 and 𝐿𝑦,𝑘𝑎 as the product of two parameters. First, we regroup the solution to express the

effective area of the facet as
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𝐴𝑘𝑎 = 𝐿𝑥,𝑘𝑎𝐿𝑦,𝑘𝑎

√︃
𝛼2
𝑘𝑎

+ 𝛽2
𝑘𝑎

+ 1 (4.14)

The remaining components of the surface phase integral then express surface reradiation as a

function of the surface gradients in 𝑥− and 𝑦− directions and the scaled bisector w𝑘𝑎

𝐺𝑘𝑎 = sinc
(
𝐿𝑥,𝑘𝑎

2
(𝑤𝑥,𝑘𝑎 + 𝑤𝑧,𝑘𝑎𝛼𝑘𝑎)

)
sinc

(
𝐿𝑦,𝑘𝑎

2
(𝑤𝑦,𝑘𝑎 + 𝑤𝑧,𝑘𝑎𝛽𝑘𝑎)

)
(4.15)

where the aforementioned gradients are 𝛼𝑘𝑎 and 𝛽𝑘𝑎 and the Cartesian components of w𝑘𝑎 were

previously defined in equation 4.9. The sinc term is defined as sin(𝑥)
𝑥

. We use this to write equation

4.11 once more as

E𝑘𝑎 ,𝑞 = K𝑘𝑎𝐴𝑘𝑎𝐺𝑘𝑎u𝑞 (4.16)

Given this solution for the electric field induced by a 𝑞-polarized signal along facet 𝑘𝑎, we can

describe the 𝑝-polarized component of the total, coherently summed field as

𝐸coh
𝑝,𝑞 = p̂𝑎 ·

𝐾𝑎∑︁
𝑘𝑎=1

E𝑘𝑎 ,𝑞 (4.17)

where p̂𝑎 represents a linear polarization reference for the scattered field for the surface CRS

belonging to 𝑘𝑎 as observed by a receiver. The value of p̂𝑎 follows the evaluation of equation 4.5,

however the surface normal of equation 4.5(c) is replaced with the CRS ẑ unit vector.

4.3.4 A nested facet method

Having a general solution, we now create a NFM by simplifying the calculation of a child

facet’s electric field using properties of its parent facet. For better legibility, we will formulate
106



this model using the topography scales depicted in Figure 4.2 but note that these can easily be

abstracted to an arbitrary topography scale 𝑎 as discussed in Section 4.3.7.

Recall that 𝑓𝑘2 (𝑥, 𝑦) is the child of a parent surface 𝑓𝑘1 (𝑥, 𝑦) where the origin of the child

surface 𝑓2(𝑥, 𝑦) rests on the center of parent facet 𝑘1 as depicted in Figure 4.2(b). The local CRS

of 𝑓2(𝑥, 𝑦) is defined by the rotation from the CRS of the parent facet 𝑓𝑘1 (𝑥, 𝑦) as given by

𝑅(𝛼𝑘1 , 𝛽𝑘1)𝑘1→𝑘2 =



𝑐𝑥 𝛼𝑘1𝑐𝑥 0

0 𝑐𝑦 𝛽𝑘1𝑐𝑦

−𝛼𝑘1𝑐𝑧 𝛽𝑘1𝑐𝑧 𝑐𝑧


(4.18)

where

𝑐𝑥 = (1 + 𝛼2
𝑘1
)−1/2 (4.19a)

𝑐𝑦 = (1 + 𝛽2
𝑘1
)−1/2 (4.19b)

𝑐𝑧 = (𝛼2
𝑘1
+ 𝛽2 + 1)−1/2 (4.19c)

We can then safely describe the surface fields û on the child surface using the rotated incoming

and outgoing vectors of the parent surface.

u′
𝑞 = ô+′𝑘1

× (n̂𝑘2 × E𝑞 − ô+′𝑘1
× 𝜂(n̂𝑘2 × H𝑞)) (4.20)

where

ô+′𝑘1
= 𝑅(𝛼𝑘1 , 𝛽𝑘1)𝑘1→𝑘2 ô+𝑘1

(4.21a)

î+′𝑘1
= 𝑅(𝛼𝑘1 , 𝛽𝑘1)𝑘1→𝑘2 î+𝑘1

(4.21b)

n̂′
𝑘1

=

[
0 0 1

]⊺
(4.21c)
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The surface 𝑓𝑘2 (𝑥, 𝑦) can then be generated over an equal area projection where its unit vector

ẑ is aligned with its parent facet’s normal vector n̂′
𝑘1

. This concept is visualized in Figure 4.2(b)

where the locally flat CRS projection highlighted in blue is shown to be a tilted plane in the parent

facet’s CRS of Figure 4.2(a).

With this modification, all parameters outside of the integrand in equation 4.13 are accounted.

However, the phase component of K𝑘1 is unlikely to be representative over the surface 𝑓2(𝑥, 𝑦) for

available remote sensing wavelengths over Earth. To account for this phase difference, the parallel

ray approximation can estimate the change in phase by means of

𝜔𝑘2 = exp
(
− 𝑗 𝑘0(î

−
𝑘1 · r𝑘2 − ô+𝑘1

· r𝑘2)
)

(4.22)

With this approximation, the field emitted from a single facet 𝑘2 as a function of parent facet

parameters 𝑘1 can be expressed as

E𝑘2,𝑞 ≈ K𝑘1𝜔𝑘2𝐴𝑘2𝐺𝑘2u′
𝑞

(4.23)

The polarization components can then be found using the same methods presented in equation

4.17. We note that the scalar electric field component observed by the receiver in equation 4.17 can

be used in the CRS of the parent facet surface without polarization rotation because the incoming

and outgoing vectors will be properly aligned with this method.

4.3.5 Microwave roughness scale considerations

Let us assume that a final roughness scale describing contributions from microwave roughness

is desired. Using Figure 4.2 as a reference, we will denote a three-scale roughness regime
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where the final roughness scale 𝑓3(𝑥, 𝑦) describes microwave contributions. Unlike the previous

formulations which directly consider numerical calculation of the scattering along a facet, the third-

scale roughness term 𝑓3(𝑥, 𝑦) in this implementation assumes a surface distribution. In this case,

an assumed Gaussian surface height distribution is used in order to modify the Fresnel reflection

coefficient as derived in [25, 112]

Γ𝑝𝑞 = 𝑟𝑝𝑞 exp (𝑘0𝑠 cos(𝜃𝑖)) (4.24)

where the incident angle 𝜃𝑖 is arccos(n̂𝑘2 · î−
𝑘2
), 𝑠 is the surface root-mean square (RMS) height,

and both 𝑝 and 𝑞 correspond to arbitrary destination and source polarizations respectively. For the

case of ground reflections, the reflection coefficient becomes Γ𝑣𝑞 for a vertically polarized ground

reference and an arbitrarily polarized incident field.

𝜃𝑘𝑎 ,𝑖 = cos(−î−𝑘𝑎 · n̂𝑘𝑎)−1 (4.25)

where 𝑘𝑎 represents either a facet 𝑘1 or 𝑘2.

As depicted in Figure 4.2(d), the reflection coefficient can make use of multilayer dielectric

reflections in order to simulate variable land conditions such as soil moisture gradients. The

modified reflection coefficient is then determined through an iterative process as

Γ𝑖 =
𝜌𝑖 + Γ(𝑖+1) exp(−2 𝑗𝛿𝑖)

1 + 𝜌𝑖Γ(𝑖+1) exp(−2 𝑗𝛿𝑖)
(4.26)

where 𝑖 indicates the layer of the dielectric medium, Γ𝑖 is the solution to the iterative reflection

coefficient at layer 𝑖, and 𝛿𝑖 is the layer 𝑖’s phase thickness. Further reading of this solution can be
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found in [6, Section 1.6] and [86, Chapter 6]. The authors have previously implemented this model

in [9,11] in the context of root-zone soil moisture (RZSM) retrieval. In order to more clearly depict

the impact of topography on the received field, the effect of dynamic dielectrics across surfaces will

be limited and the Fresnel reflection coefficient used will assume a single representative dielectric

layer. The soil moisture dielectric model used in this paper is [36, 91].

4.3.6 Conversion to Scattering Matrix

A discussion on conversion of the electric field calculation to a scattering matrix are presented

in Appendix A.1.

4.3.7 Generalized Nested Facet Method

While this paper focuses on the analysis of one and two-scale nested facet methods, we now

note that this model is easily generalized. The child surface for the current facet 𝑘𝑎 can be invoked

at any point that a facet within the bounds of the KA is considered too large to approximate the

surface. Under this concept, the NFM can be considered a tree data structure as visualized in

Figure 4.3

The general NFM visualized in Figure 4.3 uses a set number of equal-area projection regimes

𝐴 from which the various surfaces 𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦), ... 𝑓𝐴 (𝑥, 𝑦) reside. Within each equal-area

projection regime are a set of facets from 𝑘𝑎 to 𝑘𝑁𝑎
. The electric field for a given facet is calculated

by the coherent sum of all child facets. The dotted lines surrounding each group of facets represent

an individual CRS within an equal-area projection regime. The CRS rotation from one surface to

another is indicated by the rotation symbols between each surface regime. In the same way that a

general tree data structure does not demand each parent node have an equal number of children,
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Figure 4.3

A generalized nested facet method visualized as a tree data structure. Each square represents a
facet, and dotted rectangles group facets into a surface with a common CRS relative to the parent
facet. Each row represents a different equal-area projection regime for the various surfaces. The

rotation symbol represents CRS rotation.

not all parent facets within a surface regime require an equal number of child facets. This property

can be used to tailor the FM to the shape of the surface when increased resolution is necessary.

The NFM created with Figure 4.2 can be considered an instance of the generalized structure seen

in Figure 4.3.
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4.4 Influence of FM Components on Simulated Electric Fields

In the current and subsequent sections, the behavior and variability of the constituents describing

the NFM of equation 4.23 and the general FM-KA of equation 4.16 are simulated over slow-varying

topographic structures to provide intuition of their impact on SoOp applications over land. While

we are describing the behavior of the NFM of equation 4.23, the behavior of equation 4.23 and

4.16 can be considered interchangeable when considering the contributions from individual facets

as opposed to the summation of multiple child facets.

To investigate current SoOp opportunities for land applications, we use CYGNSS and SNOOPI

as example SoOp systems, each providing notably different frequencies and bistatic geometry. The

assumed frequency and altitudes for each system are noted in table 4.1. Note that ”Tx” and ”Rx”

are shorthand for transmitter and receiver.

