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Polyclonal plantings of Populus deltoides are expected to display increased site resource 

use, productivity, and tolerance to stress through plasticity changes leading to niche 

differentiation (i.e changes to crown/canopy structures). In the present study, P. deltoides Clones 

S7C8, 110412, and polyclonal plots were tested for differentially expressed genes and enriched 

biological pathways between planting schemes. Transcriptomic analysis of leaves revealed 

upregulation of an active growth gene and gene family members that play important roles in 

plant stress and stress tolerance in polyclonal plantings. A gene associated with oxidative stress 

was upregulated in polyclonal plantings across all treatments. Secondary metabolic pathways 

including arginine and proline metabolism were upregulated in monoclonal plantings and 

downregulated in polyclonal plantings. Phenotypic results displayed greater aboveground 

biomass in polyclonal plantings. Results suggested a potential increased tolerance in polyclonal 

plantings to water and heat stress, including increased productivity and resource usage.
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CHAPTER I 

INTRODUCTION 

1.1 Background: Populus spp. Genetic Response to Heat and Water Stress 

The usage of well adapted and productive genotypes of Populus spp. is essential for the 

sustainability of forests as climate change is increasing heat and water stress globally (Niemczyk 

et al., 2019). As a model genomic organism, Populus is a favorable system for understanding 

diverse physiological and morphological processes, including environmental responses to abiotic 

and biotic stresses and serves as a basis for developing strategies for improving tolerance to 

stress in trees (Popko et al., 2010). Plants, such as Populus spp., respond to water and heat stress 

through transcriptional changes, altering gene expression levels to maintain homeostasis within 

biological systems and improve stress tolerance (Ren et al., 2019; Yang et al., 2015). Previous 

transcriptomic studies have focused on water and heat stress in Populus spp., with studies 

showing increased production of secondary metabolites, including the accumulation of proline to 

alleviate oxidative stress (Bita & Gerats, 2013). Similar studies have shown the regulation of 

secondary metabolism from plant defense transcriptional factors (TFs), such as “WRKY" TFs in 

response to plant stress signals (Meraj et al., 2020).  

Water and heat stress have been previously shown to reduce vegetative growth and yield 

in Populus (Chen et al., 2014; Jia et al., 2017). Although, there is limited information available 

on how the combination of water and heat stress influences gene expression effects for Populus 

(Jia et al., 2017). High temperatures can increase evapotranspiration rates, making plant growth 
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directly limited by heat stress or indirectly from water shortage (Jia et al., 2017; Verlinden et al., 

2013). Understanding Populus’ genetic response to these stresses is essential for understanding 

tree response to future drought conditions and extreme high temperatures predicted by climate 

change (Ren et al., 2019).  

1.2 Background: Populus as the Model Tree Species 

Populus is an ideal model woody species for genomic studies of trees (Bradshaw et al., 

2000; Jansson & Douglas, 2007; Taylor, 2002; Tuskan et al., 2006). P. trichocarpa was selected 

for genome sequencing because of its relatively small genome size (450-550 Megabasepair 

(Mbp)), but also because of its rapid growth and ease of experimental manipulation through the 

production of large amounts of clonal material (Taylor, 2002; Tuskan et al., 2006). The ability 

for Populus to adapt to diverse conditions as well as prominent genetic polymorphisms has 

provided researchers with a rich source of variation in Populus morphology and physiology 

(Bradshaw et al., 2000). Because of its fast juvenile growth, short-term physiological responses 

to environmental variables are rapid and pronounced, producing distinctive tree phenotypes in 1-

3 years in field environments (Bradshaw et al., 2000; Brunner et al., 2004). Another attribute of 

the Populus genomic system is its ecological and intraspecific diversity. Levels of genetic 

diversity are high for molecular markers, such as simple sequence repeats (SSRs) for marker 

assisted selection, and for adaptive traits including vegetative phenology (Brunner et al., 2004). 

For example, assessing tissues, like leaves, at the genomic level may provide information on 

vegetative productivity and differentiation of photosynthetic activity between clonal varieties. In 

addition to fast growth and diversity, a wide range of Populus genomic resources are available 

publicly, such as The International Populus Genome Consortium based at Oak Ridge National 

Laboratory, USA (Tuskan et al., 2004). Likewise, the Populus nuclear and chloroplast genome 
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sequence are available for downloading and searching at the Joint Genome Institute website 

through the Plant Comparative Genomics portal of the Department of Energy’s Joint Genome 

Institute (Goodstein et al., 2012).   

1.3 Background: Ecological benefits from Populus spp.  

Populus spp. help solve a number of large-scale environmental problems, through the 

mitigation of pollution runoff, providing a source of carbon neutral energy, and supporting the 

green economy (Forrester et al., 2005; Richards et al., 2010). Phytoremediation, or directly using 

Populus to clean up contaminated groundwater is a common phytotechnology (Farraji et al., 

2016), and includes gaining hydraulic control of sites by controlling the migration of pollutants 

from an area including riparian areas (Zalesny et al., 2012). The removal of excessive nitrogen (N) 

from groundwater and surface runoff is important for the southeastern United States as N fertilizers 

from agriculture in the region end up in the Gulf of Mexico causing excessive growth of 

phytoplankton and contributing to annual hypoxic zones with an estimated cost to the economy of 

$9.27-$31.97 per kg N (Compton et al., 2011). Compared to herbaceous plants, Populus spp. are 

excellent candidates for remediation as they quickly produce high biomass in stems and leaves, 

allowing them to store large amounts of pollutants, including agricultural N runoff (Shim et al., 

2013). Similarly, planting Populus spp. in riparian zones, which are known to function as 

buffers, could reduce non-point source pollution from agricultural lands to streams, improving 

groundwater quality (Hefting et al., 2005, 2006).  

Previous research has also demonstrated the production potential and sustainability of 

hybrid poplar biofuels (Stanton & Gustafson, 2019). Populus spp. are the only cellulosic 

feedstock candidates with a history of commercial use and a proven supply chain, and past paper, 

pulp and veneer industries of Populus spp. could accelerate the design of similarly efficient 
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biofuels production (Stanton & Gustafson, 2019). This makes Populus spp. a great candidate for 

genetic improvement as researchers can enhance its accumulation capacity of pollution runoff 

and growth rate (Shim et al., 2013). Through molecular genetic analysis, the identification of 

expressed genes involved in improved Populus characteristics could be used to pinpoint target 

genes for genetic engineering or future tree breeding programs (Bunn, 2004). Since the release of 

the black cottonwood (P. trichocarpa) genome in 2006, molecular approaches were quickly 

adopted to investigate underlying mechanisms of basic morphological and physiological 

processes (Wullschleger et al., 2013). The availability of high-throughput sequencing technology 

and a fully sequenced P. trichocarpa genome has accelerated comparative genomic and 

transcriptomic analysis, enabling new approaches for understanding mechanisms of growth, 

yield, and mitigation traits (Han et al., 2020; Luo et al., 2015). Genomic analysis has allowed 

researchers to compare changes in tree morphologies and phenolic chemistry at the molecular 

level, unveiling new information on interspecific and intraspecific variation of Populus spp. 

(Keim et al., 1989).  

Although Populus spp. perform well in northern climates, it is important to capture the 

productivity ability of Populus adapted to a subtropical climate and the extended growing season 

of the southeastern United States (Langholtz et al., 2016). There is limited information on gene 

expression profiling for P. deltoides productivity, stress tolerance and N mitigation grown in 

different planting schemes in the Southeast United States (Han et al., 2020; Kuchma et al., 2022, 

2022; Luo et al., 2015; Richards et al., 2010) The research presented here contributes to the 

genomic knowledge of P. deltoides plantations in the southeastern United States by analyzing the 

gene expression of two P. deltoides clonal varieties grown in monocultures and grown in 

intimate polycultures. 
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1.4 Transcriptome Analysis for Differential Gene Expression 

Transcriptome analysis plays a necessary role in deciphering Populus genetic networks, and 

establishing molecular biomarkers that respond to environmental challenges, including pollution 

and abiotic stress (Jiang et al., 2015). The transcriptome serves as a starting point for analyzing 

underlying changes in the physiological and morphological systems of Populus spp. across a 

wide range of study designs (Luo et al., 2015; Luo & Zhou, 2019). The transcriptome consists of 

all RNA transcripts produced in a particular tissue type. This includes coding transcripts, like 

messenger RNA (mRNA), and non-coding RNA (ncRNA). Although ncRNAs are transcribed 

RNAs involved in transcript regulation, ncRNAs are not transcripts (de Klerk & ‘t Hoen, 2015). 

Alternatively, mRNAs are transcripts containing information for protein production. While genes 

are made up of DNA, proteins are made of amino acids coded by mRNAs. Genes carry genotype 

information, while proteins express the phenotypes through the regulation of gene expression (de 

Klerk & ‘t Hoen, 2015) (Fig. 1.1). Phenotypic plasticity of organisms like Populus spp., 

including physiological and developmental plasticity may arise from alternative transcription 

initiation, including co-transcriptional regulatory mechanisms, which modify protein function 

and gene expression levels, resulting in the expression of different transcripts and proteins from 

the same gene (de Klerk & ‘t Hoen, 2015).  

 A multitude of technologies, including hybridization or sequence-based approaches, have 

been developed over the years to quantify the transcriptome (Wang et al., 2009). One 

hybridization approach, microarray analysis, converts mRNA samples into complementary DNA 

(cDNA), and each sample is labeled with a fluorescent probe (Lowe et al., 2017; Stark et al., 

2019; Wang et al., 2009). Hybridization occurs when the cDNA molecules bind to the target 

DNA molecules on a microscope slide, and the microscope slide is scanned to determine the 
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color probe output (green, red or yellow), measuring the expression of each gene printed on the 

slide (Lowe et al., 2017). Although hybridization-based approaches are high throughput and 

relatively inexpensive (Wang et al., 2009), limitations include reliance upon existing genomic 

knowledge and complicated normalization methods when comparing expression levels across 

different experiments (Lowe et al., 2017; Wang et al., 2009). Sequence-based approaches 

directly determine the cDNA sequences but technologies such as the first-generation Sanger 

sequencing are relatively low throughput and expensive (Wang et al., 2009). Next generation 

sequencing, such as RNA-Seq, is less expensive than Sanger sequencing and is a deep 

sequencing technology that is more sensitive in detecting genes with very low expression levels, 

and more accurate in detecting the expression levels of abundant genes compared to other 

hybridization and sequence-based approaches (Fu et al., 2009; Sequencing Platforms | Illumina 

NGS Platforms, n.d.; Zhao et al., 2014). The sensitivity of RNA-Seq can be further enhanced by 

enriching classes of RNA of interest, such as mRNAs (Lowe et al., 2017). mRNAs can be 

separated by using immobilized oligonucleotides probes, specifically targeting poly-A tails of 

mRNA and removing non-coding RNAs, such as uninformative ribosomal RNAs (rRNAs). 

Similarly, RNA-Seq provides unprecedented detail about transcriptional features, such as novel 

transcribed regions, allele-specific variation, and alternative splicing (Lowe et al., 2017; Stark et 

al., 2019; Wang et al., 2009), and is not limited by prior genomic knowledge unlike most 

hybridization approaches (Wang et al., 2009).  

RNA-Seq is carried out on numerous sequencing platforms and instruments. One of these 

instruments includes Illumina’s NovaSeq 6000 next generation sequencing system (Sequencing 

Platforms | Illumina NGS Platforms, n.d.). The Illumina sequencing workflow consists of four 

steps: sample preparation, cluster generation, sequencing, and data analysis. Sample preparation 
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includes library preparation, allowing compatibility of RNA samples with the sequencing 

instrument (NGS Workflow Steps | Illumina Sequencing Workflow, n.d.). Sequencing libraries are 

created through fragmented DNA, attaching special adapters containing complementary 

sequences allowing the fragments to bind to the flow cell (NGS Workflow Steps | Illumina 

Sequencing Workflow, n.d.). Libraries are loaded onto the flow cell and placed on the NovaSeq 

6000 next generation sequencing system. Clusters of DNA fragments are amplified through 

repeated denaturing and extension cycle from a single template model, resulting in amplification 

of millions of unique clonal clusters across Illumina’s flow cell. This process is known as cluster 

generation or bridge amplification (NGS Workflow Steps | Illumina Sequencing Workflow, n.d.). 

The clusters are then used as templates for sequencing. Chemically modified nucleotides bind to 

the DNA template strand through natural complementarity, with each nucleotide containing a 

fluorescent tag and a reversible terminator that blocks incorporation of the following base (NGS 

Workflow Steps | Illumina Sequencing Workflow, n.d.). Fluorescent tags indicate which 

nucleotide has been added to the template and the terminator is cleaved so the next base can 

bind. This results in true base-by-base calling, eliminating nucleotide error and enabling accurate 

data (NGS Workflow Steps | Illumina Sequencing Workflow, n.d.). After the forward DNA strand 

is read, the reads are washed away, and the process repeats for the reverse strands. This method 

is known as paired-end sequencing.  Following sequencing, data analysis includes identifying 

nucleotides (“sequences”), and the predicted accuracy of the nucleotides being called (base-

calling) (NGS Workflow Steps | Illumina Sequencing Workflow, n.d.).  
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1.5 RNA-Seq for Differential Gene Expression Analysis 

1.5.1 Eukaryotic Directional Messenger RNA-Seq 

RNA-Seq is a high-throughput sequencing tool for measurement of RNA expression 

levels from the transcriptome. (Mortazavi et al., 2008). Reduced costs and enabled performance 

detail for transcriptional features, such as allelic specific variation and for profiling gene 

expression levels has made it a ubiquitous tool for gene expression analysis (Mortazavi et al., 

2008; Stark et al., 2019). Up to 90% of the eukaryotic genome is transcribed into RNA, however 

only 2% give rise to protein products (Pauli et al., 2011; Yu et al., 2019). The main goal for this 

project was to sequence gene-coded transcripts or mRNAs, which was done using the Illumina 

RNA-Seq approach. Rather than directly sequencing mRNA products, the Illumina RNA-Seq 

approach sequences complementary DNA (cDNA) products reverse transcribed from RNAs 

(‘MRNA Sequencing (MRNA-Seq)’, 2023). cDNA is the result of reverse transcribing RNA into 

DNA. cDNA reads in the same direction as the original mRNA is synthesized (in the 5’ → 3’ 

direction) and contains a visible poly(A) tail. A single conventional reading direction simplifies 

data handling (‘MRNA Sequencing (MRNA-Seq)’, 2023). Eukaryotic mRNA sequencing 

through Novogene selectively enriches and captures single-stranded mRNAs via poly (A) 

capture and converts it to cDNA for RNA library preparation, revealing gene expression profiles 

or continuous variation within the transcriptome (‘MRNA Sequencing (MRNA-Seq)’, 2023) 

(Fig. 1.2).   

1.5.2 Overcoming Bias in Analysis Methods for RNA-Seq Data 

Transcript length bias or gene length bias for detecting differential gene expression is a 

feature of current protocols for RNA-Seq technology (Chen et al., 2023). One effect of this bias 

reduces the ability to unveil differential gene expression for shorter genes (Aban et al., 2008; 
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Gail, 1974; Young et al., 2010). Shorter genes do not contain the same amount of coverage or 

detectability due to a decrease in count data, or number of sequences reads, which decreases the 

power of statistical tests (Aban et al., 2008; Gail, 1974). Likewise, with RNA-Seq, the 

expression level of transcript is limited to sequencing depth, or the number of unique reads of 

each region of a sequence. This can be overcome by increasing the number of replicate samples, 

significantly increasing the ability for statistical tests to detect differences in gene expression 

(Rapaport et al., 2013). The number of determined biological replicates utilized for this study 

will be further discussed throughout this chapter. 

 

Figure 1.1 Central Dogma of Molecular Biology 

Central Dogma displays the process of genetic information flowing from DNA to RNA to 

protein. Following DNA replication, DNA sequences provide instructions for functional products 

in the form of functional units called genes. Each gene provides instructions for a functional 

product, also known as a protein. Genes specify the functions of proteins through transcription 

and translation. This study is interested in the process of transcription. The DNA sequence of a 

gene is copied to make an RNA molecule but has not yet been fully translated into proteins, 

allowing us to analyze the first step in gene expression.  
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1.5.3 Transcriptome Data Analysis 

Typically, millions of sequences or reads are produced from experimental analysis across 

several samples. The primary goal of transcriptome data analysis for this study is to identify 

genes that change in abundance between conditions, or between monoclonal and polyclonal 

plantings for this study (Anders et al., 2013). Salmon is a fast program, producing highly 

accurate transcript-level quantification estimates from RNA-Seq data (Patro et al., 2017). 

Indexing in Salmon, or aligning a reference transcriptome to sequencing data, allows one to 

quantify RNA-Seq data quickly, potentially identifying the genomic locus of transcripts (Patro et 

al., 2017). The edgeR software package (empirical analysis of differential gene expression 

(DGE) in R), from the Bioconductor project, was designed for the analysis of replicated count-

based expression data, or the number of sequence reads that originate from a particular gene 

(Chen et al., 2016; McCarthy et al., 2012a; Robinson et al., 2010; Robinson & Smyth, 2007, 

2008). The higher the number of counts for a particular gene, the more reads associated with that 

gene and the assumption that there is a higher-level expression of that gene (Chen et al., 2023).  

The edgeR software package requires an input of the table of counts, the total number of reads 

and a factor specifying the experimental group for each sample (Chen et al., 2023; Robinson et 

al., 2010).  Two levels of variation can be distinguished from RNA-Seq data (Chen et al., 2022). 

First, between RNA samples, the relative abundance will vary for each gene due to biological 

causes and second, the measurement error for the abundance of each gene estimated by the 

sequencing technology (Chen et al., 2022). The Biological Coefficient of Variation (BCV) in 

edgeR allows one to visualize and estimate gene abundance and dispersion between RNA 

samples. The BCV represents the coefficient of variation that would remain between biological 

replicates if sequencing depth could be increased indefinitely (Chen et al., 2022). The software 
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models count data using an over dispersed Poisson model, and the Empirical Bayes procedure to 

moderate the degree of overdispersion across genes (Robinson et al., 2010). Through the sharing 

of information between genes, the Empirical Bayes procedure reduces dispersions towards one 

value (Robinson & Smyth, 2007). Once dispersion accounts are estimated, DGE data can be 

visualized through log ratio versus abundance plots, with significant genes determined through 

thresholds set by log fold changes.  

Once significant differentially expressed genes are identified between polyclonal and 

monoclonal plantings, the function of those genes can be explored by conducting a Gene 

Ontology (GO) analysis. The ontology is grouped into sets of classes describing biological 

domains within three terms: molecular function (MF), cellular component (CC), and biological 

process (BP). The molecular function describes the molecular-level activities performed by gene 

products, (e.g. catalyst, or transport) and does not specify where, when or in what context the 

activity takes place (Gene Ontology Overview, n.d.). Cellular component describes the locations 

in which a gene product performs a function (e.g. mitochondrion) (Gene Ontology Overview, 

n.d.). Biological process describes the biological programs accomplished by various molecular 

activities (e.g. DNA repair) (Gene Ontology Overview, n.d.). First, the GO Consortium creates 

genes sets, or groups differentially expressed genes that are annotated by the same GO term (MF, 

CC, and BP) (Ashburner et al., 2000). GO terms can be structured into a loosely hierarchical 

graph and the three GO terms (MF, CC, and BP) are each represented by a separate root 

ontology term (Ashburner et al., 2000). All terms can be traced to a root term, although there 

may be numerous different paths of intermediary terms to an ontology root, providing 

information on the relationships between GO terms, and gene sets (Gene Ontology Overview, 

n.d.).  
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In conjunction with the GO analysis, a pathway enrichment will help us gain mechanistic 

insight into gene sets generated from a GO analysis (Kanehisa et al., 2023a) (Fig. 1.2). At 

present, the GO does not represent the dynamics required to fully describe a biological pathway 

(Gene Ontology Overview, n.d.). Pathway enrichment analysis identifies biological pathways that 

are enriched in a gene set more than would be expected by chance (Reimand et al., 2019). The 

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database for understanding high-level 

functions of biological systems from molecular-level information (Kanehisa, 2019; Kanehisa et 

al., 2023a; Kanehisa & Goto, 2000). KEGG databases are categorized into four different aspects: 

systems information, genomic information, chemical information, and health information. 

KEGG pathway, in the systems information category, contains a collection of manually drawn 

pathway maps representing experimental knowledge on metabolism and molecular functions of 

the cell for many organisms including P. trichocarpa (Kanehisa et al., 2023a). KEGG orthology, 

in the genomic information category, provides annotated ortholog groups of genes in P. 

trichocarpa and other genomes (Tuskan et al., 2006). Orthologous genes are genes in different 

species that evolved from a common ancestral gene and retained the same function during 

evolution (Kanehisa et al., 2023a). Orthologs provide a reliable prediction of gene function for 

KEGG genomes including newly sequenced genomes (Kanehisa et al., 2023b).  
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Figure 1.2 Project Workflow: Eukaryotic Directional mRNA Sequencing for Novogene  

Project workflow for eukaryotic directional mRNA sequencing through Novogene company. 

Sample preparation follows Novogene’s sample submission guidelines. Sample quality control is 

performed to ensure samples meet criteria for RNA sequencing.  Library preparation followed 

the eukaryotic, directional mRNA library (poly A enrichment). Library quantification and quality 

control guarantees high quality data output. 150-bp paired-end sequencing through the Illumina 

platform was utilized for sequencing and the resulting data are checked for quality. From 

sequenced data, analysis tools including the edgeR pipeline, Gene Ontology and Kyoto 

Encyclopedia of Genes and Genomes are utilized for biological interpretation.  
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1.6 The Importance of Field Trials of Populus spp.  

The advancement of tree molecular biology and genetics for Populus spp. is dependent 

on extensive field research (Strauss et al., 2016; Strauss & Irwin, 2004, 2004; Valenzuela & 

Strauss, 2005). Populus spp. offer researchers a substantial source of variation in tree 

morphology, anatomy, physiology, phenology, and response to biotic and abiotic stress through 

adaptations to diverse conditions and prominent genetic polymorphism in local populations 

(Bradshaw et al., 2000). Although genomic studies with Populus spp. can be conducted in 

greenhouse conditions, limited populations, tree sizes and physiological characteristics as well as 

cost are limiting factors (Brunner et al., 2004). In addition, field trials allow researchers to 

evaluate productivity and identify potential ecosystem impacts of Populus spp. (Zalesny et al., 

2019). Functional genomics can analyze direct changes in the expression of single genes, 

providing an increase in the ability to link single genes to various phenotypes found in field trials 

of Populus spp. (Brunner et al., 2004).  

1.7 Polyclonal Plantings of Populus spp. 

Gene expression changes resulting from interactions between P. deltoides polyclonal 

plantings could help us target previously identified interpretable gene-biomarker associations or 

candidate genes related to increased tolerance to stress, nitrogen uptake and enhanced growth for 

future testing in P. deltoides (Richards et al., 2010). Populus spp. display high natural 

phenotypical variation related to its geographical distribution and high intraspecific variability in 

traits (McKown, Klápště, et al., 2014). Specific traits, such as growth, are genetically complex 

(McKown, Klápště, et al., 2014). For example, multiple traits, including growth, are genetically 

correlated and may be polygenic or involve two or more nonallelic genes (McKown, Guy, et al., 

2014). Previous genome wide association studies for P. trichocarpa have identified single 



 

15 

nucleotide polymorphisms (SNP) associated with traits such as height and volume gain for P. 

tricocharpa (Chhetri et al., 2019; Fahrenkrog et al., 2017; McKown, Klápště, et al., 2014). For 

this study, it is important to determine if previously identified gene-trait associations related to 

growth and resource usage exhibit the same function in P. deltoides. Similarly, it is important to 

determine if these previously identified gene-trait associations or other genes that have been 

previously functionally identified and are not associated with specific traits in P. deltoides are 

differentially expressed in polyclonal plantings where increased growth is observed.  

Previous studies have identified that interspecific or intraspecific competition could lead 

to substantial changes in productivity, including photosynthetic capacity (Duan et al., 2014), 

changes in root structures (Richards et al., 2010), and nitrogen uptake (Duan et al., 2014; Miller 

et al., 2007). Several studies have shown that species richness or species diversity increases 

productivity (Erskine et al., 2006; Forrester et al., 2006; Kelty, 2006; Piotto, 2008; Pretzsch, 

2005; Richards et al., 2010). Because of the high level of phenotypic variability from Populus 

spp. (Bradshaw et al., 2000), polyclonal plantings of P. deltoides may be a reasonable analog for 

mixed species plantings (Bradshaw et al., 2000; Brunner et al., 2004). Differences in 

physiological (e.g. contrasting nitrogen use efficiency) and morphological plant traits for inter-

specific competition (competition of different species) have been the basis for species selection 

for reducing competition between species, leading to greater productivity, growth and nutrient 

uptake (Richards et al., 2010). Differences in physiological and morphological plant traits for 

intraspecific competition (competition between the same species, or clonal varieties) have also 

been shown to drive productivity (Jose et al., 2006; Richards et al., 2010; Rowe et al., 2005; 

Schmid & Kazda, 2002). Individual trees within polyclonal plantings of the same species may 

modify soil characteristics through the adjustment of fine root architecture increasing nutrient 
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uptake within their root zone resulting in greater soil nutrient availability and productivity 

(Richards et al., 2010). Greater productivity may be due to a reduction in competition of Populus 

polycultures, likely resulting from niche differentiation (Fig. 1.3). Reduced competition has been 

previously hypothesized to be the result of clones occupying different ecological niches through 

evidentiary morphological, phenological and metabolic variation between Populus varietals 

(Richards et al., 2010).  

Changes in gene expression are the basis for phenotypic variability and niche 

differentiation of P. deltoides. Biogeographical distributions and intraspecific interactions greatly 

influence phenotypic variability and Populus plasticity (McKown, Guy, et al., 2014). Several 

studies have reported morphological and physiological responses as well as transcriptomic 

responses to varying nitrogen levels in Populus roots (Wei, Yordanov, Georgieva, et al., 2013; 

Wei, Yordanov, Kumari, et al., 2013). Comparative transcriptomic analysis has investigated leaf 

size and development for P. deltoides,and P. simonii, identifying candidate genes involved in 

molecular mechanisms for leaf development and photosynthetic capacity (Zhang et al., 2021). In 

addition, a recent study analyzed the gene expression effects of Populus clones in monoclonal 

and polyclonal stands with black locust (Robina pseudoacacia L.) stands, identifying greater 

expression levels of stress and defense response genes for monoclonal plantings, and no 

differentially expressed genes in the total comparison of monoclonal and polyclonal plantings as 

a result of high genetic clone specific variability (Kuchma et al., 2022). However, information 

regarding gene expression and intraspecific variation of P. deltoides field clonal varieties has not 

been extensively studied. (Luo et al., 2015), and further research is required to fully understand 

gene expression effects of P. deltoides polyclonal plantings.  
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Figure 1.3 Example of Potential Niche Differentiation between Monoclonal and Polyclonal 

Plantings of P. deltoides 

Monoclonal and polyclonal plantings and their hypothetical canopy and root structures. It is 

expected that changes in canopy and root structures, two mechanisms in niche differentiation, 

will be greater between polyclonal plantings. A process of niche differentiation includes clones 

working together through adaptations of differentiated root system sorption zones (yellow and 

blue arrows) and differentiated canopy structures (blue arrow). This will allow P. deltoides 

polyclonal plantings to expand their fibrous roots occupying greater and different portions of the 

soil compared to monoclonal plantings. Changes in canopy structure (e.g. increased leaf area 

index) may lead to greater photosynthetic capacity, increasing growth and nitrogen uptake. It is 

expected that differentially expressed genes to be present in all treatments (red arrows), but 

polyclonal plantings will display greater gene regulation in genes associated with growth and 

nutrient uptake. 

1.8 Ecological Benefits from Genomic Research 

Increased above ground biomass and carbon sequestration are a few ways polyclonal 

plantings could regulate ecosystem functions, promoting ecosystem services (Gamfeldt et al., 

2013; Pretzsch, 2005; Pretzsch & Schütze, 2009). Polyclonal plantings could be an alternative to 
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monoclonal plantings in achieving positive effects for productivity (Kuchma et al., 2022; 

Richards et al., 2010), meeting economic, silvicultural, and environmental objectives (Forrester 

et al., 2005). More diverse plantations, such as polyclonal Populus plantings, have a higher 

chance of containing species that are highly efficient in their use of limiting resources and are 

responsible for an increase in productivity (Erskine et al., 2006; Loreau & Hector, 2001). 

Polyclonal plantings of P. deltoides may adjust their fine root architecture, may take up nutrients 

at different times of the year or may alter their preference for different forms of nutrients 

compared to monocultures, increasing resource use and productivity (Richards et al., 2010). To 

optimize the positive effects from polyclonal plantings, field trials and genetic analysis are 

needed to monitor such effects, and to select clones that will complement each other (Kuchma et 

al., 2022). While transcriptomic field studies are more challenging, they are essential to reveal 

and confirm complex gene expression responses to different environmental conditions (Izawa, 

2015; Kuchma et al., 2022). Explanatory models, such as average soil carbon storage and 

average tree biomass production phenotypic results have shown that productivity increases with 

tree species richness (Gamfeldt et al., 2013), and similar responses may be possible by increasing 

genetic diversity of Populus plantations through polyclonal plantings. The positive effects on 

polyclonal plantings should and can be further confirmed with transcriptomic analysis. 

Researchers can pinpoint the exact location where genomic changes are occurring on the genome 

and select them for future testing for polyclonal plantings (Izawa, 2015; Kuchma et al., 2022; 

Stark et al., 2019). 

1.9 Research Questions 

This research fills gaps by assessing how the genetic expression of P. deltoides clones 

change when planted in monoclonal plantings or polyclonal plantings in the southeastern United 
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States. By genetically examining different planting schemes of P. deltoides clonal varieties, this 

research aims to test the hypothesis that differential gene expression (DGE) is an underlying 

molecular mechanism contributing to overyielding (polycultures are more productive than the 

average of their monocultures), increased resource utilization, and increased stress tolerance in 

polycultures through regulation of morphology and physiology. Furthermore, this research aims 

to identify differentially expressed genes and biological pathways associated with increased 

stress tolerance, increased productivity, and increased nitrate content in leaves of polyclonal 

plantings. This research will contribute to an increased understanding of gene expression 

between different planting schemes of P. deltoides clonal varieties. Genomic analysis of P. 

deltoides will fill gaps left by similar studies in field trial settings that lack information on P. 

deltoides clonal varieties, specifically, and when adapted to a subtropical climate with longer 

growing seasons.  

The overall objective for this study is to determine if differentially expressed genes are an 

underlying molecular mechanism that may explain differences in stress tolerance, productivity 

and resource usage between monoclonal and polyclonal plantings, via inducing morphological 

and physiological plasticity. 

I plan to attain the overall objective by pursuing the following specific objectives and 

associated hypotheses:  

1. Determine if there are differences in nitrogen uptake and biomass production between P. 

deltoides monoclonal plantings and polyclonal plantings.  

Hypothesis: Polyclonal plantings of P. deltoides will display higher resource use and 

productivity than monoclonal plantings.  
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2. Determine the regulation of differentially expressed genes (upregulated or 

downregulated) for both P. deltoides varieties in monoclonal and polyclonal plantings.  

Hypothesis: Polyclonal plantings of P.deltoides will display regulation of genes 

associated with increased productivity and resource usage. 

3. Identify the function of genes associated with stress, productivity and resource usage and 

how those genes function in biological processes, such as nitrogen metabolism and 

growth.  

Hypothesis: Polyclonal plantings of P. deltoides will display gene function in biological 

processes associated with increased stress tolerance, productivity and resource usage. 

 

These objectives will promote: 

1. Better understanding of the role gene expression plays in intraspecific variation for P. 

deltoides, providing information on already studied gene-trait associations related to stress, 

growth and resource usage or new candidate genes that have not been associated with 

specific traits but should be further analyzed in future studies, supporting future clonal 

selection for larger field varietal studies and tree improvement programs.  