Table 4.1

Nominal Altitude and Frequency of Simulated Bistatic Systems

Tx [km] Rx [km] Frequency [MHz]
CYGNSS 20200 520 1575.42
SNOOPI 35786 349.52 370

For all subsequent simulations, we assume that the transmitter and receiver are aligned along

the x-axis. We define the incident and outgoing unit vectors from the origin of the simulation

centered on the specular point as

î−𝑠 = −
[
sin 𝜃𝑖 cos 𝜙𝑖 sin 𝜃𝑖 sin 𝜙𝑖 cos 𝜃𝑖

]⊺
(4.27a)
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ô+𝑠 =
[
sin 𝜃𝑜 cos 𝜙𝑜 sin 𝜃𝑜 sin 𝜙𝑜 cos 𝜃𝑜

]⊺
(4.27b)

where the subscripts 𝑖 and 𝑜 represent the incoming and outgoing directions for the incident and

azimuth angles 𝜃 and 𝜙. Assuming that the transmitter-to-specular-point range 𝑅𝑡𝑠 and receiver-to-

specular-point range 𝑅𝑟𝑠 are equal to the altitudes listed in Table 4.1, the position of the transmitter

and receiver for these simulations can then be defined as −𝑅𝑡𝑠 î−𝑠 and 𝑅𝑟𝑠ô+𝑠 . We note that a more

accurate representation would involve defining the ranges in an earth-centered, earth-fixed CRS.

However, this method of defining the transmitter position allows us to maintain the parallel-ray

approximation and accurately capture the changes in unit vectors.

As the scope of this paper is focused on isolating the impact of topographical variadtions on

the received signal, a constant surface dielectric is used for all subsequent simulations. The surface

uses a homogenous Dobson-Peplinski dielectric [36,91] calculated from 25% soil moisture, a sand

fraction of 80%, a clay fraction of 7%, and a bulk density of 1.25 g/cm3.

4.4.1 Phase approximation errors

The electric field determined by equation 4.23 is enabled by the phase factor of equation 4.22.

This approximation of the change in relative range is either acceptable or unacceptable based on

the bistatic configuration, carrier frequency, and the size of the region in which the parallel ray

approximation is applied. The phase angle errors induced by equation 4.22 are illustrated in Figure

4.4 for both CYGNSS and SNOOPI systems.

Two configurations are shown for both SNOOPI and CYGNSS for specular reflection at 0° and

70° where the 𝑥-axis represents the magnitude of the range term present in equation 4.22 where
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Figure 4.4

Difference between explicitly calculated phase and approximated phase over a facet as a function
of range from facet center for two SoOp systems.

the range varies from the facet center at zero to a point 100 meters away. Solid lines represent

values given 0° incidence and dashed lines within the legend represent values at 70° incidence.

The black dotted line highlights the values near the 30-meter range mark, a distance common for

current DEMs. As 100-meter resolution is another common DEM-resolution, the phase error is

also calculated up to this point.
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The results of Figure 4.4 indicate that specularly reflected values near 0° are more negatively

effected by this range approximation than those closer to grazing angles. An expected increase

in error is shown for increasing range from the facet center. We observe that for both pairs of

incidence angles, the combined effect of changes in carrier frequency and orbital altitude result in

SNOOPI being more resistant to these phase errors by a factor of ≈ 3 relative to CYGNSS.

In the context of land-surface scattering applications, it is worth noting the expected ranges of

a perfectly flat facet on a given plane. The maximum range from the facet center to a point along

a planar facet is ≈ 21 meters for a square 30-m facet and ≈ 70-m for a 100-meter facet. For these

specific ranges, we note that the errors along these points for CYGNSS are ≈ 0.8° and ≈ 9.2°

respectively as seein in Figure 4.4. These ranges can change depending on the topography over a

facet, but provide a baseline for the maximum expected error for a planar surface. We posit that

the range uncertainty of equation 4.22 can be deemed negligible where resolutions finer than DEM

gridding is unavailable or considered unnecessary.

4.4.2 Surface Phase Integral, 𝐺𝑘𝑎

The effects of the surface phase integral 𝐺𝑘𝑎 can provide valuable insight to understanding the

formation of the electric field through equation 4.16. To illustrate this, we visualize the surface

phase integral for sample facets over a very large area. The extent that should be considered for

SoOp-R applications corresponds to the maximum delay considered during DDM generation. For

this example, we consider an area of ±300 [km] based on possible delay considerations for DDM

pixels far from the origin.
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We visualize 4 different surfaces to understand the surface phase integral. These surfaces are (1)

a perfectly flat surface, (2) a surface approximating Earth curvature based on the World Geological

Survey 1984 (WGS84) ellipsoid centered along the equator, (3) a Gaussian-based surface with rms

height of 50 m and correlation length of 5 km in 𝑥 and 𝑦 directions, and lastly (4) a combination of

the WGS84 and Gaussian surfaces. An assumed incidence and outgoing angle of 20° is used. The

magnitude of equation 4.15 in dB scale is shown using sample facets of size 𝐿𝑥 = 𝐿𝑦 = 1 [m] in

Figure 4.5.figure

Figure 4.5(a) provides a reference image of the surface phase integral for comparison with the

other 3 plots. We can see that for a facet size of 1m, the output varies slowly and only approaches

0 around 180 km from the specular point. As this is a function of the bistatic geometry with no

impact from surface slopes, we verify that the transmitter’s incident unit vector 𝑖−
𝑘𝑎

(located in the

negative direction of the 𝑥-axis) moves more slowly than the receiver’s unit vector. This results

in a contortion of the image in the direction of the receiver. The use of 1 meter as a facet size

effectively functions as a diffusing reradiating surface which ensures the output of equation 4.15

will be very near 1 for values within 100km of the specular point. The impact of larger facet sizes

are illustrated later in Figure 4.7.

The impact of earth curvature is shown in Figure 4.5(b). As expected, the curvature causes

𝐺𝑘𝑎 to vary more quickly, though not significantly. The impact of the Gaussian surface roughness

can then be understood as coarsening the image of Figure 4.5(a) and (b). The Gaussian surface

orients facets to either be aligned or misaligned with the bistatic geometry, ultimately resulting in

what is largely an attenuated version of the images on which they are imposed.
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Figure 4.5

Surface radiation pattern over a 300𝑘𝑚 × 300𝑘𝑚 surface. The normalized voltage reradiation
pattern is shown over the surface for four types of surfaces: flat, WGS84 ellipsoid, Gaussian

roughness, and WGS84 + Gaussian roughness

To understand the distribution of the surface phase integral more clearly, we now visualize the

distribution of the 𝑥 and 𝑦 components of the bisector w. For this visualization, we eliminate the

impact of the surface gradients 𝛼 and 𝛽 by rotating the bisector w to be aligned with the local

surface normal for each facet. This allows us to more directly use the rotated form of w within

equation 4.15. The corresponding value of each sinc function in equation 4.15 are also visualized

in Figure 4.6.
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Figure 4.6

Violin plot depicting distribution of half-way vector terms contributing to the surface reradiation
pattern of Figure 4.5. The sinc term defining the rectangular reradiation in either x- and

y-directions are depicted in the lower plots.

When the bisector is aligned with the surface normal, the sinc terms will produce their maximum

output of 1. We see, however, that for the 𝑥-components on a flat surface, the bisector is biased

in the positive direction near the value of 𝑘0𝑤𝑥 ≈ 10. This behavior is explained by the previous

comments on the speed at which the incoming and outgoing vectors change over the surface,

biasing the values to change more slowly in the direction of the transmitter.

When earth curvature is introduced, the resulting histogram is stretched as the bisector changes

more rapidly and equally for all points along the surface. The Gaussian surface roughness then

produces the expected effect of coarsening the shape of the histogram.

118



For the 𝑦-direction, the distribution of the points are more equally distributed in positive

and negative directions. The biases seen for the flat image near ±10 can then be understood

as corresponding to the areas near the corners of each image in Figure 4.6 which outnumber the

number of points near the specular point. The effects of the WGS84 ellipsoid and Gaussian surfaces

are the same as the effects in the 𝑥-direction.

The sinc terms of equation 4.15 are separated by contributions from the 𝑥 and 𝑦 directions and

visualized in the bottom row of Figure 4.6. From this, we can visualize the impact that the bisector

has for the resulting surface phase integral. While values near zero on the axis will the strongest

radiation towards the receiver, the larger number of values towards the ends of the violin plot may

result in non-negligible scattering from points distant to the specular point.

4.4.3 Surface Fields, u

Having visualized the surface phase integral, the impact of the surface fields within equation

4.10 is of interest within the context of changing bistatic geometry across a surface. For this

simulation, a 50 ±50 km length is used in both 𝑥 and 𝑦 directions for the surface. A bistatic

geometry based on the SNOOPI system is assumed with a homogenous dielectric across a planar

surface. The incidence angle is assumed to be 20°. The magnitude of the surface fields is then

provided by the left-most figure of Figure 4.7.

The left-most image shows the value of u for the surface assuming a homogeonus dielectric

over a completely flat surface. The top row illustrates the resulting surface phase integral 𝐺 () and

scattering parameter 𝑠ℎℎ assuming square facets of 1 × 1 [m], and the bottom row shows the same

values for 20 × 20 [m].
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Figure 4.7

Effect of surface fields on resulting image. The leftmost image shows surface fields. The top row
shows the following surface phase integral and scattering amplitudes using 1-meter facets while

the bottom row shows the same for 20-meter facets.

For very large distances, the portion of the surface which receives the most of the incident field’s

energy are the facets whose surface normals n̂𝑘𝑎are most aligned with the incident vector î−
𝑘𝑎

. This

results in an unintuitive result: for a flat surface, the facets which are nearest to the transmitter’s

zenith direction will receive the most incident energy. If the resulting amplitude of equation 4.9

changes more slowly than the dot product of n̂𝑘𝑎 · î−
𝑘𝑎

in equation 4.7, values near but not at the

specular point can produce a slightly higher radar cross section. For the top row of Figure 4.7, the

values show that the use of facets of length 1 will result in a slow varying surface phase integral

which does not significantly attenuate the strong surface fields near the transmitter. However, the
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larger facet size along the bottom row does attenuate the signal and produces a resulting scattering

amplitude which more strongly resembles the surface phase integral.

4.5 Insights of the Facet-Method-Based Kirchhoff Approximation for SoOp Land Scattering

This section evaluates the performance of the FM-KA and NFM for speed and accuracy. The

metrics provided are not meant to be absolute but instead communicate the relative performances

of the different models simulated. All reported simulation times are performed on a Dell Alienware

x14 using a 2500MHz 12-core Intel i5-12500H central processing unit, 16 GB of LPDDR5 4800

MHz RAM, and a 500 GB M.2 solid state drive. No computations are performed on graphical

processing units.