2. Better understanding of the implications in polyclonal plantations for increasing stress 

tolerance, productivity and resource usage.  
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CHAPTER II 

MATERIALS AND METHODS 

2.1 Experimental Design and Sampling Methods  

2.1.1 Study Area and Planting Schemes  

This research is a part of the Populus in the Southeast for Integrated Ecosystem Services 

(PoSIES) project and utilizes a new field trial as part of a larger Department of Energy grant 

(Department of Energy (DOE) DE-EE0009280) for evaluating Populus spp. clonal varieties’ 

productivity and ecosystem services. The site is located at the Pontotoc Ridge-Flatwoods 

Experimentation Station near Pontotoc, Mississippi (Fig. 2.1).  The research site is a part of 

Mississippi State University’s Agricultural and Forestry Experimentation Station. One replicate 

of the larger project was utilized for this study (Fig. 2.2). This project focused on pure P. 

deltoides (DxD: P. deltoides) with contrasting nitrogen use. Clonal selection for contrasting 

nitrogen use for the PoSIES project was based on data collected from a previous field trial, with 

Clone 110412 displaying lower nitrogen use efficiency and lower nitrogen percentage in leaf 

tissues compared to Clone S7C8 (Renninger et al., 2022). Clone 110412 originated from Bolivar 

County in Mississippi, near the Mississippi River, and Clone S7C8 originated from Brazos 

County in Texas, near the Brazos River (Jeffreys, 2005). Information on the geographic origins 

of both clones came from former trials established by the USDA Forest Service and Oklahoma 

State University (Jeffreys, 2005). Dormant, 38 cm unrooted cuttings of selected eastern 

cottonwood were obtained from Big River Cottonwood Nursery in Winnsburro, LA. Prior to 



 

22 

planting and to provide initial protection against cottonwood leaf beetles, cuttings were soaked in 

water and Admire Pro® systemic insecticide following the same rate of 0.14 fluid oz. per 1 

gallon (1.09mL/L) of water utilized in a previous study with P. deltoides (Dahal et al., 2022). 

Plantings were established on April 21st, 2021 using a split plot variation of a complete 

randomized block design. The whole plot factor consists of inoculation with a mixture of 

endophytic bacteria obtained from Intrinsyx Bio in Sunnyvale, CA and no inoculation (i.e. 

control). The split-plot factor consists of clonal composition of 12 different planting 

combinations of varietals. All planting treatments consist of 30 tree blocks planted in a 6 rows × 

5 columns arrangement on a 1.8m × 1.8m spacing. The single row of trees around the perimeter 

of each plot served as buffer trees with only the inner 12 trees (4 rows x 3 columns) serving as 

trial trees. Prior to planting establishment, flumioxosin was applied to the ground as preemergent 

weed control. Cuttings were planted near riparian areas adjacent to agricultural fields to intercept 

polluted surface runoff and shallow ground water before it enters the stream. Vegetative 

competition was treated as needed through the first two growing seasons with a combination of 

glyphosate herbicide, mowing, discing, and hand weeding to keep trees in free to grow 

conditions. For this study, I chose to focus on two clones and two subplots in one complete 

replicate of the main study to minimize variability in site factors. Preliminary results did not 

show significant effects of the whole plot factors on gene expression, but any potential 

differences observed were captured by plot effects. Planting schemes for sequencing analysis 

consisted of two replicate plots for each planting scheme for a total of four monoclonal plots 

(two of each clone) and two polyclonal plots (Fig. 2.3). 
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Figure 2.1 Populus Clonal Varieties at the Pontotoc-Ridge Flatwoods Experimentation 

Station  

(Left) Established clone trials at the Pontotoc-Ridge Flatwoods Experimentation Station near 

Pontotoc, Ms. Picture taken on July 21st, 2021. (Right) Hydraulic lift utilized for leaf tissue 

sample collection. Picture taken on July 28th, 2022.  
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Figure 2.2 Map of Pontotoc County, Mississippi, and Google Earth view of Experimentation 

Site  

(Left) Map of the state of Mississippi. Green Star designates location of Pontotoc, Mississippi. 

(Right) Site of whole plot utilized for experimental analysis at the Pontotoc-Ridge Flatwoods 

Experimentation Station near Pontotoc, Mississippi. The whole plot is outlined in yellow. Plots 

used for leaf sample collection are highlighted in red. 
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Figure 2.3 Planting Schemes of P. deltoides for Experimental Analysis  

Polyclonal and Monoclonal planting design for one replicate for experimental analysis. A.) An 

example of eight individual biological replicates (highlighted) chosen for sampling analysis for 

polyclonal plantings. B.) and C.) An example of four individual biological replicates 

(highlighted) chosen for sampling analysis for monoclonal plantings. Leaf samples were chosen 

based on leaf quality and integrity. 

2.1.2 Groundwater Collection  

Collaborators on the PoSIES project installed shallow ground water wells outside the 

plots, on the agricultural field side and inside the plots. Groundwater wells were established at 

half of the whole plot factor, or plots containing no endophyte treatments. The wells consist of 

10-cm diameter PVC pipe installed to a depth of 2 m, backfilled with fine sand, and sealed with 

bentonite clay. The wells were slotted and screened belowground. Samples were collected 

monthly to bimonthly during the growing season. Prior to sample collection, wells were 
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manually evacuated and allowed to refill to ensure fresh groundwater collection. Water samples 

were placed on ice, returned to the laboratory, and stored at 4℃ until processing. Inorganic 

nitrogen (Nitrate: NO3
- and Ammonium: NH4

+) was determined calorimetrically (AQ300 

Discrete Analyzer, Seal Analytical) on samples that have been filtered to remove particulates < 

0.45um. (NO3
- and NH4

+) were measured from water samples taken at each well to estimate the 

amount of shallow ground water nitrogen taken up by the Populus trees from the agricultural 

field before the shallow ground water enters the stream system. Nitrate is negatively charged and 

does not bind to soils, allowing excessive amounts to leach into water sources. Total nitrate 

(NO3
-) concentration (mg N/L) averages, and standard errors were determined for Clone S7C8 

and 110412 monoclonal plots, polyclonal plots and control wells. The collection time period 

analyzed for this project ran from June 3rd, 2021 through July 25th 2022. Since groundwater 

quality was measured in accordance with the larger PoSIES project and is not time specific to the 

collection of leaf tissue samples for gene expression analysis, only averages and standard errors 

were reported. 

2.1.3 Tree Measurements and Leaf Area Index 

At the end of the first growing season, all trees total height and diameter at stem base 

were measured. At the end of the second growing season, tree total height and diameter at breast 

(DBH) height (1.3m) were measured. A subset of trees was destructively sampled at the end of 

the second growing season throughout the larger study. Dry weights of sampled trees were 

utilized to develop allometric estimates of aboveground biomass based on DBH and height.  

Leaf area index (LAI) was measured nondestructively to assess phenology of the P. 

deltoides. Collaborators on the project used the LAI 2200 from LiCOR Biosciences Inc. located 

in Lincoln, NE to collect measurements. Direct sun conditions for LAI collection could lead to 
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reflected and transmitted light off leaves that must be accounted for. Scatter corrections were 

made for measurements collected in direct sun conditions. For this project, the collection period 

analyzed for LAI was July 27th, 2022. Average LAI and standard errors were determined for the 

leaf tissue samples for Clone S7C8 and 110412 monoclonal plots and polyclonal plots. Each 

clonal monoclonal plot was analyzed separately from polyclonal plots (df=2).  A one-way 

ANOVA was performed to compare the effect of planting schemes on average LAI. Following 

an ANOVA, a Tukey’s HSD Test was performed to determine which planting schemes were 

significantly different in average LAI.  

2.1.4 Leaf Material  

At the end of July, or the peak of the second growing season, the leaves from two P. 

deltoides varieties were collected from the six monoculture and polyculture plots for RNA-Seq 

and combustion elemental analysis. On July 28th, 2022 a hydraulic lift device was used to collect 

leaf samples from the terminal shoot. Between the fifth to twelfth leaf from the terminal, three 

fully expanded and undamaged leaf samples were cut from the tree for each individual biological 

replicate. Samples were not selected from the terminal bud as this is where new growth is 

coming from. Using a leaf cutter tool, leaf samples from four individual biological replicates (i.e. 

four trees) were taken from the planted monoclonal plots and leaf samples from eight individual 

biological replicates, four from each clone, were taken from planted polyclonal plots, totaling to 

32 sampled trees and biological replicates for this project (Fig. 2.3). All samples were collected 

in a three-hour time frame from 8am-11am under sunny conditions to minimize temporally 

related gene expression changes between plots. The standard workflow for differential gene 

expression (DGE) analysis using edgeR involves RNA-Seq with a sequencing depth of 10-30 M 

reads per library and at least three biological replicates per sample (Chen et al. 2023). Biological 
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replicates were chosen based on leaf quality and integrity. During sampling, a pair of scissors 

was used to cut each leaf sample in half down the central vein. One half of the leaf was placed in 

a 50ml labeled sample collection vial and flash frozen on dry ice for RNA extraction and 

sequencing analysis, and the other half was placed in a labeled Whirl-Pak® write-on bag and 

stored on ice for elemental analysis. In between cuttings, the leaf cutter tool and pair of scissors 

was sterilized with a 30% mixture of pure microbiology grade ethanol alcohol. The samples were 

immediately transported back to the laboratory. Samples for the combustion elemental analyzer 

were placed in brown paper bags in an oven dehydrator at 60℃ for 48 hours to remove excess 

moisture. Flash frozen samples for RNA extraction were placed into a freezer at -80℃ until 

extractions occurred.  

2.1.5 Elemental Analyzer Analysis  

Sample preparation and analysis followed the protocol for organic elemental analysis on 

the elemental analyzer ECS 4010 from Costech Analytical Technologies, Inc. located in 

Valencia, CA.  Oven dehydrated leaf samples were removed from the oven and ground to a fine 

powder before placing them back in the dehydrator oven to dry overnight at 60℃. After drying, 

samples were placed in desiccators, allowing them to cool to room temperature for 1 hour. 

Between 2 to 4 mg of the homogenized leaf sample were weighed and used for subsequent 

analysis. Samples were placed into 3.5 x 5mm pressed tin capsules. Atropine, a chemical with a 

known concentration of nitrogen and carbon, was used to create a calibration curve for the leaf 

samples. The elemental analyzer ECS 4010 output nitrogen and carbon amounts in milligrams 

(mg), and percentages were calculated from nitrogen and carbon amounts (mg) vs. the weight of 

the grounded sample powder. Average total leaf carbon and total leaf nitrogen percentages and 

standard errors were determined for the leaf tissue samples. Since we were interested in 
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examining changes in nitrogen uptake, a one-way ANOVA was performed to compare the effect 

of planting schemes on total leaf nitrogen percentages. For this project, we were also interested 

in changes in carbon to nitrogen ratios (C:N) ratios, and a one-way ANOVA was performed to 

compare the effect of planting schemes on C:N ratios. Each clonal monoclonal plot was analyzed 

separately from polyclonal plots (df=2). 

2.1.6 Total RNA Extraction, Purification and Quality Controls  

Prior to extraction, mortar and pestles were sterilized in an autoclave machine with 

deionized water for 15 minutes and set out to completely cool. Frozen tissue samples of 100mg 

were weighed and ground to a fine powder in liquid nitrogen using the sterilized mortar and 

pestle. Qiagen’s RNeasy plant mini kit was used for purification of total RNA from plants 

(RNeasy Plant Mini Kit, n.d.). Total RNA was extracted following the protocol for purification 

of total RNA from plant cells and tissues from the RNeasy Mini Handbook (RNeasy Mini 

Handbook - (EN) - QIAGEN, 2019). Before elution of each RNA sample occurred, Qiagen’s 

RNase-Free DNase Set was used for efficient on-column digestion of DNA during the RNA 

purification process (RNeasy Mini Handbook - (EN) - QIAGEN, 2019). Purified RNA was stored 

at -80℃ in RNAse-free water. 1µl of each extraction was analyzed spectrophotometrically using 

a Nanodrop™ One Spectrophotometer (Thermo Fisher Scientific, 2023). At least 200ng/µl of 

each sample was loaded onto a 1% (w/v) agarose gel stained with ethidium bromide. All samples 

displayed clear bands corresponding to ribosomal RNA (rRNA), absence of DNA contamination 

and no degradation (Fig. 2.4). Additionally, RNA integrity numbers (RIN) for quality controls 

(QC) ran by Novogene biotech company, discussed in the following section, showed appropriate 

rRNA peaks with RIN values, verifying quality RNA results for downstream applications (Babu 

& Gassmann, 2016). 
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Figure 2.4 Agarose Gel Electrophoresis to Assess RNA Quality 

Example of agarose gel electrophoresis for eight biological replicates from the experimental 

analysis. Non-degraded RNA displays two consecutive and sharp 25S and 18S rRNA bands in a 

2:1 ratio. 25S and 18S rRNA bands are circled in red. 

2.2 Data Analysis 

2.2.1 Messenger RNA-Seq and Quantifying Samples  

RNA samples were sent to Novogene for eukaryotic mRNA sequencing and 

transcriptome profiling. Samples were prepared and shipped according to the manufacturer's 

instructions (‘MRNA Sequencing (MRNA-Seq)’, 2023). Before sequencing began, Novogene 

measured the RIN for each sample through the Agilent 2100 Bioanalyzer system (Agilent 

Technologies, Inc., 2023). Samples “passed” the QC if rRNA peaks were well resolved and 

automatically identified by the software (Babu & Gassmann, 2016). 31 out of 32 samples 

“passed” the RNA QC, with one sample displaying abnormal rRNA peaks. This sample was 

extracted again and resubmitted to Novogene, passing with well resolved rRNA peaks. 
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Following sample RNA QC, paired-end sequencing (PE150) with a total of 300 bp sequences for 

each RNA molecule was run on the Illumina NovaSeq 6000 (‘MRNA Sequencing (MRNA-

Seq)’, 2023). Sample test, library preparation and sequencing directly impact the analysis results 

(Illumina | Sequencing and Array-Based Solutions for Genetic Research, n.d.). To guarantee 

reliable data, QC was performed at each step of the workflow. Following sequencing, raw data 

files were received from Novovgene and stored in the form of two separate compressed FASTQ 

files for each sample, each containing sequencing reads and corresponding sequencing quality. 

The P. trichocarpa v4.1 reference transcriptome from the Joint Genome Institute’s Phytozome 

v13 was used in the Salmon software tool in Linux to build an index, map sequences, or reads, 

and quantify transcripts (Goodstein et al., 2012; Patro et al., 2017). The reference transcriptome 

(in FASTA format) and raw sequences reads (in FASTQ format) were utilized as input for 

“quasi-mapping” and quantification. Quasi-mapping requires a reference index to determine the 

position and orientation for where fragments best map prior to quantification, providing the 

transcriptome in a format that is easily and quickly searchable (Srivastava et al., 2016).  In 

Salmon, length normalization occurs during quantification before transcripts are converted back 

to read counts. Salmon’s output file was in the form of a quantification file (quant.sf). 

Quantification files were inputted into R statistical software via the tximport Bioconductor 

package (R Core Team, 2022; Soneson et al., 2015).  

2.2.2 Testing for Differential Gene Expression 

The edgeR Bioconductor package in R statistical software was utilized for differential 

gene expression (DGE) analysis (Chen et al., 2016; McCarthy et al., 2012a; R Core Team, 2022; 

Robinson et al., 2010). Count data for DGE analysis represents the number of sequences reads 

that originate from a particular gene. Genes with very low counts across all libraries provide little 
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evidence for differential expression (Chen et al., 2023). 7844 genes that were not expressed in 

any samples or planting treatments and/or with very low counts were filtered out prior to further 

analysis. The surviving gene summary consisted of 26783 genes for subsequent analysis. EdgeR 

observed relative changes in expression levels between polyclonal and monoclonal plots. Since 

fewer than 12 biological replicates are used for each planting treatment, a superior combination 

of true positive and false positive performances makes edgeR the best tool for RNA-Seq analysis 

in this instance (Schurch et al., 2016). Similarly, because this study was not examining sample-

specific effects, normalization was not conducted. Normalization issues only arise to the extent 

that technical factors display sample-specific effects (Chen et al., 2023). Although, sequencing 

depth, the most important technical factor affecting read counts, is automatically adjusted as 

represented by different library sizes and the function calcNormFactors (calculation 

Normalization (scaling) factors) for computed effective library sizes from scaled counts to 

account for composition biases between samples (Chen et al., 2023). EdgeR was utilized to fit a 

Poisson negative binomial distribution to model read counts for each gene in each sample, and 

account for variability between biological replicates (Chen et al., 2023; McCarthy et al., 2012b). 

The P. trichocarpa v4.1 reference genome from the Joint Genome Institute’s Phytozome v13 

was used to detect DGE (Goodstein et al., 2012).  Dispersion estimates for relative gene 

abundance were visualized with a scatterplot of the biological coefficient of variation (BCV). 

Once dispersion estimates were attained, a general linearized model likelihood ratio test was 

utilized for DGE analysis. Three appropriate models via contrast matrices were created for DGE 

(Table 2.1). The functions glmFit() and glmLRT() from the edgeR package (Chen et al., 2022) 

were used for testing to compare polyclonal plots to baseline monoclonal plots (Clone S7C8 + 

Clone 110412 Polyclonal vs. Monoclonal) and to compare clones in their respective planting 
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schemes (Clone 110412 Polyclonal vs. Monoclonal, and Clone S7C8 Polyclonal vs. 

Monoclonal). The experimental analysis observes gene expression between polyclonal and 

monoclonal plantings. The fold change is usually given as a calculated log2 experimental 

group/control ratio. For this study, the ratio is defined as polyclonal/monoclonal.  For example, if 

gene A has an average expression of 100 mapped reads in polyclonal plantings and 50 reads in 

monoclonal plantings, the logFC is 2 for polyclonal plantings compared to monoclonal plantings 

or a 2-fold upregulation for polyclonal plantings. For each model, the P. trichocarpa v4.1 

genome was utilized as a reference-based genome and genes were established and grouped by 

expression level into gene sets, or biologically relevant groups (Goodstein et al., 2012). 

Overexpressed and underexpressed genes in each model had a positive or negative base 2 

logarithmic fold change (logFC) values (Jabato et al., 2012). Expression levels thresholds for 

each model consisted of false discovery rates (FDR) less than or equal to 0.05, p-values less than 

or equal to 0.05, and a logFC greater than 1 or less than -1 (McDermaid et al., 2019).  
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Table 2.1 Design Matrices for Differential Expression Analysis  

Model Names Design Matrix Contrast Output 

1-Polyclonal vs. 

Monoclonal  

~0+Planting+Clone+Plot Polyclonal.vs. 

Monoclonal 

Clone S7C8+Clone 

110412 

Polyclonal vs 

Monoclonal 

2-Clone 110412 

Polyclonal vs. Clone 

110412 Monoclonal  

~0+Planting:Clone+Plot White.Poly.vs.Mono Clone 110412  

White Polyclonal vs 

White Monoclonal 

3-Clone S7C8 

Polyclonal vs. Clone 

S7C8 Monoclonal  

~0+Planting:Clone+Plot Red.Poly.vs.Mono Clone S7C8 

Red Polyclonal vs 

Red Monoclonal 

Specified design matrices for differential expression analysis in edgeR. The design matrix 

records which planting schemes were applied to each samples and defines how the experimental 

effects are parametrized in the linear models. Contrasts observe genes more highly expressed in 

polyclonal plantings. Each clone is designated with a specific color (red for Clone S7C8 and 

white for Clone 110412) 

2.2.3 Gene Ontology (GO) and Pathway Analysis 

To interpret the DGE analysis output in a biological context, a Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Pathway Analysis were 

performed in R statistical software (R Core Team, 2022). The GO’s knowledgebase is the 

world’s largest source of information on the function of genes (Ashburner et al., 2000; Carbon et 

al., 2009; Day-Richter et al., 2007; Mi et al., 2019). Annotation maps for the entire GO were 

obtained from the Go.db Bioconductor package (Carlson et al., 2019). Additionally, 

Bioconductor’s AnnotationDbi package was utilized jointly with the GO database (Pagès et al., 

2023). The P. trichocarpa v4.1 annotation file contains GO terms from the GO database, specific 

to the P. trichocarpa genome and was used to annotate gene sets for each contrast matrix 

(Goodstein et al., 2012). A gene set consists of genes assigned to a specific GO term (Chen et al., 

2016). Under each model, a given set of genes is either upregulated or downregulated. The GO 

enrichment analysis found GO terms that were over-represented or under-represented using 
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annotations for the genes in each gene set (Chen et al., 2023). In conjunction with the GO 

analysis, the fry() function in the Limma package in R statistical software was used for gene set 

testing (Chen et al., 2023; R Core Team, 2022). The Fry function tests whether any genes in each 

gene set are differentially expressed using random and infinite rotations of the residual space of 

each contrast matrix (Chen et al., 2016). For each model, the output of the analysis contained the 

GO ID, the number of genes associated with that ID, the net direction of change, p-values, FDRs, 

annotation terms, and ontology (Table C.1).  Restrictions for each model consisted of FDRs less 

than or equal to 0.05, and p-values less than or equal to 0.05. These restrictions output no 

statistically significant GO IDs with FDR values less than or equal to 0.05. To better interpret 

GO terms with non-significant FDR values, the p-value cutoff was reduced to less than or equal 

to 0.01. 

Following the GO analysis, a Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment pathway analysis was applied to better understand the related functions and pathways 

of the differentially expressed genes (CD Genomics, 2023). KEGG’s database contains a 

collection of genomes, biological pathways, creating a computational representation of biological 

systems (Kanehisa, 2019; Kanehisa et al., 2023b; Kanehisa & Goto, 2000). KEGG Orthology 

(KO) database provides genomic information in terms of functional orthologs defined from 

experimentally characterized genes and proteins in specific organisms, and proteins and genes 

are used to assign orthologous genes in other organisms based on sequence similarity (Kanehisa 

et al., 1995). Since the Phytozome reference did not contain KEGG annotations, or KEGG 

ortholog identifiers (K numbers), Phytozome annotations were mapped to Entrez IDs from the 

National Center for Biotechnology Information (NCBI) database for KEGG analysis (Sayers et 

al., 2021). A reciprocal best hits blast (RBHB) was conducted for ortholog determination 
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(Goodstein et al., 2012).  A RBHB is found when transcripts encoded by two genes, each in 

different genomes (i.e. the two P. deltoides clones), find each other as the best scoring match in 

the other genome (Ward & Moreno-Hagelsieb, 2014). The transcripts from Genome A (Clone 

S7C8) are aligned to the transcripts from Genome B (Clone 110412). If the top alignment is the 

same in both genomes, the transcripts are considered orthologs (Moreno-Hagelsieb & Latimer, 

2008). An RBHB is a common method used for rough assessment of orthologs, or homologous 

sequences, between transcript files, or genomes. For KEGG, I imported transcript-level estimates 

using tximport, and the tx2gene database was used to link transcript ID to gene ID for the 

reciprocal blast orthologs (Soneson et al., 2015). The Fry function in the Limma package was 

utilized to filter genes based on expression levels, contrast matrix information and whether 

pathways contained genes or gene groups. 4207 genes were not associated with KEGG Pathway 

IDs.  The surviving gene summary consisted of 23316 genes for pathway analysis. Pathway 

analysis output for each contrast matrix contained the pathway ID, the number of genes 

associated with that pathway, net change of direction and description of each pathway.  Mixed 

analysis of p-values and FDRs were also utilized to analyze the magnitude of the expression 

change only, disregarding gene direction (upregulated or downregulated). Since pathways tend to 

have positively correlated expression levels (Hong et al., 2014), this is helpful in finding 

pathways with inversely correlated genes. 
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CHAPTER III 

RESULTS 

3.1 Groundwater Data 

Total nitrate concentration averages were determined for the first and second growing 

seasons for monoclonal, and polyclonal plots and control wells (Fig. 3.1). The timeline for 

sample collection for this study ran from June 3rd, 2021 through July 25th 2022. Dates with no 

sampled control wells: August 17th, 2021, September 13th, 2021, September 29th, 2021, October 

13th, 2021, June 15th, 2022, and July 25th, 2022. Wells sampled on September 29th, 2021 and July 

25th, 2022 did not have all planting schemes sampled. Since groundwater quality was measured 

in accordance with the larger PoSIES project and is not time specific to the collection of leaf 

tissue samples for gene expression analysis, only averages and standard errors were reported.     
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Figure 3.1 Average Nitrate Concentrations for First and Second Growing Seasons  

Average nitrate concentrations for first and second growing seasons in groundwater samples for 

monoclonal and polyclonal plantings schemes with controls. Graph displays date of collection 

and the average nitrate (NO3_N) concentration in (mg N/L). The timeline for sample collection 

for this study ran from June 3rd, 2021 through July 25th 2022. Dates with no sampled control 

wells included August 17th, 2021, September 13th, 2021, September 29th, 2021, October 13th, 

2021, June 15th, 2022, and July 25th, 2022. Wells sampled on September 29th, 2021 and July 25th, 

2022 did not have all planting schemes sampled.  

3.2 Survival, Biomass and Leaf Area Index Results 

At the end of the second growing season, all inner sample trees for the two polyclonal 

plots survived. 11 out of the 12 sample trees survived the two S7C8 monoclonal plots. 110412 

monoclonal plots had 8 and 10 out of 12 trees survive. After the first two years of growth, above 
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ground biomass in megagrams of biomass per hectare (Mg/ha) was estimated (Table B.2). The 

average above ground biomass for monoclonal plots was 6.37 Mg/ha. Both polyclonal plots had 

greater above ground biomass than any of the monoclonal plots and had an average of 11.463 

Mg/ha. LAI averages and standard errors were determined for Clone S7C8 and 110412 

monoclonal plots and polyclonal plots at the end of July (Fig. 3.2). Each monoclonal plot was 

analyzed separately from polyclonal plots (df=2). A one-way ANOVA revealed that there was a 

statistically significant difference in average LAI between monoclonal and polyclonal plantings 

(F=3.99, p < 0.05). Following an ANOVA, a Tukey’s HSD Test was performed to determine 

which planting schemes were significantly different in average LAI. Tukey’s HSD Test for 

multiple comparisons found that the average LAI was significantly different between Clone 

110412 monoclonal plots and polyclonal plots (p=<0.05, 95% C.I.= [0.1096330, 2.4031320]). 

There was no statistically significant difference between Clone S7C8 monoclonal plots and 

polyclonal plots (p=0.098), and Clone S7C8 and Clone 110412 monoclonal plots (p=0.894).  
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Figure 3.2 Average Leaf Area Index (LAI) for Planting Schemes of P. deltoides for July 27th, 

2022 

Average leaf area index (LAI) in m2 for planting schemes from experimental analysis. Standard 

error bars are denoted by black lines. Tukey’s HSD Test for multiple comparisons found that the 

average LAI was significantly different between Clone 110412 monoclonal plots (A.) and 

polyclonal plots (B.). 
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3.3 Results from Elemental Analysis 

The average total leaf nitrogen percentage for polyclonal plots was 2.07% (Fig. 3.3). 

Clone S7C8 monoclonal plots had an average total leaf nitrogen percentage of 2.16%, and Clone 

110412 monoclonal plots had an average of 2.03%. A one-way ANOVA revealed there was no 

statistically significant difference in average total leaf nitrogen percentages between monoclonal 

and polyclonal plantings (p=0.507). The average total leaf carbon percentage for polyclonal plots 

was 45.36%. Clone S7C8 monoclonal plots had an average total leaf carbon percentage of 

44.41%, and Clone 110412 monoclonal plots had an average of 46.93%.  

C:N ratios and average values of C:N ratios were calculated by dividing the carbon 

percentage by the nitrogen percentage (Fig. 3.4). The ratio signifies the amount of carbon in mg 

per 1 mg nitrogen in leaf tissue samples. Polyclonal plots had an average C:N ratio of 21.91:1. 

S7C8 and 110412 monoclonal plots had an average C:N ratio of 20.70:1 and 23.30:1. A one-way 

ANOVA revealed that there was no statistically significant difference in C:N ratios between 

monoclonal and polyclonal plantings (p=0.111).  
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Figure 3.3 Average Nitrogen Percentage for Planting Schemes of P. deltoides  

Average total leaf nitrogen percentage for planting schemes from experimental analysis. 

Standard error bars are denoted by black lines.  
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Figure 3.4 Average Carbon to Nitrogen Ratio for Planting Schemes of P. deltoides  

Average leaf carbon to nitrogen ratios for planting schemes from experimental analysis. Standard 

error bars are denoted by black lines.  

3.4 Quality of RNA Samples and Quantifying Transcript Expression 

All 32 total RNA samples, including the resubmitted sample, were used for subsequent 

analysis. All samples displayed a ratio of absorbance at 260 and 280nm between 1.9 and 2.1 

(Table A.1). 260/230 ratios, a secondary ratio to assess RNA purification and contamination, 

ranged from ~1.4 to 2.3. While some absorbance 260/230 ratios (4NEMS_3: 1.422, and 

4ES_4:1.498), were lower than suggested in the protocol (above 1.5) (RNeasy Mini Handbook - 

(EN) - QIAGEN, 2019), RNA gels showed intact RNA bands (25S and 18S in a 2:1 ratio). RNA 

Integrity Numbers (RIN) ran by Novogene for QC, displayed well resolved rRNA peaks, 
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automatically detected by the Agilent 2100 Bioanalyzer system (Agilent Technologies, Inc., 

2023). RIN for leaf tissue samples ranged from 5.9-8.3 (Figure A.1). One sample failed the RIN 

QC test with an RIN of 2.5 and small, fragmented rRNA peaks. This sample was resubmitted to 

Novogene, passing with well resolved rRNA peaks and an RIN sample of 8.1.  

For this study, I generated roughly 4.8 billion high quality paired-end reads covering 354 

GB of sequence data with a sequence of 150 bp (Table 3.1). The dataset of raw reads was filtered 

by Novogene to deliver clean data. Paired reads are discarded for the following situations: when 

one read contains adapter contamination; when one read contains more than 10 percent of 

uncertain nucleotides; and when one read contains more than 50 percent low quality nucleotides 

(‘MRNA Sequencing (MRNA-Seq)’, 2023; Yan et al., 2013). After cleaning, less than 1 percent 

of reads were removed, obtaining almost 4.8 billion reads, covering 351 GB of sequence data. 

Abundance estimates, or transcript expression estimates were obtained using the Salmon 

alignment tool (Patro et al., 2017).  Mapping rates averaged 87.6% for all samples, with 

quantification files covering 417 Mb of output data. 

 

Table 3.1 Overview of Sequencing for Raw Data Without and With Cleaning  

 Raw Data (Without Cleaning) Raw Data (With Cleaning) 

Total Number of Raw Reads 4,806,441,796 4,767,971,544 

Size (GB) 354.53 351.69 

Sequencing Length  150 150 

% of Erased Reads 0% <1% 

Paired reads are discarded for the following situations: when one read contains adapter 

contamination; when one read contains more than 10 percent of uncertain nucleotides; and when 

one read contains more than 50 percent low quality nucleotides (‘MRNA Sequencing (MRNA-

Seq)’, 2023; Yan et al., 2013). 
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3.5 Differentially Expressed Genes and Functional Annotations for Leaf Tissue Samples  

The dispersion plot allowed us to visualize gene abundance and dispersion from the 

experimental analysis (Fig. 3.5). Differentially expressed genes were determined for all three 

models at a 5% FDR (Fig. 3.6). In edgeR, I obtained 91 differentially expressed genes for 

Polyclonal vs. Monoclonal, one differentially expressed gene for Clone 110412 Polyclonal vs. 

Clone 110412 Monoclonal, and 47 differentially expressed genes for Clone S7C8 Polyclonal vs. 

Clone S7C8 Monoclonal (Fig. 3.7).  Of the 91, 1, and 47 obtained differentially expressed genes, 

69 (76%), 0 (0%), and 31 (66%) gene annotations were available for each contrast matrix 

through the Joint Genome Institute’s Phytozome (Goodstein et al., 2012). Compared to 

monoclonal plantings, the most highly expressed genes in polyclonal plantings were 

Potri.015G136400 DEHYDRATION RESPONSE ELEMENT B1A (logFC 7.2392, FDR 0.02508, 

and p-value 7.58e-05), and Potri.002G014000 PROLYL OLIGOPEPTIDASE FAMILY PROTEIN 

(logFC 5.7673, FDR .00683, and p-value <0.001) (Table B.3). In Clone 110412 polyclonal 

plantings, the only significant differentially expressed gene was Potri.06G219800 (logFC 1.3487, 

FDR 0.0166, p-value <0.001). No annotations were available for this gene through the Joint 

Genome Institute database. Because this gene was significantly expressed across all three 

treatments (Clone S7C8 Polyclonal vs Clone S7C8 Monoclonal logFC 1.3342, FDR 0.003318, p-

value <0.001, and Polyclonal vs. Monoclonal logFC  2.683, FDR 1.27e-07, p-value <0.001), 

both transcript FASTA files were blasted against nucleotide collection (Nucleotide Blast;nt) 

from the National Center for Biotechnology Information (NCBI) database (Altschul et al., 1990). 