This section compares the FM-KA to the direct numerical integration of the KA (DI-KA) and

ZV-GO. The DI-KA evaluates equation 4.1 numerically at fine-scale resolutions. The ZV-GO is

taken from [135, eq. 34]. All comparisons are made by calculating the normalized bistatic radar

cross-section (NBRCS) as evaluated in equation A.5. The NBRCS of the ZV-GO can be written as

𝜎0 =
𝜋 |Γ|2 |w|
𝑤4
𝑧

𝑃(−𝑤𝑥
𝑤𝑧
,−
𝑤𝑦

𝑤𝑧
) (4.28)

where Γ is the surface reflection coefficient, |w| is the magnitude of the vector w, and 𝑃() represents

an arbitrary PDF of the surface slopes but is evaluated as an isotropic, zero-mean Gaussian for this

problem.

4.5.1 Impact of Facet Size Relative to Direct Integration Method

Having evaluated the general behavior of the FM-KA, we now examine the accuracy and

efficiency of the model under several conditions. The size of a facet given by 𝐿𝑥,𝑘𝑎 and 𝐿𝑦,𝑘𝑎
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is the primary factor that establishes the speed and memory savings over directly integrating the

Stratton-Chu integral in equation 4.1. We begin this analysis on speed and accuracy tradeoffs by

noting the change in accuracy for the NBRCS of a 30-meter parent facet with varying facet sizes

used by the the child facets.

This simulation calculates the NBRCS of 3 different groups of Gaussian-distributed, Gaussian-

correlated surfaces. These surfaces each use an RMS height of 1-meter and correlation lengths

of 30, 15, and 7.5 meters. Each surface is generated at a 1-mm discretization level and is then

downsampled based on the length of a square, child facet size. The NBRCS of the DI-KA evaluated

at 1-mm discretization is then used as the truth value for determining the root-mean square error

(RMSE) of the different child facet lengths. This process is then averaged over 50 different

simulations for each family of surfaces and carried out for both L-band and P-band signals at 1575

and 370 MHz respectively. This simulation accounts for scattering in the specular direction with

incidence and scattering angle aligned on a 20° ray.

Figure 4.8 displays the logarithmic RMSE of the NBRCS calculated from 50 randomly gener-

ated surfaces. L-band simulations are indicated by solid lines, and P-band simulations are indicated

by dashed lines. The different surface types are indicated by color. Example profile 𝑋𝑍-plane

elevation views are provided to illustrate the types of surfaces generated.

Coarser resolutions will result in faster computation time and are thus desired. For all surfaces, a

simulation of less than 10 centimeters can be seen as reasonably converging to a solution. However,

the interpretation of facet sizes above 50 centimeters is of more interest for relaxing computational

costs. For these cases, P-band surfaces exhibit a lower RMSE than L-band simulations. This can

be reasonably understood as the wavelength of L-band signals will cause the sinc terms of equation
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Figure 4.8

Deviation of facet method from direct integration averaged over 50 Gaussian surfaces. Results
show HH-polarization centered around 20° incidence, 20° scattering angle. Colors indicate

Gaussian surface parameters and line type indicates frequency.

4.15 to more rapidly approach its limit as a delta function for increasing facet size. Since the

P-band wavelength and facet size are of similar sizes, the shown facet sizes behave more similarly

to a diffusing, isotropic surface reradiation pattern. A facet size of 1-meter is shown to exhibit an

RMSE of 3dB or less for all P-band surfaces as well as the smoothest option for L-band.
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The results show that a common facet size will have very different impacts on the simulation

performance when taking the DI-KA as a true reference. Other simulations not visualized in this

paper confirm that increasing the surface roughness will increase RMSE and decreasing surface

roughness will decrease RMSE for all simulations provided.

4.5.2 Speed, Time, and Accuracy of the Facet Method

To further illustrate the accuracy and performance of FM-based calculations, we now simulate

50 Gaussian surfaces for a DEM-sized patch. For this simulation, we follow the previous dielectric

characteristics and CYGNSS-based geometry. For each randomly generated surface, we assume

a 30-meter, square surface with 15-centimeter RMS height and a correlation length of 5 meters

across 𝑥 and 𝑦 axes.

We simulate the FM at both 0.5- and 1-meter resolutions and compare them to simulations of the

DI-KA at 2-cm resolution and the ZV-GO which does not require an input surface for calculations.

The NBRCS of each surface is calculated for scattering angles between ±30° about a local specular

scattering direction of 20° at a fixed azimuth angle of 0°. The results of this simulation are shown

in Figure 4.9.

The simulations of both forms of the FM show general agreement with both the ZV-GO and

DI-KA. As this is shown on logarithmic scale, the differences between the DI-KA and FM solutions

become less noticeable for larger NBRCS.

Of particular interest are the differences in computation time and memory between these

different calculations. These results are shown in Table 4.5.2.
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Figure 4.9

Average response of 50 Gaussian generated, Gaussian-correlated surfaces. The square surface
length is 30 meters with 5-meter correlation length and 15-centimeter RMS height.

As Table 4.5.2 is only intended to show relative differences and not the specific coding im-

plementation of these methods used in this paper, the RAM used by the input variables to each

KA implementation is shown. As the ZV-GO is statistical in nature, its inputs are all scalar terms

and can be considered negligible. However, the remaining calculations each make use variables

describing the three-dimensional Cartesian surface, incident and scattering vector parameters to the
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center of the surface, and a scalar term describing a homogenous surface dielectric. Intermediate

products such as surface gradients are not accounted in this RAM estimate.

The time reported in Table 4.5.2 reports the total time to calculate 61 different NBRCS as a

function of scattering angle for 50 surfaces. The instant time reported is then the time needed to

calculate the NBRCS for a single 30-meter facet described by its resolution and the resulting 𝑁 ×𝑁

matrix also reported in Table 4.5.2. The simulation used MATLAB R2021a, and while no parallel

processing was specified, it is understood that the MATLAB compiler optimizes some operations

given available resources.

These results show, as expected, that the FM-based solutions provide a reasonable intermediate

speed and RAM consumption between the statistics-based geometrical optics (GO) and the brute-

force DI-KA methods. Paired with the previous results, we conclude that FM-based solutions are

reasonable under the correct radius-of-curvature limitations for the system.

Table 4.2

Simulation performance for 60 scattering angles over 50 randomly generated, square Gaussian
surfaces of length 30 meters

GO FM DI
Resolution [cm] [-] 100 50 2
Surface Size [N x N] [-] 31 61 1501
Instant Time [ms] 0.026 0.930 2.242 1108.170
Total Time [s] 0.08 2.845 6.859 3391
Input RAM [kB] 0.08 23 89 54072
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Figure 4.10

Response of CYGNSS- and SNOOPI-based simulations over large topographical areas. The
𝑓1(𝑥, 𝑦) surface assumes Perlin noise and the child facets each use Gaussian noise as of 1-meter

rms height and 30-meter correlation length.

4.5.3 Large-scale simulation

Similar to the previous simulation, we now compare the time and memory performance of

the NFM as shown in Figure 4.2. This, however, compares the results of HH-polarized NBRCS

over Earth-like terrain. The 𝑓1(𝑥, 𝑦) surface assumes a slow-varying Perlin gradient noise surface

superimposed on an ellipsoid mimicking the WGS84 ellipsoid centered at the equator across a

50-km area. Each child facet assumes a 1-meter rms height and a 30-meter correlation length.

The simulations show similar images for both the CYGNSS- and SNOOPI-based simulations.

The SNOOPI-based simulations show an overall higher NBRCS with more visible coherent patterns
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across the surface. This is due to the impact of the facet sizes as discussed in Figure 4.5. Because of

this, the CYGNSS image features darker areas that are essentially shadowed by the sinc functions.

The computation times are shown in Table 4.5.2. At a 30-meter equal-area projection resolution

using double arrays, the size of the 𝑓1(𝑥, 𝑦) surface is roughly 70 MB while each child surface uses

only a few kilobytes. When processing on a laptop, the MATLAB compiler will default to a run

time of 2614 seconds or roughly 44 minutes. However, since this surface is easily parallelizable,

using 12 CPU workers on a 12-core CPU brings the computation time down to 504 seconds.

The moderately low time and memory usage of this algorithm allows for the coherent imaging of

surfaces on standard, modern computing equipment.
For reference, if the surface was truly continuous and at a 1-meter resolution, the, 3D Cartesian

surface using doubles would occupy 55.8 GB in memory, making these surfaces difficult to simulate
on current, commercial hardware. The segmenting process achievable by NFMs is thus tractable
for modern, low-cost computing resources.

Table 4.3

Simulation performance for NBRCS calculation of Figure 4.10.

Value Units
𝑓1 res 30 [-]
𝑓1 size [NxN] 1669 [-]
𝑓1 RAM 66.85 [MB]
𝑓2 res 1 [-]
𝑓2 size [NxN] 101 [-]
𝑓2 RAM 23.06 [kB]
Time (Default) 2613.926 [s]
Time (12 Cores) 504 [s]
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4.6 Discussion

From these simulations, we observe that the NFM is a tractable method for determining land

surface scattering. The NFM of Figure 4.2 is specifically designed for the requirements of SoOp

simulations which can require scattering over very large areas. The use of parent and child facets

is a tool designed to investigate the uncertainty between the current, publicly available 30-meter

DEM datasets and physical simulations.

Without the use of windowing functions, the segmenting process of the NFM cannot be called

a continuous surface. Many papers explicitly define the surface as

𝑓 (𝑥, 𝑦) = 𝑓1(𝑥, 𝑦) + 𝑓2(𝑥, 𝑦) + ... 𝑓𝑁 (𝑥, 𝑦)

Assuming that the surface is truly continuous, this means that the total memory allocated for

the surface 𝑓 (𝑥, 𝑦) is determined by the smallest facet size. While this does produce continuous

surface for integration, the impact on memory is quite severe as discussed in Table 4.5.2 and is not

easily, if at all, performable on consumer-grade computers. The nesting of parent and child facets

into smaller grids is, therefore, the primary benefit of this method. The generation of child facets

at run-time naturally means that the surfaces generated by the NFM are not continuous. While this

is true, we note that the general FM by definition makes use of parallelograms which can overlap

and intersect with one another similar and functions as a Riemann sum. We therefore contend that

the concern of a non-continuous surface should only be considered in the presence of sufficient

surface elevation data such that sub-DEM surfaces need not be generated. We further note that the

use of child surfaces is used in order to mitigate the DEM surface from exclusively functioning as

a series of large, planar, specularly scattering surfaces.
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4.7 Conclusion

The repurposing of satellite signals as remote sensing transmitters, the defining characteristic of

SoOp remote sensing, presents unique challenges for modeling and measuring signals. An increase

in transmitter system uncertainty and more robust modeling signal processing are some of the trade-

offs for not incurring the SWaP demands of designing a mission-specific transmitter. Because SoOp

creates new opportunities to sense key geophysical variables for climate and hydrological analysis,

developing a variety of statistical, numerical, and analytical tools for SoOp is essential for meeting

the modeling demands of global Earth surface systems.