Sequences producing significant alignments predicted an OXIDATIVE STRESS 3 LIKE 1 

(LOC7491986) for P. trichocarpa with 100% identity (Altschul et la., 1990) (Fig. 3.8). 

Compared to Clone S7C8 monoclonal plantings, the most highly expressed gene in Clone S7C8 
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polyclonal plantings was Potri.002G014000 PROLYL OLIGOPEPTIDASE FAMILY PROTEIN 

(logFC 4.9181, FDR .004802, p-value <0.001) (Fig. 3.9) (Table B.4).  

Polyclonal vs. Monoclonal and Clone S7C8 Polyclonal vs. Clone S7C8 Monoclonal 

expressed the same EXOCYST SUBUNIT EXO70 FAMILY PROTEIN H7 (Polyclonal vs. 

Monoclonal, Potri.001G234600, logFC: 3.0696, FDR:0.002546, p-value: <0.001). Clone S7C8 

Polyclonal vs. Clone S7C8 Monoclonal, Potri.001G234600, logFC: 1.7297, FDR: 0.04905, p-

value: <0.001), with polyclonal plantings displaying upregulation for both models. Similarly, a 

multitude of WRKY DNA-BINDING PROTEINS were upregulated for Polyclonal vs. Monoclonal 

and Clone S7C8 Polyclonal vs. Clone S7C8 Monoclonal. Polyclonal plantings displayed 

upregulation of three proteins (Polyclonal vs. Monoclonal, WRKY DNA-BINDING PROTEIN 60, 

Potri.018G019800, logFC: 2.3660, FDR:0.0043, p-value: <0.001, WRKY DNA-BINDING 

PROTEIN 33, Potri.016G128300, logFC:2.6660, FDR: 0.01047, p-value: <0.001, and WRKY 

DNA-BINDING PROTEIN 40, Potri.003G182200, logFC: 1.9186, FDR:0.01719, p-value: 

<0.001). I also identified down regulation of the ROOT HAIR SPECIFIC 2 gene for polyclonal 

plantings (Polyclonal vs. Monoclonal, Potri.019G063500, logFC: -1.6353, FDR: 0.006197, p-

value: <0.001). In conjunction with WRKY DNA-BINDING PROTEINS, I identified WRKY 

FAMILY TRANSCRIPTION FACTORS (TFs) for Polyclonal vs. Monoclonal and Clone S7C8 

Polyclonal vs. Clone S7C8 Monoclonal (Polyclonal vs. Monoclonal, WRKY FAMILY 

TRANSCRIPTION FACTOR, Potri.003G138600, logFC:4.4220, FDR:8.846e-05, p-value: 

<0.001, WRKY FAMILY TRANSCRIPTION FACTOR, Potri.014G096200, logFC:2.5211, 

FDR:0.0009037, p-value: <0.001, WRKY FAMILY TRANSCRIPTION FACTOR, 

Potri.001G092900, logFC:2.2230, FDR:0.01781, p-value: <0.001, Clone S7C8 Polyclonal vs. 
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Clone S7C8 Monoclonal, WRKY FAMILY TRANSCRIPTION FACTOR, Potri.003G138600, 

logFC:2.2159, FDR:0.02748, p-value: <0.001).  

Gene ontology (GO) classified genes into one subcategory of cellular components for 

Clone S7C8 polyclonal plantings. The GO term was identified as a PROTON-TRANSPORTING 

V-TYPE ATPASE, V1 DOMAIN (GO:0033180, net direction: down, FDR 0.035, p-value 1.8e-

05). No additional models with significant FDRs were identified for this study (Table C.1). 
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Figure 3.5 Scatterplot of the Biological Coefficient of Variation (BCV) vs. The Average Gene 

Abundance for Leaf Tissue Samples  

Scatterplot of the biological coefficient of variation (BCV) against the average abundance of 

each gene (log CPM or logarithm of counts per million reads). The tagwise (black dots) represent 

the BCV if it were calculated for each individual gene. The relative abundance for each gene will 

vary due to biological causes (Chen et al., 2022). The blue line represents the trend of this 

dataset. The red line represents the BCV of all samples if a common dispersion value over all 

genes were used. Negative binomial dispersions tend to be higher for genes with very low read 

counts, and dispersion trend tends to decrease smoothly to a constant value for genes with larger 

counts (Chen et al. 2022), allowing the observation for genes that are consistent between 

biological replicates. A general linearized model was used to determine the significant difference 

of counts for a transcript across planting schemes. 
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Figure 3.6 P-value vs. log2 Ratio (fold change) for All Three Models from Experimental Analysis 

Volcano scatterplots for Model 1: Polyclonal vs. Monoclonal, Model 2: Clone 110412 Polyclonal vs. Clone 110412 Monoclonal and 

Model 3: Clone S7C8 Polyclonal vs. Clone S7C8 Monoclonal displaying statistical significance (P-value) versus the log2 ratio (fold 

change) for each model at a 5% FDR (graphing scales are not consistent). For each model, the most upregulated genes are highlighted 

in red towards the right, and the most downregulated genes are highlighted in blue towards the left. The most statistically significant 

genes are towards the top of the scatterplot. Genes were later filtered further based on logFC restrictions (greater than 1 or less than -

1).  
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Figure 3.7 Venn Diagram for Differentially Expressed Genes for All Three Models  

Venn Diagram displaying the number of differentially expressed genes in leaf tissue samples 

between planting schemes of P. deltoides clonal varieties. Large, bolded numbers indicate the 

total differentially expressed genes for each model, and smaller numbers indicate common 

differentially expressed genes between models.   
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Figure 3.8 Identified OXIDATIVE STRESS 3 LIKE 1 Gene Fold Change Across All Three 

Models  

Graph displays Potri.006G219800 fold change for all three models and planting schemes. 

Potri.006G219800 was blasted in the National Center for Biotechnology Information database. 

Sequences producing significant alignments predicted an OXIDATIVE STRESS 3 LIKE 1 gene. 

All three treatments contained the same locus name and locus name was graphed for each model. 

Fold change was roughly 2.5 for individual clones and tripled to 6.4 for all polyclonal plantings. 
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Figure 3.9 Top Ten Differentially Expressed Genes for Model 1: Polyclonal vs. Monoclonal 

and Model 3: Clone S7C8 Polyclonal vs. Clone S7C8 Monoclonal  

Graph displays the top ten largest fold changes (from logarithmic scale base 2 (log2)) of 

differentially expressed genes for Polyclonal vs Monoclonal and Clone S7C8 Polyclonal vs. 

Clone S7C8 Monoclonal. All three receptors like protein 34 had different positions on the 

chromosome and different locus names ((1) receptor like protein 34-Potri.016G126900, (2) 

receptor like protein 34-Potri.016G127000, (3) receptor like protein 34-Potri.016G127101). 

3.6 Pathway Analysis of Differentially Expressed Genes in Leaf Tissue Samples  

The analysis revealed nine enriched KEGG pathways for Clone S7C8 Polyclonal vs. 

Clone S7C8 Monoclonal and no significant pathways for Polyclonal vs. Monoclonal and Clone 

110412 Polyclonal vs. Clone 110412 Monoclonal at a 5% FDR. Multiple metabolic pathways 

were downregulated in Clone S7C8 polyclonal plantings. The most significant downregulated 
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pathway was arginine and proline metabolism (p-value 0.00033, FDR 0.026). Additional 

pathways included: tropane, piperidine and pyridine alkaloid biosynthesis, other types of o-

glycan biosynthesis, isoquinoline alkaloid biosynthesis, phenylalanine, tyrosine and tryptophan 

biosynthesis, galactose metabolism, pyruvate metabolism, phenylalanine metabolism, and 

tyrosine metabolism (Table C.2). Additionally, a mixed KEGG analysis was included to observe 

the magnitude of the expression change with a pathway, disregarding the direction of genes 

expressed. No pathways with significant FDRs were identified for all three models for the mixed 

KEGG analysis (Table C.3). 
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CHAPTER IV 

DISCUSSION 

4.1 Planting Schemes Induce Transcriptomic Regulation Processes That Underlie 

Morphological and Physiological Acclimation in the P. deltoides Leaf Transcriptome 

Previous global transcriptome analysis studies have identified NIA2, GDH2 and ASN1 

genes linked to metabolism of nitrogen and amino acids, with NAI2 being previously observed in 

the roots of other Populus spp. (Li et al., 2012; Luo et al., 2015). Although I did not identify 

specific genes for regulation of nitrate transport and nitrogen metabolism, I did identify genes 

that influence the growth of the P. deltoides and could affect nitrogen metabolism within plants. 

The LAI results showed greater leaf area for polyclonal plantings. Although, groundwater results 

displayed similar nitrate concentration averages between planting schemes throughout the 

growing seasons, results from LAI support that more N was likely taken up by polyclonal plots 

as greater leaf area likely results in more leaf mass containing more total N in polyclonal 

plantings even with similar nitrogen percentages.  

For both Polyclonal vs. Monoclonal and Clone S7C8 Polyclonal vs. Clone S7C8 

Monoclonal, I identified upregulation of the EXOCYST SUBUNIT EXO70 FAMILY PROTEIN 

H7, with the gene displaying a larger fold change for polyclonal plantings in the Polyclonal vs. 

Monoclonal model. The EXO70 isoform H7 has been found to be most abundantly expressed in 

the root maturation zone and in root hairs (Pečenková et al., 2020). Additionally, this specific 

isoform has been identified in the leaf mesophyll, and where the primary photosynthetic cells in 

the leaves are located (Pečenková et al., 2020). From previous genome-wide association studies 



 

55 

on P. trichocarpa, different proteins within the same family such as Potri.010G250500 

SUBUNIT EXO70 FAMILY PROTEIN G1 have been associated with active growth rate, height 

and bole and whole-tree mass, and effects of the single nucleotide polymorphism (SNP) linked 

the allele with substantially greater biomass overall (McKown, Klápště, et al., 2014). 

Additionally, related EXOCYST components, such as, (EXO70A1) in Arabidopsis mutants 

showed altered cellular development and organ morphogenesis (Synek et al., 2006). While 

Exo70 genes have been previously studied in plants and specific genes (EXO70A1) have been 

identified to play an important role in plant and pollen development (Synek et al., 2006), these 

associations could possibly link the observed EXO70 H7 isoform to novel functionality in the P. 

deltoides clonal varieties in regard to increased growing capacity and plasticity within polyclonal 

plantings.  

Although, the ROOT HAIR SPECIFIC 2 GENE, which controls localized cell growth in 

plants (Gilroy & Jones, 2000), was downregulated with the gene displaying a larger fold change 

for polyclonal plantings in the Polyclonal vs. Monoclonal model. Roots hairs are essential for 

water absorption and nutrient uptake and the highly plastic Populus plant root system is able to 

respond developmentally to nitrogen signaling, enabling colonization into nitrogen-rich patches 

of the soil, increasing resource usage and nitrate uptake (Liu et al., 2020; Liu et al., 2021). Root 

hairs have also been shown to play vital roles in plants coping with biotic and abiotic stress (Liu 

et al., 2021). The contrast in regulation with these two specific genes likely indicates active 

growth and a potential source of stress in polyclonal plantings. Stress in polyclonal plantings can 

be further supported by upregulation of the DEHYDRATION RESPONSE ELEMENT B1A, which 

has been linked to stress in Arabidopsis (Su et al., 2013), and upregulation of the OXIDATIVE 

STRESS 3 LIKE 1 gene across all models.  
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Although polyclonal plantings most likely were able to cope with this stress due to 

greater productivity compared to its monoclonal counterparts, the upregulation of a potential 

active growth gene (EXO70 H7), further supports active plant growth in polyclonal plantings. 

Interestingly, a previous genome-wide association study in maize found that root hair length 

dimension was negatively correlated with several morphological and metabolic traits, including 

plant growth (Liu et al., 2021). This is important as P. deltoides polyclonal plantings could be 

utilizing other features of their root system allowing them to respond developmentally, 

supporting active plant growth. More significant root hair formation could be occurring within 

monoclonal plantings as individual clones, such as Clone 110412 with low nitrogen use 

efficiency, may not be meeting their nutrient needs, forcing colonization into different portions 

of the soil.  

Total leaf area is closely correlated with total biomass and is a determining factor of 

productivity for Populus (Ceulemans, 1990). July is the peak of the growing season for Populus 

leaf formation before leaf senescence occurs (Braatne et al., 1996). As the growing season 

continues and younger leaves mature, increased photosynthetic capacity should occur due to a 

greater number of chloroplasts per cell (Bauer & Thöni, 1988). Although I observed greater 

average LAI between planting schemes for the month of July, further statistical analysis, such as 

comparing LAI with leaf gas exchange data may better elucidate changes in LAI. However, 

polyclonal plots had more aboveground biomass than either monoculture, suggesting 

transgressive overyielding. This, along with the observed greater average LAI between planting 

schemes could support increased plasticity within polyclonal plantings. Specific genes identified, 

including a potential novel functioning EXO70 H7 gene identified in polyclonal plantings, need 

to be further tested to determine their functionality in P. deltoides clones. In addition to the leaf 
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transcriptome, this idea needs to be further supported by analyzing below ground biomass and 

gene expression and regulation from the root transcriptome of P. deltoides.  

Additional genes have been identified to influence the growth of P. deltoides. A previous 

genome-wide association study identified Potri.016G128300 WRKY33 (WRKY DNA-BINDING 

PROTEIN 33) to contain single nucleotide polymorphism (SNP) markers associated with log 

volume and growth rate within P. trichocarpa (McKown, Klápště, et al., 2014). For this study, I 

identified the same WRKY DNA-BINDING PROTEIN 33 upregulated for polyclonal plantings for 

Polyclonal vs. Monoclonal, as well as upregulation of WRKY DNA-BINDING PROTEIN 60 

(WRKY60), and WRKY DNA-BINDING PROTEIN 40 (WRKY40). While WRKY33 has previously 

been identified with SNP markers associated with biomass (McKown, Klápště, et al., 2014), 

upregulation of WRKY33 has also been previously associated with oxidative stress in A. thaliana, 

as have WRKY 60, and WRKY40 (Jiang et al., 2017). In plants, responses to stress need several 

signaling molecules, including salicylic acid and abscisic acid (Danquah et al., 2014; Jiang et al., 

2014). A genome-wide association study of Populus WRKY TRANSCRIPTION FACTORS found 

WRKY60 to be significantly affected by salicylic acid, indicating this gene plays an essential role 

in regulating this specific signaling pathway (Jiang et al., 2014). In addition, the abscisic acid 

signaling pathway has been identified as a central regulator of abiotic stress in plants, imposing 

adaptive physiological responses related to defense mechanisms in plants and changes in gene 

expression (Danquah et al., 2014). A previous study in Arabidopsis found that WRKY40 

negatively regulated plant abscisic acid, increasing sensitivity for inhibition of root growth, while 

WRKY60 reduced sensitivity to abscisic acid (Chen et al., 2010). WRKY 60 has been identified as 

a “weak” transcriptional activator and WRKY40 a “weak” transcriptional repressor in 

Arabidopsis, meaning that they have less of an influence on boosting gene transcription or 
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decreasing transcription compared to other transcriptional factors (Chen et al., 2010). 

Interestingly, polyclonal plantings were simultaneously upregulated for both WRKY activators 

and suppressors, and other identified differentially expressed genes, such as upregulation of 

stress-like genes in polyclonal plantings support the idea that both WRKY60 and WRKY40 may 

have a stronger effect on regulating gene expression in P. deltoides, in regard to coping with 

abiotic stress. The downregulation of ROOT HAIR SPECIFIC 2 GENE supports the idea of 

WRKY40 inhibiting root growth in P. deltoides polyclonal plantings. Inhibition of root growth 

belowground does not necessarily negatively impact biomass production, as polyclonal plantings 

in this study were overyielding. For this study, only aboveground biomass was estimated. An 

important consideration is that polyclonal plantings may be allocating more biomass 

aboveground and less belowground. In regard to WRKY60, there has been growing evidence that 

salicylic acid is an important growth regulator in plants, and salicylic acid accumulation in plants 

provides protection in plants against abiotic stresses (Khan et al., 2015). P. deltoides plantings 

may display an increase in tolerance to stress, specifically abiotic stress in polyclonal plantings 

from the upregulation of WRKY60, and potential changes to salicylic acid accumulation. As 

previously mentioned, the upregulation of EXOCYST SUBUNIT EXO70 FAMILY PROTEIN H7, 

which has previously been abundantly expressed in the root maturation zone and in root hairs, 

identified in photosynthetic cells of leaf tissue (Pečenková et al., 2020), and has been previously 

associated with active growth rate in P. trichocarpa,(McKown, Guy, et al., 2014), would support 

this idea as polyclonal plantings continue to develop, and cope with stress. WRKY 60 and 

WRKY40 may strongly regulate gene expression, specifically genes related to stress and growth 

within P.deltoides clonal varieties. However, further gene testing is needed to better understand 

their individual functions in P. deltoides. 