This paper presents a NFM which modifies the FM-KA to allow flexible modeling of earth

surfaces. This method possesses the following beneficial features

1. speed and memory efficient computations capable of simulating scattered electric fields at
spaceborne SoOp-scales on consumer-grade computers

2. PDF-independent surface characterization for DEM and intermediate-scale surfaces

3. local surface roughness characterization which follows the gradient of a DEM

The NFM uses a series of parent and child facets to determine the local electric field on

parallelogram that is scattered towards a receiver. The electric field is communicated between the

parent and child facet coordinate systems through rotation of the local incident and scattering unit

vectors. This NFM makes use of the parallel-ray approximation to further simplify the calculation

of the scattered electric field. Its phase approximation validity range with respect to the Euclidean

distance to the child facet center for CYGNSS and SNOOPI systems is shown in Figure 4.4.

The FM-KA can be compactly segmented into features which describe the surface fields on a

facet and surface reradiation pattern towards the receiver through the surface phase integral. The

distribution of the surface phase integral over simple surfaces is shown in Figures 4.5 and 4.6, and
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the impact of the surface fields is shown in Figure 4.7. These figures illustrate that angle bisector

and facet size are critical for interpreting the total received field through this method.

The influence of the facet size is further studied in Figure 4.8 through comparison with the

DI-KA at both L- and P-band for different Gaussian surfaces. The results show that the FM

displays strong agreement with the DI-KA. Simulations at 1-meter resolution are shown to have

strong agreement with both the DI-KA and ZV-GO in Figure 4.9.

Tables 4.3 shows the speed and memory performance of the FM-KA and NFM. The FM-KA

is found to be an efficient numerical method lying between the two extremes of the ZV-GO and

DI-KA.

Finally, Table 4.5.2 shows the speed and memory performance of the CYGNSS- and SNOOPI-

based simulations shown in Figure 4.10. The results of Table 4.5.2 show that the NBRCS of the

images produced in Figure 4.10 can be produced in roughly 45 minutes using MATLAB’s default

processing and roughly 8 minutes when using parallel cpu processing. Moreover, the variables used

to describe the surface are on the order of several MB as the intermediate-scale surfaces need only

be generated at runtime. This is in contrast to methods which preallocate the entire surface which

would require several GBs of data to describe the surface and intermediate calculation parameters.

The NFM is shown to be tractable numerical method for consumer-grade computers.
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CHAPTER V

DESIGN OF A SPACEBORNE, END-TO-END SCOBI MODEL

This section describes an end-to-end modeling and simulation (M&S) framework for signals

of opportunity (SoOp) land scattering which will be used to pursue future research and design

concepts. It is a modification of the original SoOp coherent bistatic scattering model (SCoBi)

framework to include large-scale scattering over Earth’s surface.

5.1 Abstract

The multilayer SCoBi extension and the nested facet method (NFM) concept are merged

alongside the SCoBi vegetation module to create an end-to-end model for SoOp-based land-

scattering applications. The model is composed of five components: a manager module for

connecting user inputs and simulation outputs, (2) a geometry module for communicating between

several coordinate reference system (CRS), (3) a data-mapping module for decision making at

spatial resolutions lower than the available input data, (4) a scattering module which uses the NFM

and vegetation modules of SCoBi to describe land scattering, and (5) a delay-Doppler map (DDM)

module to describe the measurement observed by a DDM instrument. Each section describes both

the governing equations and programming of the end-to-end model for each module.
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5.2 Introduction

Having introduced the NFM and multilayer soil moisture (SM) profile modeling, we now

combine the established techniques of [7, 11] alongside the vegetation modeling of [65] to create

a comprehensive end-to-end modeling framework for SoOp simulations from space. The model is

composed of the following modules visualized in Figure 5.1:

1. Manager module

2. Geometry model

3. Data mapping module

4. Scattering module

5. DDM module

Figure 5.1

SCoBi model overview
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5.2.1 Motivation for Model Design

Perhaps the most difficult question for an end-to-end model is that of effectively using imperfect

data products of different and generally insufficient spatial resolutions for global applications. If

meter-level spatial resolution is demanded, how do we assign variables that change spatially and

temporally such as SM, vegetation structure, and the intermediate roughness scales of Figure 4.2?

Naturally, there is no single answer. A semi-empirical approach for assigning SM that works

perfectly in, for example, Western Idaho may not be optimal for West Java. Such behavior is

demonstrated in [70] where training several hundred machine learning models to estimate SM in

as many distinct regions performs better than training one machine learning model to estimate SM

globally. Additionally, there are many types of variable assignment approaches: choosing constant

values, functional mapping, assignment by probability distribution function (PDF), and machine

learning models. These are all reasonable options depending on the available data and time given

for a problem.

Motivated by this, one of the primary factors in designing this end-to-end model is the desire

to maintain flexibility in the assignment of unknown variables. The overall design of Figure 5.1 is

intended to be flexible for variable user data as well as variable computation power.

5.3 Problem Overview

A DDM instrument typically produces measurements in the range-Doppler domain using a

matched filter correlation process. Such DDM instruments use a fixed number of correlators

placed at specific time delay and Doppler offsets to create a DDM image at a resolution tailored

for a specific remote sensing mission. For example, the ocean-sensing Cyclone Global Navigation
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Satellite System (CYGNSS) uses an array of 128 × 20 delay-Doppler correlators [102] while the

land-sensing SoOp P-band Investigation (SNOOPI) instrument’s 370 MHz imager uses a 200 × 3

delay-Doppler correlator array [49]. The delay values will change very slowly over a surface due to

plane-wave expansion under the large distances of the transmitter and receiver. Fully simulating a

large DDM will require significant processing over large surface areas. However, the slow-varying

nature of the waves can be advantageously used for more efficient simulations.

Figure 5.2

Overview of bistatic geometry. (Left) The specular-scattering geometry over the World
Geological Survey 1984 (WGS84)-ellipsoid. (Upper right) An arbitrary simulation size of
±300km over the ellipsoid. (Lower right) The local scattering geometry of a 1-km area’s

ellipsoidal-height-based surface.

An overview of the general bistatic problem from space is visualized in Figure 5.2. The

left image shows the general bistatic geometry of the specularly reflected signal over the World
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Geological Survey 1984 (WGS84) ellipsoid. The transmitter emits an orange signal which reflects

at the specular point. The specular ray towards the receiver is shown in green. The receiver

position and WGS84 ellipsoid are to scale with the receiver placed at low-earth orbit at a 30°

specular reflection. However, the transmitter’s position is half that of the Global Positioning

System (GPS) constellation’s medium-earth orbit for visualization purposes. A simulation region

is highlighted in purple and expanded in the upper-right figure.

An example simulation region is shown in the upper-right portion of Figure 5.2. A ±300-km

simulation area is chosen for the 30° scattering geometry. At this scale, the curvature of the WGS84

ellipsoid can be seen over the simulation region. The bistatic geometry is shown for the transmitter

and receiver at the specular point as well as the points furthest and closest to the transmitter.

While the transmitter’s rays are visually similar, the rays representing the field scattered towards

the receiver deviate significantly from the geometry at the specular point. This shows the need to

account for earth curvature and the changing geometry of the scattered field. A local scattering

geometry is highlighted by the blue box and expanded in the lower-right image.

The lower-right image shows the local scattering geometry of a ±0.5km area. In addition to

the WGS84 ellipsoid, the ellipsoidal height is superimposed over the surface and shows the true

scattering geometry of towards the receiver. At this scale, the scattered fields shown in green remain

nearly parallel to one another despite the changes in surface geometry. This local homogeneity of

incident and scattered waves provides the basis for the subsequent model derivations.
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5.3.1 Governing Equations

Equation 5.1 defines the overall mechanism of a locally scattered field observed by a receiver,

and each module works to describe each component. Each variable listed below has an understood

subscript of 𝑘1. That is to say, each piece of the equation applies to an individual facet along the

Digital Elevation Map (DEM).

𝑏 = 𝐾
exp(𝑖𝑘0(𝑟𝑡𝑘1 + 𝑟𝑘1𝑟))

𝑟𝑡𝑘1𝑟𝑘1𝑟
𝑔
𝑟

(ô+)𝑢
𝑘1→𝑟

(ô+)𝑠(ô+, î−)𝑢
𝑡→𝑘1

(î−)𝑔
𝑡

(î−)𝑒
𝑡

(5.1)

The received field represented as a network scattering parameter of units 𝑉/𝑚√
𝑍

is denoted by

𝑏. The 2 × 1 unit vector 𝑒
𝑡

describes the nominal polarization of the transmitter. The transmitter

and receiver antenna’s normalized antenna pattern is described using 𝑔
𝑡

and 𝑔
𝑟

. The polarization

rotation matrix 𝑢
𝑡→𝑘1

describes the polarization rotation from the transmitter’s antenna polarization

CRS to the local DEM facet 𝑘1. The polarization rotation matrix 𝑢
𝑘1→𝑟

orients the polarization

from the DEM CRS to the receiver antenna’s polarization CRS. The local scattering matrix is then

computed for either ground or vegetation as 𝑠. The range terms 𝑟𝑡𝑘1 describe the range from the

transmitter to facet center 𝑘1, and 𝑟𝑘1𝑟 describes the range from facet center to receiver. The term

𝐾 describes the transmitted power terms as

𝐾 = 𝑖
𝜆0
4𝜋

√︁
𝑃𝑡𝐺0𝑡𝐺0𝑟 (5.2)

where 𝑖 is the complex number
√
−1, 𝜆0 is the wavelength in the transmitted medium, 𝑃𝑡 is the

transmitted power, 𝐺0𝑡 is the maximum transmitter gain, and 𝐺0𝑟 is the maximum receiver gain.

Please note that the equations of this chapter use an understood time factor of exp(−𝑖𝜔𝑡) which

is referenced by clockwise rotation about the complex plane. Chapter IV uses an understood,
137



counter-clockwise-referenced time factor of exp( 𝑗𝜔𝑡). Although 𝑖 and 𝑗 both represent the value
√
−1, careful substitution of the expression 𝑗 = −𝑖 can be used for communication between methods

with differing time factor references.

Many components of the end-to-end model define the scattering matrix for a given DEM facet.

Given that this describes scattering over very large earth surface areas, a significant amount of

user input is required. In the following sections, we describe the modules of Figure 5.1 and their

purpose in fulfilling equation 5.1.

5.4 Manager Module

The manager module is responsible for collecting user input and the branching of subsequent

operations. As this is a generalized SoOp model, there is a great deal of system- and frequency-

dependent considerations for any given simulation.