 

59 

 Other WRKY FAMILY TRANSCRIPTION FACTORS (TFs) were identified to be 

upregulated for polyclonal plantings in Polyclonal vs. Monoclonal and Clone S7C8 Polyclonal 

vs. Clone S7C8 Monoclonal. I identified three different TFs for Polyclonal vs. Monoclonal 

(Potri.003G138600, Potri.014G096200, and Potri.001G092900) and one for Clone S7C8 

Polyclonal vs. Clone S7C8 Monoclonal (Potri.003G138600). As one of the largest families of 

TFs in higher plants, WRKY plays an essential role in modulating plant growth, development and 

responses to stress (Lv et al., 2020). Oxidative stress, including the excessive production of 

hydrogen peroxide (H2O2), occurs when plants are exposed to light stress, high light intensities, 

and high temperatures (Inzé & Montagu, 1995; Jiang et al., 2017). From the results, oxidative 

stress, such as water stress in polyclonal plantings, could be occurring due to belowground 

moisture stress from high competition from water. Additionally, I observed upregulation of the 

DEHYDRATION RESPONSE ELEMENT B1A for polyclonal plantings in Polyclonal vs. 

Monoclonal. The abscisic acid (ABA) hormone and independent pathway plays a key role in 

acclimation to stresses during vegetative development in plants and includes members of the 

DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN (DREB) family (Su et al., 

2013). DEHYDRATION RESPONSE ELEMENT B1A has been identified to play an important 

function in drought response in flowers in Arabidopsis (Su et al., 2013). Water stress in 

polyclonal plantings of P. deltoides would induce cellular dehydration. A strategy to avoid 

dehydration stress and to protect the plant’s cells is to increase the levels of H2O2 (Sun & Yu, 

2015). A drastic change in expression levels for DEHYDRATION RESPONSE ELEMENT B1A, 

and WRKY TFs within polyclonal plantings indicates a stress-signaling response and multiple 

potential stress coping mechanisms within polyclonal plantings. Additionally, the upregulation of 

the PROLYL OLIGOPEPTIDASE FAMILY PROTEIN was identified. A previous study in 
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Escherichia coli identified a gene in a member of the PROLYL OLIGOPEPTIDASE FAMILY 

PROTEIN to play an important role in enhancing the tolerance of E. coli to high salinity, high 

temperature and simulated drought (Tan et al., 2013). The PROLYL OLIGOPEPTIDASE 

FAMILY PROTEIN had the second largest fold change in Polyclonal vs. Monoclonal , with the 

DEHYDRATION RESPONSE ELEMENT B1A displaying the largest fold change. PROLYL 

OLIGOPEPTIDASE FAMILY PROTEIN may be an additional gene for future testing to see if it 

plays similar roles in stress tolerance in P. deltoides. 

4.2 Planting Schemes of P. deltoides Influence Metabolic and Biosynthesis Pathways in 

Response to Water and Heat Stress 

Although I only identified one significant functional annotation from the GO analysis, I 

identified downregulation of five metabolic pathways for Clone S7C8 polyclonal plantings: 

arginine and proline metabolism, galactose metabolism, pyruvate metabolism, phenylalanine 

metabolism, and tyrosine metabolism from the KEGG enrichment pathway analysis, and four 

biosynthesis processes: tropane, piperdine, and pyridine alkaloid biosynthesis, o-glycan 

biosynthesis, isoquinoline alkaloid biosynthesis, and phenylalanine, tyrosine and tryptophan 

biosynthesis. Amino acids such as arginine and proline are synthesized during abiotic stress to 

act as precursors for secondary metabolites or storage forms of organic nitrogen (Baumberg & 

Klingel, 1993; Hildebrandt, 2018). The metabolite proline is produced from the reallocation of 

nitrogen under stress conditions in plants (Majumdar et al., 2016). Proline has been shown to 

accumulate in plants experiencing water limitation (Verslues & Sharma, 2010). Arginine is a 

major storage and transport form for organic nitrogen in plants and serves as a precursor for 

nitric oxide, an essential metabolite for developmental processes (Majumdar et al., 2016; Winter 

et al., 2015). Similarly, arginine and proline metabolic pathways, including galactose metabolism 
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have been previously shown to be significantly impacted by heat stress (Ren et al., 2019) Like 

water stress, heat stress increases the production of H2O2, and proline accumulation (Ren et al., 

2019). Heat and water stress could potentially correlate as transpiration cools leaves down, with 

decreased transpiration leading to heat stress. Although arginine and proline metabolism are 

downregulated in Clone S7C8 polyclonal plantings, the enhanced upregulation of this secondary 

metabolic pathway in Clone S7C8 monoclonal plantings could signify greater sensitivity to 

abiotic stress, specifically, water and heat stress. Genetically homogeneous populations, such as 

monoclonal plantations are typically more susceptible to pathogens, pests and stress due to low 

genetic diversity, making infection more likely to spread between the similar hosts, and 

inbreeding of individuals with low genetic heterozygosity could increase host susceptibility to 

disease and stress (King & Lively, 2012; Richards et al., 2010). Plants respond to stress through 

the regulation of secondary metabolism for the direct cessation of stress factors (Meraj et al., 

2020). Heat stress has been known to significantly impair plants’ physiological reactions, 

reducing biomass production and yield (Ferus et al., 2020). Similarly, photosynthesis is known to 

be a heat sensitive process, and can be completely inhibited by high temperatures (Zhou et al., 

2010). Biomass estimates from experimental data support the idea of greater sensitivity in Clone 

S7C8 monoclonal plantings to abiotic stress as Clone S7C8 monoclonal plantings show reduced 

biomass production compared to Clone S7C8 polyclonal plantings. Although identified in the 

enrichment pathway analysis but not significant at the FDR level, the upregulation in 

biosynthesis of secondary metabolites (p-value: <0.001, FDR: 0.085) in Clone S7C8 monoclonal 

plantings could further support enhanced secondary metabolism in monoclonal plantings but 

additional testing is needed. Further, the enhanced upregulation of secondary metabolism of 

monoclonal plantings in the Polyclonal vs. Monoclonal model was not identified, but this could 
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be due to timing of sample collection, as samples were flash frozen, only capturing the 

transcriptome at a specific timepoint, possibly leaving out transcripts to show enhanced 

secondary metabolism for this model (Lowe et al., 2017). Similarly, the combination of Clone 

S7C8 and Clone 110412 in polyclonal plantings could affect gene expression of secondary 

metabolism at the pathway level.  

In Clone S7C8 polyclonal plantings, the upregulation of oxidative stress genes and the 

downregulation of arginine, proline and pyruvate metabolism could indicate a transcriptomic 

response to maintain cellular homeostasis imposed by heat and water stress. One study found a 

dramatic upregulation of gene expression for DREB1 or DEHYDRATION-RESPONSIVE 

ELEMENT BINDING PROTEIN in response to heat stress, and proline was increased, and 

pyruvate was decreased by heat stress (Ren et al., 2019). From the experimental analysis, I found 

DEHYDRATION RESPONSE ELEMENT B1A was the highest upregulated gene in polyclonal 

plantings in Polyclonal vs. Monoclonal, and arginine and proline metabolism were decreased in 

Clone S7C8 polyclonal plantings. Pyruvate is a citric acid cycle (TCA) metabolite. Although 

identified in the enrichment pathway analysis but not significant, pyruvate metabolism and citric 

acid cycle were downregulated for polyclonal plantings in the Polyclonal vs. Monoclonal model. 

The decrease in these pathways would support the response to heat stress identified by Ren et al., 

2019. Although most notably, I saw contrasting responses for Clone S7C8 polyclonal plantings 

as proline and arginine metabolism was reduced, which could imply Clone S7C8 polyclonal 

plantings were better suited in coping with heat stress. This could potentially be the case for 

polyclonal plantings in the Polyclonal vs. Monoclonal model, although further testing on 

enrichment analysis, specifically primary metabolic pathways, such as pyruvate metabolism, and 

secondary metabolic pathways and their relationship to abiotic stress in P. deltoides is needed. 
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 Downregulation of phenylalanine metabolism and phenylalanine, tyrosine and tryptophan 

biosynthesis were also identified within Clone S7C8 polyclonal plantings. Phenylpropanoid 

metabolism starts with the deamination of phenylalanine to eventually yield p-coumaroyl CoA, 

which is intermediately involved in the biosynthesis of secondary metabolites (Ma et al., 2018). 

Phenylalanine plays an essential role in the phenylpropanoid pathway and derived compounds 

such as the abundance of phenolic glycosides can influence tree growth and are a significant 

determinant of Populus productivity (Tsai et al., 2006). One study found that younger trees tend 

to have higher concentrations of phenolic glycosides and phenolic glycosides were the most 

abundant secondary metabolite in the foliage of Salicaceae (Boeckler et al., 2011). Phenolic 

glycosides have been shown to provide protection against pathogens, pests, and abiotic stress in 

clones of P. tremuloides (Lindroth & Hwang, 1996). Secondary metabolic pathways produce 

many compounds that are necessary in plants for adaptation to their environment (Movahedi et 

al., 2021). The upregulation of phenylalanine metabolism and biosynthesis in Clone S7C8 

monoclonal plantings, but not in Clone 110412 may indicate Clone S7C8 was better adapted to 

stress. Similarly, Clone S7C8 displayed greater estimated aboveground biomass than Clone 

110412. Clone S7C8 is a high nitrogen use efficiency clone, requiring less nitrogen for growth 

compared to Clone 110412. The upregulation the Exo70 H7 active growth gene within this clone 

specifically, as well as secondary metabolism including phenylalanine metabolism and 

biosynthesis at the pathway level analysis supports why I witnessed increased estimated 

aboveground biomass in this clone. Other identified secondary metabolic pathways, for example, 

tyrosine metabolism has been shown to increase as a result of salt stress in P. simonii (Meng et 

al., 2016). Downregulation of other secondary metabolites in Clone S7C8 polyclonal plantings 

were also identified, including nitrogenous isoquinoline alkaloid biosynthesis, o-glycan 
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biosynthesis and tropane, piperdine and pyridine alkaloid biosynthesis. Alkaloids and phenolics 

do not play an active role in growth and development of plants but are concerned with defense 

and interaction with other organisms, including other plants (Inayat et al., 2020). Downregulation 

in Clone S7C8 polyclonal plantings could be due to synergetic effects between Clone 110412, 

although this pathway was not downregulated in the Polyclonal vs. Monoclonal model and 

would require additional analysis. Similarly, the upregulation in Clone S7C8 monoclonal 

plantings could indicate antagonistic effects between individuals of Clone S7C8. However, no 

significant pathways were identified for the Polyclonal vs. Monoclonal model or for the Clone 

110412 Polyclonal vs. Clone 110412 Monoclonal model and would require additional 

transcriptomic and pathway analysis to better understand why these metabolic pathways are 

elucidated at the pathway level. 

 The overall objective states that differentially expressed genes are an underlying 

molecular mechanism that may explain differences in productivity and resource use between 

monoclonal and polyclonal plantings, through morphological and physiological plasticity was 

supported by the results. The hypothesis that differential gene expression (DGE) is an underlying 

molecular mechanism contributing to overyielding (polycultures are more productive than the 

average of their monocultures), increased resource utilization, and increased stress tolerance in 

polycultures through regulation of morphology and physiology was supported by the results. For 

this project, I observed greater estimated aboveground biomass for polyclonal plantings and an 

increase in gene regulation for an active growth gene in polyclonal plantings. Similarly, I 

identified differentially expressed genes that were associated with morphological and 

physiological plasticity for Populus spp., with polyclonal plantings displaying an increase in 

gene regulation (decrease in monoclonal plantings) for oxidative stress genes, and active growth 
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genes (EXO70 H7), and a decrease in gene regulation (increase in monoclonal plantings) for 

enrichment secondary metabolic pathways associated with plant defense and stress responses. 

Although stress genes were upregulated in polyclonal plantings, these genes did not interact with 

or did not have a large enough influence to display a stress response at the pathway level in 

polyclonal plantings. Although polyclonal plantings displayed upregulation for abiotic stress, 

previous literature suggests that monoclonal plantings were more sensitive to abiotic stress, 

affecting productivity (King & Lively, 2012; Richards et al., 2010). While most identified SNP 

markers associated with biomass traits were identified in P. trichocarpa (Chhetri et al., 2019; 

Fahrenkrog et al., 2017; McKown, Klápště, et al., 2014), P. trichocarpa has been extensively 

studied and represents a phenotypically diverse genus (Tuskan et al., 2004). Similar family 

groups of genes identified in the genome wide association study for P. trichocarpa and the same 

genes with matching locus names were identified within our P. deltoides planting schemes. 

Although some genes specific functionality in P.deltoides, such as the Exo70 H7, WRKY 40, and 

WRKY60 genes, along with enrichment primary and secondary metabolic pathways require 

further testing to fully understand the role they play in different planting schemes.  

While it can be more difficult to identify phenotypic traits in field trials of Populus spp., 

transcriptomic approaches have greatly contributed to the understanding of plasticity effects in 

Populus (Fahrenkrog et al., 2017; Lv et al., 2020; McKown, Klápště, et al., 2014; Meraj et al., 

2020; Ren et al., 2019). Transcriptomic analysis is a tool to help researchers better understand 

genotypic and phenotypic variation in different tissues, conditions or in time within an organism 

(Lowe et al., 2017). Although this study is incredibly informative for preliminary understanding 

of biological processes within P. deltoides planting schemes, a drawback is the transcriptome 

only captures a snapshot in time of the total transcripts present within a cell (Lowe et al., 2017), 
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providing information only in a distinct timeframe, with the ultimate outcome in protein 

expression varying. Certain mRNA transcripts that are still being transcribed may not be 

captured at that timepoint, while others have been fully degraded. For this study, we sampled in 

the morning, although sampling at different time points throughout the day may elucidate 

different mRNA transcripts, providing more information on gene expression effects for the day 

sampling occurred. Although we minimized temporally related gene expression changes with a 

small timeframe for sample collection, samples collected from the first and last plots had the 

largest time difference, and this could potentially affect gene expression output. This could be 

one explanation as to why I am observing similar gene expression patterns but different enriched 

pathways within models. However, comparative analysis of transcriptomics and proteomics 

across multiple tissue types in P. deltoides will provide a panoramic view of gene expression and 

regulation, uncovering new results that may have been missed in my preliminary findings (Hu et 

al., 2023).   

4.3 Implications 

Since field varieties of Populus spp. produce diverse phenotypes (Brunner et al., 2004), 

transcriptomic analysis informs selection of genes, or candidate genes for specific traits, such as 

EXOCYST SUBUNIT EXO70 FAMILY PROTEIN H7, WRKY40, and WRKY60 for increased 

productivity and tolerance to oxidative stress. For this study, polyclonal plantings were more 

productive than the average of each monoculture (overyielding) and more productive than either 

monoculture (transgressive overyielding). Testing of potential candidate genes identified from 

this study is essential, as this may help researchers, breeders, and silviculturists better select traits 

in P. deltoides that are not only more productive, but more resilient to climate change. 
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CHAPTER V 

CONCLUSIONS 

5.1 Final Conclusions 

The research presented here suggested that WRKY DNA-Binding proteins and TFs may 

play an important role in stress responses, specifically oxidative stress including water and heat 

stress in P. deltoides clonal varieties. Additionally, the downregulation of secondary metabolic 

pathways has been previously associated with heat stress. PROLYL OLIGOPEPTIDASE 

FAMILY PROTEIN, EXOCYST SUBUNIT EXO70 FAMILY PROTEIN H7, OXIDATIVE 

STRESS 3 LIKE 1, DEHYDRATION RESPONSE ELEMENT B1A, WRKY40, and WRKY60 are 

all potential candidate genes related to productivity, water and heat stress that should be further 

tested in P. deltoides to identify their specific functions. The leaf transcriptome raw dataset 

produced by this study will be made publicly available, further promoting research, helping 

geneticists, trees breeders, and silviculturists make informed decisions for future field trials of P. 

deltoides clonal varieties.   

5.2 Future Directions 

This study sheds light on new preliminary transcriptomic data and genomic information 

for P. deltoides clonal varieties. Although this study only provides one transcriptome in one 

tissue type for this study, omics technologies allow for individual experiments to be normalized 

across full databases, allowing researchers to compare gene expression across diverse 

experiments. Because of this, a potential direction that may arise from this project is larger 
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transcriptomic analysis of multiple clonal varieties of Populus spp., including hybrid poplars. In 

addition, new spatial transcriptomic approaches, such as single-cell RNA sequencing for gene 

expression profiling, can explore genotype-phenotype relationships at the cellular level, 

unveiling new information on pathway level changes (Dong & Chen, 2013). This study is 

important as it highlights early gene expression effects and gene regulatory networks, providing 

a supplement approach for researchers to select traits in for future P. deltoides plantings that are 

more productive, more tolerant to stress and more resilient to climate change.  
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Table A.1 Absorbance Ratios for RNA Samples 

Planting 

and Plot 

Number  

Clone Treatment Date Biosample Nucleic 

Acid 

(ng/uL) 

A260/A280 A260/A230 A260 A280 

Monoclonal 

7 

S7C8 Non 

Endophyte 

8/3/2022 4NES_1  1013.54 2.096 2.007 25.338 12.089 

Monoclonal 

7 

S7C8 Non 

Endophyte 

8/3/2022 4NES_2  973.854 2.093 1.96 24.346 11.631 

Monoclonal 

7 

S7C8 Non 

Endophyte 

8/22/2022 4NES_3  1104.498 2.106 2.025 27.612 13.11 

Monoclonal 

17 

S7C8 Non 

Endophyte 

8/22/2022 4NES_4  399.459 2.1 1.865 9.986 4.755 

Polyclonal 

8 

110412 Non 

Endophyte 

8/22/2022 4NEM1_1  1582.357 2.151 2.273 39.559 18.395 

Polyclonal 

8 

110412 Non 

Endophyte 

8/22/2022 4NEM1_2  1534.692 2.108 2.272 38.367 18.198 

Polyclonal 

8 

110412 Non 

Endophyte 

8/22/2022 4NEM1_3 1693.083 2.123 2.305 42.327 19.935 
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Table A.1 (Continued) 

Planting 

and Plot 

Number  

Clone Treatment Date Biosample Nucleic 

Acid 

(ng/uL) 

A260/A280 A260/A230 A260 A280 

Polyclonal 

8 

110412 Non 

Endophyte 

8/22/2022 4NEM1_4  1234.677 2.092 2.31 30.867 14.753 

Polyclonal 

8 

S7C8 Non 

Endophyte 

8/22/2022 4NEMS_1  1039.235 2.092 2.218 25.981 12.417 

Polyclonal 

8 

S7C8 Non 

Endophyte 

8/22/2022 4NEMS_2  262.127 2.032 1.727 6.553 3.226 

Polyclonal 

8 

S7C8 Non 

Endophyte 

8/22/2022 4NEMS_3  286.422 2.042 1.422 7.161 3.506 

Polyclonal 

8 

S7C8 Non 

Endophyte 

8/22/2022 4NEMS_4  2413.697 2.151 2.339 60.342 28.056 

Monoclonal 

10 

110412 Non 

Endophyte 

8/22/2022 4NE1_1  1712.317 2.13 2.326 42.808 20.096 

Monoclonal 

10 

110412 Non 

Endophyte 

8/22/2022 4NE1_2  996.789 2.112 2.127 24.92 11.799 

Monoclonal 

10 

110412 Non 

Endophyte 

8/22/2022 4NE1_3 1644.412 2.163 2.362 41.11 19.004 

Monoclonal 

10 

110412 Non 

Endophyte 

8/22/2022 4NE1_4 1477.658 2.167 2.162 36.94 17.048 
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Table A.1 (Continued) 

Planting 

and Plot 

Number  

Clone Treatment Date Biosample Nucleic 

Acid 

(ng/uL) 

A260/A280 A260/A230 A260 A280 

Polyclonal 

15 

110412 Endophyte 8/22/2022 4EM1_1  2074.356 2.172 2.372 51.859 23.88 

Polyclonal 

15 

110412 Endophyte 8/22/2022 4EM1_2  1543.945 2.164 2.387 38.599 17.841 

Polyclonal 

15 

110412 Endophyte 8/25/2022 4EM1_3  2107.706 2.177 2.34 52.693 24.203 

Polyclonal 

15 

110412 Endophyte 8/25/2022 4EM1_4  1644.301 2.105 2.311 41.108 19.527 

Polyclonal 

15 

S7C8 Endophyte 8/25/2022 4EMS_1  367.82 2.052 1.759 9.196 4.48 

Polyclonal 

15 

S7C8 Endophyte 8/25/2022 4EMS_2  800.755 2.132 2.011 20.019 9.392 

Polyclonal 

15 

S7C8 Endophyte 8/25/2022 4EMS_3  1628.71 2.167 2.325 40.718 18.79 

Polyclonal 

15 

S7C8 Endophyte 8/25/2022 4EMS_4  410.995 2.098 1.888 10.275 4.897 

Monoclonal 

18 

110412 Endophyte 8/25/2022 4E1_1  1152.1 2.149 2.312 28.802 13.4 
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Table A.1 (Continued) 

Planting 

and Plot 

Number  

Clone Treatment Date Biosample Nucleic 

Acid 

(ng/uL) 

A260/A280 A260/A230 A260 A280 

Monoclonal 

18 

110412 Endophyte 8/25/2022 4E1_2  1548.744 2.165 2.333 38.719 17.885 

Monoclonal 

18 

110412 Endophyte 8/26/2022 4E1_3  1597.524 2.106 2.334 39.938 18.962 

Monoclonal 

18 

110412 Endophyte 8/26/2022 4E1_4  822.463 2.123 2.213 20.562 9.686 

Monoclonal 

22 

S7C8 Endophyte 8/26/2022 4ES_1  1244.811 2.156 2.316 31.12 14.434 

Monoclonal 

22 

S7C8 Endophyte 8/26/2022 4ES_2  1214.612 2.138 2.275 30.365 14.206 

Monoclonal 

22 

S7C8 Endophyte 8/26/2022 4ES_3  606.955 2.105 1.975 15.174 7.209 

Monoclonal 

22 

S7C8 Endophyte 8/26/2022 4ES_4  114.727 2.074 1.498 2.868 1.383 

Date indicates the date RNA was extracted and checked for quantification. Biosample is labeled based on replicate plot number, whole 

plot treatment factor, clone, and biological replicate. Nucleic acid concentration is measured in nanograms per milliliter. 
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Figure A.1 RNA Integrity Numbers (RIN) for Leaf Tissue Samples 
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Figure A.1 (Continued)  
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Figure A.1 (Continued)  
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Figure A.1 (Continued) 
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Figure A.1 (Continued)  
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Figure A.1 (Continued)  
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Figure A.1 (Continued)  
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Figure A.1 (Continued) 
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APPENDIX B 

P. DELTOIDES METADATA, ABOVEGROUND BIOMASS AND  

DIFFERENTIAL GENE EXPRESSION ANALYSIS RESULTS 



 

 

98 

Table B.1 Metadata for Transcript Quantification, Differential Gene Expression, Gene Ontology and KEGG Enrichment Pathway 

Analysis 

Biosample Salmon Output Clone Color Planting Plot Block Site Treatment 

NES_1 NES_1_RUN S7C8 Red Monoclonal 7 4 POA NE 

NES_2 NES_2_RUN S7C8 Red Monoclonal 7 4 POA NE 

NES_3 NES_3_RUN S7C8 Red Monoclonal 7 4 POA NE 

NES_4 NES_4_RUN S7C8 Red Monoclonal 7 4 POA NE 

NEM1_1 NEM1_1_RUN 110412 White Polyclonal 8 4 POA NE 

NEM1_2 NEM1_2_RUN 110412 White Polyclonal 8 4 POA NE 

NEM1_3 NEM1_3_RUN 110412 White Polyclonal 8 4 POA NE 

NEM1_4 NEM1_4_RUN 110412 White Polyclonal 8 4 POA NE 

NEMS_1 NEMS_1_RUN  S7C8 Red Polyclonal 8 4 POA NE 

NEMS_2 NEMS_2_RUN  S7C8 Red Polyclonal 8 4 POA NE 

NEMS_3 NEMS_3_RUN  S7C8 Red Polyclonal 8 4 POA NE 

NEMS_4 NEMS_4_RUN S7C8  Red Polyclonal 8 4 POA NE 
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Table B.1 (Continued)  

NE1_1 NE1_1_RUN 110412 White Monoclonal 10 4 POA NE 

NE1_2 NE1_2_RUN 110412 White Monoclonal 10 4 POA NE 

NE1_3 NE1_3_RUN 110412 White Monoclonal 10 4 POA NE 

NE1_4 NE1_4_RUN 110412 White Monoclonal 10 4 POA NE 

EM1_1 EM1_1_RUN 110412 White Polyclonal 15 4 POA E 

EM1_2 EM1_2_RUN 110412 White Polyclonal 15 4 POA E 

EM1_3 EM1_3_RUN 110412 White Polyclonal 15 4 POA E 

EM1_4 EM1_4_RUN 110412 White Polyclonal 15 4 POA E 

EMS_1 EMS_1_RUN  S7C8 Red Polyclonal 15 4 POA E 

EMS_2 EMS_2_RUN  S7C8 Red Polyclonal 15 4 POA E 

EMS_3 EMS_3_RUN  S7C8 Red Polyclonal 15 4 POA E 

EMS_4 EMS_4_RUN  S7C8 Red Polyclonal 15 4 POA E 

E1_1 E1_1_RUN 110412 White  Monoclonal 18 4 POA E 

E1_2 E1_2_RUN 110412 White Monoclonal 18 4 POA E 
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Table B.1 (Continued)  

E1_3 E1_3_RUN 110412 White Monoclonal 18 4 POA E 

E1_4 E1_4_RUN 110412 White Monoclonal 18 4 POA E 

ES_1 ES_1_RUN S7C8 Red Monoclonal 22 4 POA E 

ES_2 ES_2_RUN S7C8 Red Monoclonal 22 4 POA E 

ES_3 ES_3_RUN S7C8 Red Monoclonal 22 4 POA E 

ES_4 ES_4_RUN S7C8 Red Monoclonal 22 4 POA E 

Biosample is labeled based on replicate plot number, whole plot treatment factor, clone, and biological replicate. Salmon Output 

indicates transcript quant.sf files produced from Salmon transcript quantification. 
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Table B.2 Aboveground Biomass Estimations for the Second Growing Season  

Planting Schemes  Aboveground Biomass (AGB) 

(Dry Mg/ha)  

Mean for Each Planting 

Scheme 

Standard Error  

110412 Monoclonal  5.46537 5.56593 0.100558 

110412 Monoclonal 5.66649 5.56593 0.100558 

S7C8 Monoclonal 6.99914 7.175163 0.176021 

S7C8 Monoclonal 7.351183 7.175163 0.176021 

Polyclonal  12.0664 11.46569 0.60066 

Polyclonal  10.865 11.46569 0.60066 

Estimated aboveground biomass (AGB) between planting schemes of P. deltoides for the second growing season.  
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Table B.3 Differential Gene Expression Analysis for Model 1: Polyclonal vs. Monoclonal  

Contrast locusName logFC logCPM Likelihood 

Ratio 

PValue False 

Discovery 

Rate 

Description 

Polyclonal.vs.

Monoclonal 

Potri.015G13

6400 

7.2392 -0.1959 15.6592 7.58E-05 0.02508 dehydration 

response 

element B1A 

Polyclonal.vs.

Monoclonal 

Potri.002G01

4000 

5.7673 6.7781 20.0384 7.59E-06 0.00683 Prolyl 

oligopeptidase 

family protein 

Polyclonal.vs.

Monoclonal 

Potri.016G12

6900 

4.5261 5.0416 17.6812 2.61E-05 0.01457 receptor like 

protein 34 

Polyclonal.vs.

Monoclonal 

Potri.003G13

8600 

4.422 4.6409 33.1609 8.48E-09 8.85E-05 WRKY 

family 

transcription 

factor 

Polyclonal.vs.

Monoclonal 

Potri.016G12

7000 

4.2895 3.0195 17.893 2.34E-05 0.01361 receptor like 

protein 34 

Polyclonal.vs.

Monoclonal 

Potri.003G07

2200 

4.146 -2.7654 17.4842 2.90E-05 0.01477 Protein of 

unknown 

function 

(DUF567) 

Polyclonal.vs.

Monoclonal 

Potri.006G07

0000 

4.0738 0.9408 15.3211 9.07E-05 0.02825   
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.002G00

1400 

4.0292 4.589 15.8315 6.92E-05 0.02378 calmodulin 

like 37 

Polyclonal.vs.

Monoclonal 

Potri.012G07

8900 

3.8867 2.4817 16.5852 4.65E-05 0.01859 plant U-box 

18 

Polyclonal.vs.

Monoclonal 

Potri.009G05

7900 

3.82 -0.8132 14.5231 0.0001384 0.04075 alpha/beta-

Hydrolases 

superfamily 

protein 

Polyclonal.vs.

Monoclonal 

Potri.018G01

1950 

3.7092 1.5884 16.9439 3.85E-05 0.01719   

Polyclonal.vs.

Monoclonal 

Potri.016G12

7101 

3.6354 2.7457 16.7906 4.17E-05 0.01781 receptor like 

protein 34 

Polyclonal.vs.

Monoclonal 

Potri.017G04

5200 

3.5901 3.3342 23.9957 9.66E-07 0.002396   

Polyclonal.vs.

Monoclonal 

Potri.007G11

3000 

3.4678 1.1922 17.5442 2.81E-05 0.01477 uncoupling 

protein 5 

Polyclonal.vs.

Monoclonal 

Potri.009G07

3000 

3.4466 4.0639 29.9071 4.53E-08 0.0002428 Protein 

phosphatase 

2C family 

protein 

Polyclonal.vs.

Monoclonal 

Potri.004G07

2900 

3.3574 3.6934 18.3367 1.85E-05 0.0118 Protein of 

unknown 

function 

(DUF3464) 

 

 



 

 

104 

Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.001G21

8800 

3.2975 3.5991 23.8707 1.03E-06 0.002396 NAC domain 

containing 

protein 61 

Polyclonal.vs.

Monoclonal 

Potri.017G04

7800 

3.2901 3.1808 20.8567 4.95E-06 0.005524 uncoupling 

protein 5 

Polyclonal.vs.

Monoclonal 

Potri.018G03

8100 

3.2732 2.2456 21.4818 3.57E-06 0.004556   

Polyclonal.vs.

Monoclonal 

Potri.017G04

4300 

3.2142 -1.4155 16.727 4.32E-05 0.01804   

Polyclonal.vs.

Monoclonal 

Potri.017G04

5400 

3.0771 3.6319 18.7557 1.49E-05 0.01047   

Polyclonal.vs.

Monoclonal 

Potri.001G23

4600 

3.0696 5.5493 22.9707 1.65E-06 0.002546 exocyst 

subunit exo70 

family protein 

H7 

Polyclonal.vs.

Monoclonal 

Potri.016G13

4000 

2.9954 0.7253 14.3145 0.0001547 0.04354 ARM repeat 

superfamily 

protein 

Polyclonal.vs.

Monoclonal 

Potri.019G07

8300 

2.9402 3.3827 24.2697 8.38E-07 0.002396 CRINKLY4 

related 4 

Polyclonal.vs.

Monoclonal 

Potri.005G21

4000 

2.9369 0.5538 15.957 6.48E-05 0.02316 Bax inhibitor-

1 family 

protein 
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.003G16

0400 

2.9267 2.472 23.1428 1.50E-06 0.002518   

Polyclonal.vs.

Monoclonal 

Potri.014G12

2000 

2.8943 4.3509 16.9571 3.82E-05 0.01719 Adenine 

nucleotide 

alpha 

hydrolases-

like 

superfamily 

protein 

Polyclonal.vs.

Monoclonal 

Potri.003G08

1200 

2.7714 3.2042 14.192 0.0001651 0.04511 ethylene 

responsive 

element 

binding factor 

1 

Polyclonal.vs.

Monoclonal 

Potri.009G03

4800 

2.7236 2.2748 18.381 1.81E-05 0.0118 zinc finger 

(C3HC4-type 

RING finger) 

family protein 

Polyclonal.vs.