If an input is not provided, then a default value is generally asserted as done in other models

such as [93]. The following input options are available:

• Hierarchical Data Format version 5 (HDF5) output storage location

• Class-based decision support system (DSS)s for soil, vegetation, and intermediate roughness
descriptions

• Options for automatic calculation of scattering region, shadowing of facets exceeding a given
delay value,

• Antenna gain pattern descriptions

• Data source locations for DSSs

• DEM resolution scaling

• System (e.g., Technology Demonstration Satellite-1 (TDS-1), CYGNSS, SNOOPI, etc.) or
custom descriptions for frequency, polarization, and DDM processing

• Optional scattering methods (e.g., direct surface integration as opposed to NFM)

138



• Options for calculation methods (single-core, parallel CPU, and GPU processing as of now)

This module makes minimal use of global variables. It primarily serves as a communication

method between the input and output of the DSSs but occasionally interacts with other modules

to provide computational branching. For example, this module informs following calculations on

CPU resources and whether or not they can be used.

The manager module makes prominent use of HDF5 format for storing output data. This is

done in order to share output data easily between programming languages and operating systems

while allowing for data compression of 𝑁-dimensional data.

5.5 Geometry Model

The primary function of this module is to provide communication between different CRS. The

total coordinate systems used here are

• The earth-centered, earth-fixed (ECEF) CRS

• The East-North-Up (ENU) CRS with origin at the specular-point

• The gridded DEM CRS

• The local CRS for facet 𝑘1

• The transmit and receive antenna CRS

Following standard data products such as Soil Moisture Active/Passive (SMAP) and TDS-1,

the end-to-end module begins in an ECEF CRS. If necessary, calculation of the specular point is

performed in this CRS. The ECEF CRS is then converted to an ENU CRS centered on the specular

point. A grid is then created along the line formed by the transmitter, receiver, and specular point

projected onto the 𝑋𝑌 plane. The ENU CRS is then rotated about the up unit vector to align with
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this grid. The model is then capable of determining the CRS rotation between specific elements of

the system such as any given facet or the receiver observation direction. The importance of these

three CRS rotations is visualized in Figure 5.3 where each CRS is shown to play a distinct role in

defining the simulation region. These roles can be summarized as using the ECEF for the general

bistatic geometry definition, the ENU CRS for initialization of the simulation region, and the grid

CRS for defining specific facets under simulation.

Figure 5.3

CRS transformation between ECEF, ENU, and Grid systems. The specular point is used to
determine the simulation region size, and the grid region is then determined. This example shows

a rectangular simulation region used to validate the module.

Additionally, the geometry module performs several important tasks. These include
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• CRS rotations for all elements within the simulation grid

• Specular point determination (if necessary)

• DEM sampling for simulation scene

• Antenna body rotations

We summarize the workflow below:

5.5.1 Specular Point Determination

Given the scenario where the specular point is not provided as an input, this module makes

use of the specular point function provided in [51]. Typically, the specular point is defined as the

position in which the path range is minimized for a planar surface. For an ellipsoid surface, the

specular point is determined through a gradient descent method over the WGS84 ellipsoid.

5.5.2 Simulation Grid Determination

For SoOp applications involving DDMs, the number of surface elements is generally decided

by the desired delay values. We assume that the desired maximum delay is the sum of the maximum

delay bin of the DDM and the chip length in seconds. Thus, the number of delay bins is highly

influential in the computation time of a simulation. Due to the influence of topography, there

is likely no analytical method that can perfectly estimate the size of the DDM over the Earth

geoid. However, we can make reasonable approximations following the method of [33]. We can

approximate the semi-major iso-delay line over a planar surface as

𝑎 =

√
2𝜏𝑐𝐻 cos 𝜃𝑖

cos2 𝜃𝑖
(5.3)
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where 𝜏 is the maximum desired delay in seconds, 𝐻 is the receiver altitude over the surface, and

𝜃𝑖 is the local incidence angle.

By using the semi-major iso-delay radius 𝑎, we can safely estimate the size of the region for

a planar or ellipsoid surface. We note that the path delay along the edge of the simulation region

will increase more quickly over an ellipsoid compared to a planar surface which will cause this

method to over-estimate the simulation region size. On the other hand, the effect of topography

can vary significantly which will cause this method to either over or under estimate. In summary, a

perfect description of the simulation region size will require trial and error based on the influence

of topography. Due to this ambiguity, the user is provided the option to force a fixed rectangular

simulation region size as an input.

5.5.3 Surface Grid CRS

We now define the grid CRS which will house the equal-area projection of the surface 𝑓1(𝑥, 𝑦).

Assuming the transmitter, receiver, and specular point are well known in an ENU CRS, it is

convenient to define a CRS where the transmitter, receiver, and specular point are aligned. We

determine the unit vector between the transmitter and receiver as

û𝑇𝑅 =
r𝑟𝑥 − r𝑡𝑥
|r𝑟𝑥 − r𝑡𝑥 |

(5.4)

We now determine the simple rotation between the ENU CRS and a grid CRS which aligns the

transmitter, receiver, and specular point as
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𝑅enu→grid =



cos 𝜃𝑔 − sin 𝜃𝑔 0

sin 𝜃𝑔 cos 𝜃𝑔 0

0 0 1


(5.5)

where 𝜃grid = arccos(û𝑇𝑅 · x̂enu).

Note that this rarely results in perfect alignment with the specular point, transmitter, and

receiver. Since the specular point is considered the origin of the ENU CRS, its value will remain

the origin in the new CRS. If desired, the transmitter and receiver can be forced into alignment such

that the transmitter is aligned along the negative 𝑥-axis without a 𝑦-component and the receiver is

aligned along the positive 𝑥-axis with no 𝑦-component. Additionally, the error in specular point

calculation by any method results in unavoidable errors when comparing DDMs to measurements.

It should, however, not significantly affect the calculation of the received field.

5.5.4 Ellipsoidal Height

The ellipsoid surface is created by accounting for the total deviation from the reference ellipsoid.

DEMs are typically provided with respect to the Earth Gravitational Model 1996 (EGM96) geoid,

and the EGM96 geoid is provided with respect to the WGS84 ellipsoid. Assuming that the WGS84

is centered on the specular point, the total surface height is defined as

𝑓1(𝑥lon, 𝑦lat) = 𝑓WGS84(𝑥lon, 𝑦lat) + 𝑓EGM96(𝑥lon, 𝑦lat) + 𝑓DEM(𝑥lon, 𝑦lat) (5.6)

where the subscripts indicate that the surface is defined with respect to latitude and longitude

values. To convert from the ellipsoid to meters, the (𝑥, 𝑦) pairs are converted by calculating the
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great circle track distance. The relationship between the different surfaces is depicted in Figure

5.4.

Figure 5.4

Earth surface model relationships

Additionally, the resolution of the ellipsoid varies with respect to the provided latitude and

longitude values. To circumvent this, the end-to-end model performs linear interpolation of the

surface in order to create a true equal-area projection. While directly interpolating values below

the DEM resolution is performable, it is not recommended.

5.5.5 Antenna Body Rotation

In order to properly define the received polarization of the field, knowledge of the antenna’s

orientation is necessary. Given the propagation direction, the linear polarization ports can be

arbitrarily defined. Similar to the ENU CRS, we can define several local tangent plane CRS
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for an antenna and its spacecraft to properly define the received field with correct polarization

changes. We adopt two CRS for this system: a CRS for the spacecraft and another for the antenna.

The spacecraft is a local-vertical, local-horizontal (LVLH) CRS defined with respect to the Earth

center and the spacecraft velocity direction. It is nominally defined with respect to an ECEF CRS.

The antenna CRS can either be defined with respect to a known position along the spacecraft or

by aligning it with the ENU tangent plane at the specular point. A spacecraft LVLH CRS and

ENU-plane-aligned antenna CRS are depicted in Figure 5.5.

Figure 5.5

(a) The spacecraft LVLH CRS. The spacecraft unit velocity v̂sc and earth center define the CRS.
(b) An example antenna CRS. The specular point and ENU plane define the CRS.

Following a similar but distinct approach to [83, Section 4.4], we define the spacecraft LVLH

CRS with unit velocity v̂sc as

ẑlvlh =
rearth center − rsc
|rearth center − rsc |

(5.7a)
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ŷlvlh =
ẑlvlh × v̂sc
|ẑlvlh × v̂sc |

(5.7b)

x̂lvlh =
ŷlvlh × ẑlvlh
|ŷlvlh × ẑlvlh |

(5.7c)

where rearth center is the earth center in a given CRS rsc is the position of a spacecraft, and v̂sc is

the unit velocity of the same spacecraft. We evaluate these vectors in the ENU CRS. The rotation

matrix from the ENU CRS to the spacecraft CRS is then readily found by

𝑅enu→lvlh =

[
x̂lvlh ŷlvlh ẑlvlh

]⊺
(5.8)

A similar process can be performed for the case where the antenna position of the spacecraft

is well-defined. As an example, the CYGNSS spacecraft features two antennas which are oriented

roughly 30° from the spacecraft’s nadir direction.

𝑅enu→ant = 𝑅body→ant𝑅lvlh→body𝑅enu→lvlh (5.9)

where

𝑅enu→lvlh converts the CRS from ENU to LVLH

𝑅lvlh→body rotates the CRS from LVLH to align x̂lvlh and ŷlvlh through a 90° rotation about the ẑlvlh
axis

𝑅body→ant aligns the ẑ of the body CRS with the antenna pointing direction using quaternions

This rotation matrix can then be evaluated for both the grid and local CRS. These rotations are

visualized in Figure 5.6.

Thus, the antenna CRS can be defined with respect to the spacecraft’s estimated orientation

when the position of the antenna along the spacecraft is known. For arbitrary simulation scenarios

where the antenna position is unknown, we define an antenna CRS wherein the propagation
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Figure 5.6

Rotations from the spacecraft’s LVLH CRS to the body and antenna CRS.

direction is aligned with the specular point and the horizontal polarization component along the ŷ

direction is parallel with the 𝑋𝑌 plane at the specular point in an ENU CRS. In this case, we can

create

ẑrx =
rsp − rrx��rsp − rrx

�� (5.10a)

ŷrx =
ẑgrid × ẑrx��ẑgrid × ẑrx

�� (5.10b)

x̂rx = ŷrx × ẑrx (5.10c)

The conversion from the grid CRS to the receiver CRS would here be defined as

147



𝑅grid→rx =

[
x̂rx ŷrx ẑrx

]⊺
(5.11)

5.5.6 Local Vectors

Because this section discusses communication between the grid CRS and the local CRS of

individual facets 𝑘1, we will temporarily make use of the subscript 𝑘1 to help define the CRS

rotations. Assuming the grid CRS, we can define the incoming and outgoing vectors and other

relevant variables for calculating scattering using the NFM. For any arbitrary CRS, we define the

incoming and outgoing vectors as

î−𝑘1
=

r𝑘1 − rtx��r𝑘1 − rtx
�� (5.12a)

ô+𝑘1
=

rrx − r𝑘1��rrx − r𝑘1

�� (5.12b)

where the the subscripts of the position vector r indicate the transmitter (tx), receiver (rx), and the

facet (𝑘1) positions in a specified CRS.

Assuming the grid CRS, each position along the ellipsoidal surface height is used to calculate

a local facet. The local facet approximates the area of the region it rests upon whereas methods

such as triangular meshing will perfectly align with the provided surface information. Assuming

an equal-area projection, the local surface gradients along 𝑥- and 𝑦-directions are calculated as

𝛼𝑘1 =
𝜕

𝜕𝑥
𝑓1(𝑥𝑘1 , 𝑦𝑘1) (5.13a)

𝛽𝑘1 =
𝜕

𝜕𝑦
𝑓1(𝑥𝑘1 , 𝑦𝑘1) (5.13b)
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The local surface normal is calculated following [54, Chapter 11]

n̂𝑘1 =

[
−𝛼𝑘1 −𝛽𝑘1 1

]⊺
√︃
𝛼2
𝑘1
+ 𝛽2

𝑘1
+ 1

(5.14)

The local 𝑥 and 𝑦 unit vectors can then be calculated as

x̂𝑘1 =

[
1 0 𝛼𝑘1

]⊺
√︃

1 + 𝛼2
𝑘1

(5.15a)

ŷ𝑘1 =

[
0 1 𝛽𝑘1

]⊺
√︃

1 + 𝛽2
𝑘1

(5.15b)

The rotation from the grid CRS to the local frame is then

𝑅grid→𝑘1 =

[
x̂𝑘1 ŷ𝑘1 n̂𝑘1

]⊺
(5.16)

The calculation of the local incidence and scattering angles is CRS independent if the unit

vectors represent the same object. We can define the arbitrary angles between two CRS denoted 𝐴

and 𝐵 as

𝜃 = arccos(ẑ𝐴 · ẑ𝐵) (5.17a)

𝜙 = arctan( ŷ𝐴 · ŷ𝐵
x̂𝐴 · x̂𝐵

) (5.17b)
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The local incidence angles are, therefore, calculated assuming CRS 𝐴 is the grid CRS and CRS

B are the facet unit vectors given by x̂𝑘1 , ŷ𝑘1 , and ẑ𝑘1 which are written with respect to the grid

CRS.

5.5.7 Gravitational Offset

In some applications, it is helpful to know the direction of gravity. For example, plants tend to

feature geotropism which is the growth of the plant towards or away from the direction of gravity.

As subsequent operations are defined relative to a local facet with no ECEF information available,

calculation of the gravitational off-axis angle should be performed in this module.

Assuming that gravity is oriented towards the earth center, we define the gravitational unit

vector for a given facet as

ĝ =
rearth center − r𝑘1��rearth center − r𝑘1

�� (5.18)

We can then define the local gravitational off axis angle for a given facet as

𝜃𝑔 = arccos(−ĝ · n̂𝑘1) (5.19)

5.6 Data Mapping Module

We will briefly explain the motivation for using class-based data mapping, or DSSs, in order

to describe data. Let us consider an arbitrary problem of mapping a subset of data 𝑆 from the total

data space 𝑋 onto a prediction space 𝑌 using a function 𝑓 (𝑆). Suppose further that there were 𝑁
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total dataspaces from [𝑋1, 𝑋2, · · · , 𝑋𝑁 ] where a subset from each dataspace could result in a more

accurate prediction value. Given that validating the prediction space is difficult, there is no single

solution to this problem. This is depicted in an arbitrary format in Figure 5.7.

Figure 5.7

Data mapping concept for an arbitrary case. The output space 𝑌 is color-coded to show where the
prediction space of the three different prediction methods will overlap.

Three different variable spaces and three different prediction classes are depicted in Figure 5.7.

The subsets of the total dataspace are depicted in the left column. The function mapping for the

three different methods are color-coded to visualize overlap in the image on the right. Note that

the different methods do not use the same inputs. For example, the function 𝑓1() takes no input,

and its output can be considered a random mapping over the dataspace 𝑌 . The other methods take

different numbers of inputs and predict values for different portions of the dataspace.
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To make this abstract concept more tangible, let us consider the prediction of the complex

dielectric constant for soil. Generally, dielectric functions are either purely empirical or semi-

empirical and are, thus, at risk of being biased by the measurement location or system noise. In

Figure 5.8, the three variables depicted are soil moisture 𝑚𝑣, soil clay ratio 𝑠𝑐, and soil sand ratio

𝑠𝑠. Three different methods are used to estimate the complex soil dielectric in the right image.

Some functions, such as the Mironov model [78], only require the soil clay ratio in their prediction

of the complex dielectric. Note that this visualization does not represent any specific bound on

the prediction space of soil dielectric and is only used for illustrating the concept of using multiple

classes for variable prediction.

Figure 5.8

Data mapping concept using the example of soil dielectric. Three different methods are shown
which map soil moisture 𝑚𝑣, soil clay fraction 𝑠𝑐, and soil sand fraction 𝑠𝑠 to a complex dielectric

constant. Overlapping prediction spaces are color coded.
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The benefit of this can be summarized as follows: the SCoBi model is capable of assigning

different DSS classification models to determine unknown variables such as vegetation structure,

microwave soil parameters, and intermediate surface roughness. Each model can be fed the same

number of inputs in determining their respective values, but not all of the function maps will require

data. This style of programming allows for quick interchanging of variable predicting DSS.

The datasets which this model collects and uses are summarized.

5.6.1 Datasets and Workflows

While the user can define their own DSS and even provide their own datasets by using this

module, the current baseline for this model calculates many different values in order to build the

scattering matrix calculated in the following section.

Generally, if the size of the facet described by the DEM surface in 𝑓1(𝑥, 𝑦) is more coarse than

the resolution of the dataset provided, the dataset is then interpolated for each facet. For example,

if a water body mask is applied at 10-meter resolution for a 30-meter resolution facet, a resulting

3 × 3 matrix of water body values is used. At present, the mode of this matrix is used to represent

the entire matrix.

Water body masking is performed using the European Commission Joint Research Centre

Global Waterbody (JRC GWB) dataset [89]. This dataset is provided at 0.00025° resolution

or approximately 30-meter resolution. This information can nominally be used to describe the

presence of inland water bodies.

Soil texture information is provided through the Soil Grids dataset [97]. The soil texture

information is a machine-learning data product that is rendered at 250-meter resolution. There
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are many data products for this set across a large portion of the soil profile. In this model, we

determine the soil texture in the upper portion of the profile and assume it is constant for any given

simulation.

Other information is left to the user to provide. For example, given the high spatiotemporal

variability, the user is expected to provide their own datasets for SM mapping. While we note

that this could be done, for example, through a lookup table for a dataset such as SMAP, most

validation journal papers assume a constant SM value for a very large region in the assumption

that the change in topography will provide the expected shape of the resultant DDM.

This module constructs an object which operates on each DEM facet: an object for soil

parameters, an object for intermediate roughness, and an object for vegetation. For the soil

parameters, the class can be constructed in any way as long as the effective dielectric of the

soil is returned. For the intermediate roughness, an arbitrary number of inputs can be provided

assuming that a 3D, Cartesian surface is generated. For the vegetation class, a description of the

vegetation parameters should be generated which aligns with the definitions of vegetation provided

in [40, 65].

5.7 Scattering Module

The scattering module is responsible for realizing the linearly polarized scattering matrix used

in equation 5.1. It is designed to compute the scattering matrix with efficiency given the size of

the problem.

Using the output of the manager module, the scattering module chooses to evaluate both bare

and vegetated scattering matrices using either CPU or GPU resources. The manager module,
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having determined the number of available CPU cores, can evaluate the scattering matrices for

each facet in parallel.

5.7.1 Bare

The implementation for bare surfaces are thoroughly detailed in Chapter IV. To briefly sum-

marize, child surfaces of intermediate roughness scale 𝑓2(𝑥, 𝑦) are generated over a parent surface

𝑓1(𝑥, 𝑦). The scattering is calculated according to a 3-scale NFM where the microwave roughness

scale 𝑓3(𝑥, 𝑦) is calculated using the attenuated field observed by the physical optics solution to a

Gaussian distributed microwave roughness. Methods for using geometrical optics (GO) and direct

numerical integration of the KA (DI-KA) are available, but have not been made parallelizable as

of yet.

5.7.2 Vegetation

The vegetation scattering assumed by the spaceborne model is a simplified variant of what is

found in [65]. Much like the surface scattering module, this calculation is simplified by means of the

parallel ray approximation. In the scenario where transmitter or receiver are near the scatterer, the

image method can be used to quickly determine attenuation along the path of least time. However,

when the transmitter and receiver are of sufficient distance, each scatterer within the medium will

have approximately identical incoming and outgoing vectors. Additionally, the unit vectors of the

image media (e.g., [65, Figure 4]) will be near identical aside from a reversed z-axis direction. In

summary, the use of an image media is made unnecessary.

The scattering amplitude matrix is computed for four scattering mechanisms. The shorthand

for these contributions are noted by the letters 𝑑𝑑, 𝑑𝑟 , 𝑟𝑑, and 𝑟𝑟. Following standard microwave
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theory notation, the 1st subscripts indicate the receiving port and the second subscript indicates a

transmitted port. A character of 𝑑 indicates that the signal travels directly to or from a scatterer. A

character of 𝑟 indicates that the signal is reflected by the ground surface on its travel to or from the

scatterer. The four scattering mechanisms correspond to (1.) single bounce contributions (𝑑𝑑), (2.)

double bounce contributions (𝑑𝑟 and 𝑟𝑑), and (3.) triple bounce contributions (𝑟𝑟). The scattering

matrix for each element is then calculated for a given scatterer type 𝛼 and scatterer instance 𝑛 as

𝑠𝑑𝑑
𝛼,𝑛

(ô+, î−) = 𝑡 (ô+) · 𝑓
𝛼

(ô+𝛼, î−𝛼; 𝛽𝛼,𝑛) · 𝑡 (î−) (5.20a)

𝑠𝑑𝑟
𝛼,𝑛

(ô+, î+) = 𝑡 (ô+) · 𝑓
𝛼

(ô+𝛼, î+𝛼; 𝛽𝛼,𝑛) · 𝑟
𝑔
(î+) · 𝑡 (î+) (5.20b)

𝑠𝑟𝑑
𝛼,𝑛

(ô−, î−) = 𝑡 (ô−) · 𝑟
𝑔
(ô−) · 𝑓

𝛼

(ô−𝛼, î−𝛼; 𝛽𝛼,𝑛) · 𝑡 (î−) (5.20c)

𝑠𝑟𝑟
𝛼,𝑛

(ô−, î+) = 𝑡 (ô−) · 𝑟
𝑔
(ô−) · 𝑓

𝛼

(ô−𝛼, î+𝛼; 𝛽𝛼,𝑛) · 𝑟
𝑔
(î+) · 𝑡 (î+) (5.20d)

where 𝑡 indicates the attenuating vegetation medium given by [65, equation 8.a], and the ground

reflection matrix is given by [65, equation 9.a]. The scattering amplitude matrix 𝑓
𝛼

is calculated for

the given particle type 𝛼. Currently, this is programmed to be the scattering of simple geometries

such as dielectric cylinders [104] and discs [71]. These functions were previously open-sourced

in [40]. The four scattering mechanisms of equation 5.20 and the incoming and outgoing unit

vectors are depicted in Figure 5.9

The model does not currently perform Monte Carlo averaging to determine an incoherent

expression. We maintain phase information within this medium by incorporating the phase factor

of equation 4.22 as
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Figure 5.9

Scattering mechanisms found in the vegetation module representing single, double, and triple
bounce mechanisms with respect to ground reflections.

𝜔𝛼,𝑛 = exp
(
𝑖𝑘0(î

− · r𝛼,𝑛 − ô+ · r𝛼,𝑛)
)

(5.21)

where r is the range from the center of the facet CRS to the particle
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Because the incoming and outgoing vectors are considered constant for each particle within the

medium, the incoherent expression in [65, equation 12] can be simplified to estimate a scattering

matrix for an entire forest scene. This can be expressed as

𝑠veg(ô+, î−) =
∑︁
𝛼

𝑁𝛼∑︁
𝑛=1

[
𝑠𝑑𝑑
𝛼,𝑛

+ 𝑠𝑑𝑟
𝛼,𝑛

+ 𝑠𝑑𝑑
𝛼,𝑛

+ 𝑠𝑟𝑟
𝛼,𝑛

]
𝜔𝛼,𝑛 (5.22)

This expression can then be inserted into equation 5.1 to determine coherent signal scattering.

Given the large area simulated in SoOp applications, the number of facets is presently considered

sufficiently randomized.

5.7.3 Practical Considerations

While we are capable of determining scattering from any given number of particles, simulation

studies observe that the primary contribution of dielectric discs for SoOp wavelengths generally

contributes to the signal attenuation of the transmissivity matrices found in equation 5.20. As such,

leaves are considered in the Foldy-Lax approximation of the transmissivity matrix (see [65, equation

8.b]), but they are not factored into the scattering mechanisms.

Given the large number of unknowns, validation of the modified vegetation module’s system

response requires careful consideration. This will likely be the topic of a future publication as

strategies for understanding the impact of vegetation distribution at SoOp scales merits investiga-

tion.

5.8 DDM Module

The DDM produced by this module is evaluated using the cross-correlation approximation

of [136, equation 22] under the assumption that the approximations used by GPS hold true for
158



any given SoOp system. This process is effectively a matched filtering process which accounts for

both time delays and Doppler offsets. The process is well defined by [56, equation 2.3 - 2.11] and

is as summarized as follows. Let us loosely define the signal measured by the DDM instrument

using [135, equation 16].

𝑤(𝑡′, 𝑓 ′) = 𝐴

𝑇𝑐

∫ 𝑇𝑖

0
𝑐(𝑡 − 𝜏)𝑐(𝑡 − 𝑡′)𝑒𝑥𝑝(−𝑖2𝜋( 𝑓 + 𝑓𝐷 − 𝑓 ′)𝑡)𝑑𝑡′ + 𝑛𝑤 (5.23)

where

𝐴 is the amplitude of the received signal

𝑇𝑐 is the coherent integration time in seconds

𝑐(𝑡 − 𝜏) is the measured signal code at time 𝑡 with propagation offset 𝜏

𝑐(𝑡 − 𝑡′) is the code replica at time 𝑡 with the DDM instrument’s time offset 𝑡′

𝑓 is the carrier frequency

𝑓𝐷 is the Doppler of the measured signal

𝑓 ′ is the DDM instruments test Doppler

This formulation assumes that the transmitted signal consists of a carrier frequency delivering

a message, multiplied by a chip sequence, and buried in additive thermal noise. We assume that the

chip sequence of the signal is significantly shorter than the data message such that the data message

can be considered constant for the coherent integration time of the cross-correlation process. If we

assume that the chip correlation process is time invariant and is primarily a function of the delay

offset, we can remove it from the integration process by determining its expectation. This leaves

the evaluation of the exponential term. Thus,

𝑤(𝑡′, 𝑓 ′) = 𝐴 ⟨𝑐(𝑡 − 𝜏)𝑐(𝑡 − 𝑡′)⟩ 1
𝑇𝑐

∫ 𝑇𝑐

0
𝑒𝑥𝑝(−𝑖2𝜋( 𝑓 + 𝑓𝐷 − 𝑓 ′)𝑡)𝑑𝑡′ + 𝑛𝑤 (5.24)
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We then approximate the expectation of the cross-correlation at time-lag 𝜏 = 0 as a triangle

function where

Λ(𝑡 − 𝑡′) = ⟨𝑐(𝑡)𝑐(𝑡 − 𝑡′)⟩ =


1 − |𝑡 − 𝑡′|

𝜏𝑐
| |𝑡 − 𝑡

′|
𝜏𝑐

| < 1

0 | |𝑡 − 𝑡
′|

𝜏𝑐
| ≥ 1

(5.25)

where 𝜏𝑐 is the chip rate of the code sequence. The exponential of the integration period can then

be evaluated as

𝑆( 𝑓𝐷 − 𝑓 ′) = 1
𝑇𝑐

∫ 𝑇𝑐

0
exp(−𝑖2𝜋( 𝑓 + 𝑓𝐷 − 𝑓 ′)𝑡)𝑑𝑡′

= sinc(𝜋𝑇𝑐 ( 𝑓𝐷 − 𝑓 ′)) exp(−𝜋𝑖𝑇𝑐 ( 𝑓𝐷 − 𝑓 ′)) (5.26)

The total integration period is then approximated by

𝑤(𝑡′, 𝑓 ′) = 𝐴Λ(𝑡 − 𝑡′)𝑆( 𝑓𝐷 − 𝑓 ′) + 𝑛𝑤 (5.27)

Which finally provides the ambiguity function as

𝜒(𝑡 − 𝑡′, 𝑓𝐷 − 𝑓 ′) = Λ(𝑡 − 𝑡′)𝑆( 𝑓𝐷 − 𝑓 ′) (5.28)

We note that this function can be considered coherent under this formulation. The DDM is

evaluated in SCoBi by assuming that the amplitude of the signal 𝐴 is equal to the simulated 2 × 1

received field 𝑏. This yields

𝑤(𝑡′, 𝑓 ′) = 𝑏
𝑘1
Λ(𝑡 − 𝑡′)𝑆( 𝑓𝐷 − 𝑓 ′) + 𝑛𝑤 (5.29)
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The complex DDM is then constructed by summing the total, coherent field for each delay (𝑡′)

and Doppler ( 𝑓 ′) value within the DDM instrument’s correlators after weighting with the ambiguity

function 𝜒. A complex DDM pixel is thus given by

𝑏(𝑡 − 𝑡′, 𝑓𝐷 − 𝑓 ′) =
𝑁𝑘1∑︁
𝑘1=1

𝑏
𝑘1
𝜒(𝑡 − 𝑡′, 𝑓𝐷 − 𝑓 ′) (5.30)

It is common to eliminate the coherency of the DDM by averaging the signal over an incoherent

integration time 𝑇𝑖. The number of DDMs collected over the incoherent integration time is given

by the integer 𝑁DDMs:

𝑁DDMs =

⌊
𝑇𝑖

𝑇coh

⌋
(5.31)

where the brackets indicate a flooring function. With this, the average power of the incoherently

averaged DDMs can be computed as

𝑃(𝑡 − 𝑡′, 𝑓𝐷 − 𝑓 ′) = 1
𝑁DDMs

𝑁DDMs∑︁
𝑛=1

𝑁𝑘1∑︁
𝑘1=1

|𝑏
𝑘1
⊗ 𝑏∗

𝑘1
| |𝜒(𝑡 − 𝑡′, 𝑓𝐷 − 𝑓 ′) |2 (5.32)

where ⊗ makes use of the Kronecker product, resulting in a 4 × 1 matrix of power values.

This form is readily converted into an effective normalized bistatic radar cross-section (NBRCS)

value as

𝜎0(𝑡 − 𝑡′, 𝑓𝐷 − 𝑓 ′) = 1
𝑁DDMs

𝑁DDMs∑︁
𝑛=1

𝑁𝑘1∑︁
𝑘1=1

𝜎0,𝑘1
|𝜒(𝑡 − 𝑡′, 𝑓𝐷 − 𝑓 ′) |2 (5.33)

where

𝜎0
𝑘1

=
4𝜋𝑟2

𝑡𝑘1
𝑟2
𝑘1𝑟

|𝐾 |2𝐴𝑘1

|𝑏𝑘1 ⊗ 𝑏∗𝑘1
| (5.34)
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where 𝐴𝑘1 is the area of facet 𝑘1. Upon completion of this module, the manager module collects

the desired output variable and stores them within an HDF5 file.

5.9 Conclusion

A summary of an end-to-end model is presented. Each module works together to describe

land scattering from complex terrain. The end-to-end model is capable of simulating arbitrary

SoOp systems or inherit parameters directly from current systems. The earth surface is generated

about the specular point along the line connecting the transmitter, receiver, and specular point

across the WGS84 ellipsoid. Once relevant bistatic geometry information is collected, global

datasets are used to construct DSS objects which will assign SM, intermediate roughness scales,

and vegetation structures at scales below the DEM spatial resolution. A simplified form of the

SCoBi vegetation module is used to determine vegetation scattering while the NFM of Chapter

IV is used to determine scattering over bare surfaces. A complex DDM is then calculated for the

surface with an optional incoherent DDM output.

The model is currently undergoing validation with intention to open source the modules to the

wider community. Once validation has been completed, the model is intended to explore concepts

such as the variability of bistatic radar cross-section (BRCS) and DDMs to increasingly complex

terrain. Additionally, the potential of root-zone soil moisture (RZSM) retrieval for SNOOPI-based

configurations is of great interest. Comparisons of the model with available DDMs over bare

and vegetated terrains are to be explored. Documentation which more completely describes the

user-interface of the model will be published upon open sourcing.
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CHAPTER VI

CONCLUSION AND DISCUSSION

6.1 Summary of Contributions

Some of this dissertation’s relevant literature contributions can be summarized as follows:

1. An open-sourced multilayer, multifrequency tool kit for root-zone soil moisture (RZSM)
remote sensing with signals of opportunity (SoOp).

2. A study on optimal SoOp configurations for RZSM retrieval

3. A generalized nested facet method (NFM) framework for multifrequency SoOp modeling of
topography

4. A coherent model for spaceborne SoOp scattering capable of complex delay-Doppler map
(DDM) generation

We expound on these points below.

In chapter II, we develop a multilayer model for RZSM analysis with several SoOp sources.

Globally available ultra high frequency (UHF) signals provided by SoOp present an exciting

opportunity to better sense variables such as soil moisture due to UHF signal’s longer wavelengths

and larger penetration depth. General claims about RZSM sensing capabilities revolve around the

penetration depth estimation provided in [119, equation 4.12b] and equation 2.6. This chapter

provides a thorough exploration of the change in the reflection coefficient with varying single- and

multi-layer soil moisture profiles. A multilayer penetration depth applicable for oblique angles is

evaluated and has been open-sourced.
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Given the information from Chapter II, the expected retrieval performance is evaluated by the

Cramer-Rao lower bound (CRLB) in Chapter III. Given five SoOp sources available between 137

and 2338 MHz, each combination of frequencies is evaluated for its minimum variance unbiased

estimator over a simple two-layer profile given different depth configurations and soil moisture

values. It is found that a pairing of one frequency above L-band and another at P-band or lower

generally results in the optimal estimator for a given soil moisture profile combination.

As the previous chapters dealt with evaluating retrieval conditions for a small, localized area,

Chapter IV develops an NFM based on the Kirchhoff approximation (KA) solution to the Stratton-

Chu equation. This solution discretizes a surface into several parallelograms that determine

scattering towards a receiver as the product of the total surface fields on a facet and its surface

phase integral which functions as a reradiation pattern for the surface. As observed by [26, Figure

4.7], the reradiation produced by this surface phase integral is similar to a finite conducting plane

struck by a plane wave. The NFM is found to be computationally tractable for SoOp applications

and scalable to optimally compute scattering for any surface within the validity region of the KA.

With each component described, Chapter V describes a complete model for describing scatter-

ing using the NFM. The earth surface is modeled using a Digital Elevation Map (DEM) and the

World Geological Survey 1984 (WGS84) geoid to determine the ellipsoidal height for a given area

around a specular point. The NFM from the previous chapter is used to determine scattering over

non-vegetated regions, and a simplified form of the vegetation model presented in [65] is used for

scattering from vegetation canopies. Each module operates under a parallel-ray approximation for

a local surface, and the total field is determined by polarization rotation and alignment with the
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transmitter and receiver antenna patterns. Class-based decision making is used to determine the

intermediate surface roughness, dielectric, surface water body content, and vegetation.

This dissertation pursues the improvement of SoOp modeling in order to develop stronger SoOp

remote sensing retrieval products and to better design future SoOp data collections, experiments,

and missions. Naturally, there are many areas available for future exploration. The next and final

section highlights further improvements that could be made to this modeling framework in order

to improve remote sensing capabilities.

6.2 Future Work

The modeling framework presented is designed for simple integration with additional mod-

ules. As SoOp has many divisions of research, additional modules should strive to explore new

components of SoOp remote sensing and investigate current questions on the applicability of

SoOp retrievals. Here, we summarize our intended future additions to the SoOp coherent bistatic

scattering model (SCoBi) model for ground and spaceborne remote sensing applications.

6.2.1 Surface Modeling

Modeling up to to this point has been represented by plane waves over slow-varying surfaces.

There is a need in the hydrologic sciences to estimate water content in mountainous terrains due to

the dependence of many areas on snowmelt and the impact of surface runoff. As the acquisition

of sub-meter resolution DEM data continues, modeling tools have the opportunity to meet science

demands. The inclusion of methods such as small-perturbation method and the advanced integral

equation method could prove highly beneficial for ground and airborne simulations for areas of

significant surface roughness [123].
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6.2.2 Vegetation

The current SCoBi implementation makes use of the distorted-Borne approximation to estimate

scattering from a uniformly distributed set of simplified scatterers. These layer-based scatterers

are designed to determine the average response of a vegetation medium through Monte Carlo

simulations of random scattering positions and are not fit to simulate specific scattering geome-

tries. Adding flexibility for specific, fixed vegetation structures could prove useful. Different

interpretations of vegetation realism are depicted in Figure 6.1.

Figure 6.1(a) represents a simple tree structure in the analogue world. All subsequent images

are modeling represents of this image. A brute force method could consist of a dielectric meshing

approach as seen in Figure 6.1(b). In this approach, either a surface mesh or a three-dimensional

voxel representation of the scattering geometry can be used to determine scattering by numerical

Maxwell solutions, method of moments, or other alternatives. Alternatively, simplifying the

geometry of a vegetation canopy would produce significantly more efficient scattering amplitude

calculations. Figure 6.1(c) simplifies (b) by representing the vegetation structure with dielectric

cylinders and discs. An attenuating medium (represented by the green cloud surrounding tree) acts

upon coherent and incoherent signals. The current ground-based formulation of SCoBi is depicted

in Figure 6.1(d) where the geometry is broken into multiple dielectric layers corresponding to

statistically significant scatterer regions. A scatterer density then determines random, uniform

distribution of scatters throughout the medium to arrive at the solutions presented in [65]. Figure

6.1 (e) represents the proposed implementation for the spaceborne model. In this formulation,

the contributions of leaves are excluded from the scattering solution but are incorporated into the
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Figure 6.1

Different tree representations for electromagnetic modeling. (a) analogue / real world, (b)
dielectric meshing for intensive numerical solutions, (c) simple geometric representation of
scatterers in attenuating medium, (d) uniformly distributed scatterers in discrete multilayer

structure, (e) disc-less scatterers in attenuated medium

effective vegetation medium as the primary effect of leaves on SoOp wavelengths is generally

attenuation.
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6.2.3 Other Modules
6.2.3.1 Ionosphere Effects

Ionospheric scattering and polarization rotation is stronger at UHF than L-band [127]. As

P-band signals operate in a very active portion of the RF spectrum, modeling losses for P-band

signals is important to assess noise contributions. The addition of an ionospheric module [80] to

SCoBi could prove highly beneficial for P-band simulations. We note that because the ionosphere

varies across space and time, this module will require either space and time as inputs or an assumed

”average” ionospheric effect for arbitrary simulations.

6.2.3.2 Additional Surface Models

The current SCoBi modules account for contributions from bare soil and vegetated areas.

Several natural surfaces are currently left unaccounted. Of primary interest are the impacts of (1)

water bodies, (2) wetlands, (3) snow, and (4) permafrost.

With respect to water bodies, we intend to build a module that will account for water-body

scattering. The current spaceborne module determines the if a given facet is dominantly occupied

by determining the facet’s surface water fraction through the European Commission Joint Research

Centre Global Waterbody (JRC GWB). Our initial formulation assumes that the waterbody does

not contribute any scattering by assuming that the specularly scattered signal is not aligned with

the receiver. This could be easily corrected by using the facet’s halfway vector (equation 4.8)

to determine if the facet is within a quasi-specular reflection regime. The reflecting facet would

then use a dielectric representation of a surface waterbody. The inclusion of surface waterbody

roughness would be beyond the scope of spaceborne simulations and would, therefore, be con-

sidered flat as a first approximation. As the facet size would be quite large for DEM resolutions
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(e.g., 30-meters total), the surface reradiation pattern will likely serve as a delta function for

most frequencies and, therefore, reject most signals that are not specularly aligned. In a similar

effort, the impact of partially wet topography is of great interest for wetland-based SoOp appli-

cations [81]. A volume fraction model for dielectric (e.g., [119, equation 4.73]) or for the total

scattering coefficient [69, equation 1] could be used to estimate coherent and incoherent scattering

respectively.

SoOp scattering over snow is of great interest for remote sensing applications [106]. The

addition of a snow dielectric model is rather trivial. Additionally, the limited variability of relative

permittivity (e.g., approximately 𝜀′ ∈ [1, 3]) will cause limited change in scattering. The primary

complexity of SoOp snow modeling will likely be the provision of a consistent phase reference in

order to estimate snow water equivalent through phase unwrapping techniques. The inclusion of

permafrost simulations, however, will likely require careful modeling due to the variability of the

relative permittivity as well as the position of active and frozen soil layers [20].

6.2.4 Open-Sourcing

The model presented in this dissertation is intended for open-sourcing in the near future. We

will determine an appropriate open-source copyright while adhering to the respective copyright of

any open-source model constituents used. The greatest difficulty lies in providing general access

to large datasets. For ease of use, we may create programs that collect data from web servers for

the users. Additionally, the model may be ported away from a proprietary programming language

for more accessible user base.
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APPENDIX A

SUPPLEMENTARY INFORMATION FOR THE NESTED FACET METHOD

FORMULATION
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A.1 Conversion of Electric Field to Scattering Matrix

The solution to facet-method-based KA (FM-KA) can be cast into a scattering matrix. We will

follow the convention of [119, eq 5.12] with the exception that all modifications to the field caused

by free-space travel are placed in the constant K𝑘𝑎 . This is done in order to pair with the notation

of [65]. In other words, we will assume


𝐸𝑜v

𝐸𝑜h

 = K𝑘𝑎𝑆


𝐸 𝑖v

𝐸 𝑖h

 (A.1)

where 𝐸 𝑖v and 𝐸 𝑖h form a unitary Jones vector to be scaled by the amplitude and phase values of

K𝑘𝑎 .

Let us take the general solution of equation 4.16 while making the modification that the

component describing the amplitude and phase of the surface is taken out of the equation. That is

to say, let us create a constant 𝐶

𝐶𝑘𝑎 ,𝑞 = E𝑘𝑎 ,𝑞/K𝑘𝑎 (A.2)

We can express the scattering matrix then as

𝑆
𝑘𝑎

=


v̂𝑘𝑎 ,𝑜 · C𝑘𝑎 ,v v̂𝑘𝑎 ,𝑜 · C𝑘𝑎 ,h

ĥ𝑘𝑎 ,𝑜 · C𝑘𝑎 ,v ĥ𝑘𝑎 ,𝑜 · C𝑘𝑎 ,h

 (A.3)

which can be rewritten as

𝑆
𝑘𝑎

=


𝑆vv 𝑆vh

𝑆hv 𝑆hh

 (A.4)
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and allowing us to create the form of equation A.1


𝐸𝑜v

𝐸𝑜h

 = K𝑘𝑎𝑆
𝑘𝑎


𝐸 𝑖v

𝐸 𝑖h


Thus placing the FM-KA in a form that is usable in network-scattering-parameter-based formu-

lations as seen in [65]. To allow for the facet nesting in equation 4.23, the phase factor of equation

4.22 can be included in the formulation of 𝐶𝑘𝑎 ,𝑞 assuming proper definitions of the ranges with

respect to any facet nesting. Finally, we can express the normalized bistatic radar cross-section

(NBRCS) as

𝜎
𝑝𝑞

0 =
4𝜋
𝐴

��𝑆𝑝𝑞 ��2 (A.5)

where 𝐴 represents the area of the scatterer or another normalizing reference area. All simulations

used in this paper use the area given by equation 4.14.
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