Monoclonal 

Potri.006G21

9800 

2.683 3.9982 47.7859 4.75E-12 1.27E-07   

Polyclonal.vs.

Monoclonal 

Potri.016G12

8300 

2.666 4.3066 18.7677 1.48E-05 0.01047 WRKY DNA-

binding 

protein 33 
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.010G11

6000 

2.6487 3.7948 31.8048 1.71E-08 0.0001141 (1 of 28) 

PF14009 - 

Domain of 

unknown 

function 

(DUF4228) 

(DUF4228) 

Polyclonal.vs.

Monoclonal 

Potri.014G08

7700 

2.5897 3.0152 19.6824 9.14E-06 0.007653 brassinosteroi

d-responsive 

RING-H2 

Polyclonal.vs.

Monoclonal 

Potri.009G14

1400 

2.5695 2.1907 20.0949 7.37E-06 0.00683 expansin-like 

A3 

Polyclonal.vs.

Monoclonal 

Potri.014G09

6200 

2.5211 6.1857 27.0095 2.03E-07 0.0009037 WRKY 

family 

transcription 

factor 

Polyclonal.vs.

Monoclonal 

Potri.010G12

9200 

2.4531 3.2522 18.4336 1.76E-05 0.01178 related to 

ABI3/VP1 2 

Polyclonal.vs.

Monoclonal 

Potri.018G04

8100 

2.4489 3.2386 25.0993 5.45E-07 0.002083   

Polyclonal.vs.

Monoclonal 

Potri.004G20

6625 

2.3995 -1.281 17.53 2.83E-05 0.01477   

Polyclonal.vs.

Monoclonal 

Potri.018G01

9800 

2.366 5.768 21.686 3.21E-06 0.0043 WRKY DNA-

binding 

protein 60 
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Table B.3 (Continued) 

Polyclonal.vs.

Monoclonal 

Potri.008G06

9400 

2.355 8.4283 19.2061 1.17E-05 0.009243 salt-inducible 

zinc finger 1 

Polyclonal.vs.

Monoclonal 

Potri.008G06

6000 

2.3498 4.4501 15.9101 6.64E-05 0.02341 Hs1pro-1 

protein 

Polyclonal.vs.

Monoclonal 

Potri.001G24

3300 

2.3321 4.2502 15.4817 8.33E-05 0.02721 zinc finger 

(C3HC4-type 

RING finger) 

family protein 

Polyclonal.vs.

Monoclonal 

Potri.011G08

7000 

2.2776 1.3856 16.2617 5.52E-05 0.02036   

Polyclonal.vs.

Monoclonal 

Potri.001G09

2900 

2.223 1.467 16.8287 4.09E-05 0.01781 WRKY 

family 

transcription 

factor 

Polyclonal.vs.

Monoclonal 

Potri.008G18

6000 

2.2213 5.2322 17.4668 2.92E-05 0.01477 beta-1,4-N-

acetylglucosa

minyltransfera

se family 

protein 

Polyclonal.vs.

Monoclonal 

Potri.015G07

4200 

2.1443 7.0037 16.7833 4.19E-05 0.01781 plant U-box 

18 

Polyclonal.vs.

Monoclonal 

Potri.007G09

9400 

2.1123 7.265 20.0233 7.65E-06 0.00683   
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.012G00

7500 

2.0989 4.7793 32.8591 9.91E-09 8.85E-05 TCV-

interacting 

protein 

Polyclonal.vs.

Monoclonal 

Potri.008G11

7100 

2.0886 4.0146 16.7003 4.38E-05 0.01804 related to 

ABI3/VP1 2 

Polyclonal.vs.

Monoclonal 

Potri.010G19

1300 

2.0392 5.8002 17.8381 2.41E-05 0.01371 Hs1pro-1 

protein 

Polyclonal.vs.

Monoclonal 

Potri.012G14

5800 

1.9952 3.1505 23.7515 1.10E-06 0.002396 salt-inducible 

zinc finger 1 

Polyclonal.vs.

Monoclonal 

Potri.004G20

8500 

1.9691 6.1314 24.4926 7.46E-07 0.002396   

Polyclonal.vs.

Monoclonal 

Potri.011G05

5200 

1.9671 1.9813 15.3635 8.87E-05 0.02794   

Polyclonal.vs.

Monoclonal 

Potri.019G11

6800 

1.9244 3.7045 20.913 4.81E-06 0.005524 Wound-

responsive 

family protein 

Polyclonal.vs.

Monoclonal 

Potri.003G18

2200 

1.9186 5.3929 17.0124 3.71E-05 0.01719 WRKY DNA-

binding 

protein 40 
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.011G16

2400 

1.906 1.691 15.4248 8.59E-05 0.02757 ethylene-

responsive 

nuclear 

protein / 

ethylene-

regulated 

nuclear 

protein 

(ERT2) 

Polyclonal.vs.

Monoclonal 

Potri.019G13

1300 

1.8674 6.3667 18.5007 1.70E-05 0.01166   

Polyclonal.vs.

Monoclonal 

Potri.005G20

4600 

1.848 4.5127 14.0533 0.0001777 0.04666 Eukaryotic 

aspartyl 

protease 

family protein 

Polyclonal.vs.

Monoclonal 

Potri.015G10

3900 

1.7571 2.8031 16.2501 5.55E-05 0.02036 matrix 

metalloprotein

ase 

Polyclonal.vs.

Monoclonal 

Potri.017G12

8700 

1.7527 2.3917 16.2882 5.44E-05 0.02036   

Polyclonal.vs.

Monoclonal 

Potri.008G19

2000 

1.7511 3.9598 15.6742 7.52E-05 0.02508 Domain of 

unknown 

function 

(DUF23) 
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.001G09

9400 

1.7049 3.9871 14.3536 0.0001515 0.04333 1-

aminocyclopr

opane-1-

carboxylic 

acid (acc) 

synthase 6 

Polyclonal.vs.

Monoclonal 

Potri.002G14

7100 

1.681 3.0568 20.3455 6.47E-06 0.006413 Protein of 

unknown 

function 

(DUF1442) 

Polyclonal.vs.

Monoclonal 

Potri.005G02

0200 

1.6765 2.3759 23.2695 1.41E-06 0.002514   

Polyclonal.vs.

Monoclonal 

Potri.005G25

9600 

1.6711 3.4105 17.9406 2.28E-05 0.01356 Protein kinase 

superfamily 

protein 

Polyclonal.vs.

Monoclonal 

Potri.008G11

9600 

1.6481 3.6157 15.0263 0.000106 0.03227 Glycolipid 

transfer 

protein 

(GLTP) 

family protein 

Polyclonal.vs.

Monoclonal 

Potri.009G01

9200 

1.645 5.7913 15.8644 6.81E-05 0.02367 NAC domain 

containing 

protein 61 

Polyclonal.vs.

Monoclonal 

Potri.015G08

6800 

1.6206 8.0984 19.7893 8.65E-06 0.00747 Leucine-rich 

repeat protein 

kinase family 

protein 
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.009G10

0200 

1.6061 4.619 20.9877 4.62E-06 0.005524 plant U-box 

25 

Polyclonal.vs.

Monoclonal 

Potri.001G07

9900 

1.5595 2.5343 15.9555 6.49E-05 0.02316   

Polyclonal.vs.

Monoclonal 

Potri.009G03

3300 

1.5221 7.0428 19.0087 1.30E-05 0.009958   

Polyclonal.vs.

Monoclonal 

Potri.009G14

1600 

1.5134 4.6546 14.9408 0.0001109 0.03338 NAC domain 

containing 

protein 36 

Polyclonal.vs.

Monoclonal 

Potri.017G13

7801 

1.4575 2.4142 14.8878 0.0001141 0.03396   

Polyclonal.vs.

Monoclonal 

Potri.008G12

7600 

1.4475 5.2747 16.2931 5.43E-05 0.02036 ribose-5-

phosphate 

isomerase 2 

Polyclonal.vs.

Monoclonal 

Potri.010G18

9600 

1.3145 3.351 14.3462 0.0001521 0.04333 Alpha/beta 

hydrolase 

related protein 

Polyclonal.vs.

Monoclonal 

Potri.005G24

0700 

1.3026 5.8919 16.43 5.05E-05 0.01988   

Polyclonal.vs.

Monoclonal 

Potri.006G20

2200 

1.2671 5.2708 14.2977 0.0001561 0.04354 syntaxin of 

plants 121 

Polyclonal.vs.

Monoclonal 

Potri.012G04

3200 

1.257 6.5853 22.5853 2.01E-06 0.002834 MAP kinase 

kinase 7 
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.001G29

7200 

1.2448 5.1137 17.467 2.92E-05 0.01477 Protein 

phosphatase 

2C family 

protein 

Polyclonal.vs.

Monoclonal 

Potri.005G25

7900 

1.2322 6.2633 16.3013 5.40E-05 0.02036 basic 

region/leucine 

zipper motif 

60 

Polyclonal.vs.

Monoclonal 

Potri.018G09

9800 

1.2095 7.3369 15.2259 9.54E-05 0.02936 tetraspanin8 

Polyclonal.vs.

Monoclonal 

Potri.017G04

1600 

1.1966 3.9159 23.6375 1.16E-06 0.002396 Phototropic-

responsive 

NPH3 family 

protein 

Polyclonal.vs.

Monoclonal 

Potri.002G00

5500 

1.1939 5.9204 15.6953 7.44E-05 0.02508 phosphate 

transporter 

1;8 

Polyclonal.vs.

Monoclonal 

Potri.006G27

3100 

1.1555 5.8456 22.8948 1.71E-06 0.002546 (1 of 9) 

KOG4210 - 

Nuclear 

localization 

sequence 

binding 

protein 
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Table B.3 (Continued)  

Polyclonal.vs.

Monoclonal 

Potri.008G19

8000 

1.1392 6.8142 14.2773 0.0001578 0.04356 (1 of 2) 

PF15365 - 

Proline-rich 

nuclear 

receptor 

coactivator 

(PNRC) 

Polyclonal.vs.

Monoclonal 

Potri.010G18

2200 

1.1183 6.543 16.9811 3.78E-05 0.01719 senescence 

associated 

gene 20 

Polyclonal.vs.

Monoclonal 

Potri.013G13

2300 

1.1114 5.1066 18.2324 1.96E-05 0.0119 RING 

membrane-

anchor 1 

Polyclonal.vs.

Monoclonal 

Potri.004G23

6100 

1.0281 6.8632 15.4115 8.65E-05 0.02757   

Polyclonal.vs.

Monoclonal 

Potri.019G06

3500 

-1.6353 5.3675 20.4831 6.02E-06 0.006197 root hair 

specific 2 

Polyclonal.vs.

Monoclonal 

Potri.009G13

9800 

-2.635 3.6364 17.3131 3.17E-05 0.01572 O-

methyltransfer

ase family 

protein 

Polyclonal.vs.

Monoclonal 

Potri.001G38

9400 

-3.0498 2.5485 16.947 3.84E-05 0.01719 pathogenesis-

related family 

protein 

Locus name: Location of Differentially Expressed Gene, LogFC(Fold Change), and LogCPM(Counts per Million). Descriptions are 

blank if no annotation was available.  
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Table B.4 Differential Gene Expressional Analysis for Model 3: Clone S7C8 Polyclonal vs. Clone S7C8 Monoclonal 

Contrast locusName logFC logCPM Likelihood 

Ratio 

PValue False 

Discovery 

Rate 

Description 

Potri.009G11

5800 

0.7015 5.1185 27.9318 1.26E-07 0.001593     

Red.Poly.vs.

Mono 

Potri.002G01

4000 

4.9181 6.7781 22.301 2.33E-06 0.004802 Prolyl 

oligopeptidase 

family protein 

Red.Poly.vs.

Mono 

Potri.016G12

6900 

4.1193 5.0416 26.9808 2.06E-07 0.001593 receptor like 

protein 34 

Red.Poly.vs.

Mono 

Potri.016G12

7000 

3.7136 3.0195 25.7053 3.98E-07 0.00213 receptor like 

protein 34 

Red.Poly.vs.

Mono 

Potri.003G07

2200 

3.6772 -2.7654 23.4772 1.26E-06 0.003385 Protein of 

unknown 

function 

(DUF567) 

Red.Poly.vs.

Mono 

Potri.018G01

1950 

3.2168 1.5884 23.106 1.53E-06 0.003733   
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Table B.4 (Continued) 

Red.Poly.vs.

Mono 

Potri.016G12

7101 

3.095 2.7457 23.7186 1.12E-06 0.003318 receptor like 

protein 34 

Red.Poly.vs.

Mono 

Potri.004G07

2900 

2.5335 3.6934 19.613 9.48E-06 0.01327 Protein of 

unknown 

function 

(DUF3464) 

Red.Poly.vs.

Mono 

Potri.014G12

2000 

2.3052 4.3509 20.5549 5.80E-06 0.0097 Adenine 

nucleotide 

alpha 

hydrolases-

like 

superfamily 

protein 

Red.Poly.vs.

Mono 

Potri.019G03

4000 

2.2954 5.1385 17.4455 2.96E-05 0.0228 NDH-

dependent 

cyclic 

electron flow 

5 

Red.Poly.vs.

Mono 

Potri.003G13

8600 

2.2159 4.6409 16.5989 4.62E-05 0.02748 WRKY 

family 

transcription 

factor 

Red.Poly.vs.

Mono 

Potri.012G02

6900 

2.0857 2.2072 15.136 0.0001 0.04122   

Red.Poly.vs.

Mono 

Potri.017G04

5200 

2.0681 3.3342 15.1446 9.96E-05 0.04122   
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Table B.4 (Continued)  

Red.Poly.vs.

Mono 

Potri.010G13

5100 

1.9171 4.3266 15.4762 8.36E-05 0.0373 TCP-1/cpn60 

chaperonin 

family protein 

Red.Poly.vs.

Mono 

Potri.001G45

9200 

1.8264 2.0145 18.9339 1.35E-05 0.0145 FAD-binding 

Berberine 

family protein 

Red.Poly.vs.

Mono 

Potri.009G07

3000 

1.8081 4.0639 16.3571 5.25E-05 0.0281 Protein 

phosphatase 

2C family 

protein 

Red.Poly.vs.

Mono 

Potri.001G23

4600 

1.7297 5.5493 14.4884 0.000141 0.04905 exocyst 

subunit exo70 

family protein 

H7 

Red.Poly.vs.

Mono 

Potri.006G14

5600 

1.7012 2.3788 16.566 4.70E-05 0.02748 (1 of 1) 

PF10998 - 

Protein of 

unknown 

function 

(DUF2838) 

(DUF2838) 

Red.Poly.vs.

Mono 

Potri.008G03

1601 

1.6002 -0.7101 16.8678 4.01E-05 0.02612   
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Table B.4 (Continued)  

Red.Poly.vs.

Mono 

Potri.010G12

9200 

1.5118 3.2522 14.4463 0.0001442 0.04952 related to 

ABI3/VP1 2 

Red.Poly.vs.

Mono 

Potri.011G08

7000 

1.5027 1.3856 14.3961 0.0001481 0.04958   

Red.Poly.vs.

Mono 

Potri.011G15

7100 

1.4951 2.5337 14.5264 0.0001382 0.04871 WRKY DNA-

binding 

protein 35 

Red.Poly.vs.

Mono 

Potri.010G11

6000 

1.4517 3.7948 19.1605 1.20E-05 0.01392 (1 of 28) 

PF14009 - 

Domain of 

unknown 

function 

(DUF4228) 

(DUF4228) 

Red.Poly.vs.

Mono 

Potri.001G06

6400 

1.3727 9.0393 15.7212 7.34E-05 0.03391 CCR-like 

Red.Poly.vs.

Mono 

Potri.012G12

3600 

1.3543 4.2654 17.2797 3.23E-05 0.0228 Tetratricopept

ide repeat 

(TPR)-like 

superfamily 

protein 

Red.Poly.vs.

Mono 

Potri.019G13

1300 

1.3525 6.3667 19.5288 9.91E-06 0.01327   
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Table B.4 (Continued) 

Red.Poly.vs.

Mono 

Potri.012G10

4300 

1.3431 2.6095 20.6557 5.50E-06 0.0097 Uncharacteris

ed protein 

family 

(UPF0497) 

Red.Poly.vs.

Mono 

Potri.006G21

9800 

1.3342 3.9982 23.7714 1.09E-06 0.003318   

Red.Poly.vs.

Mono 

Potri.018G04

8100 

1.287 3.2386 14.4191 0.0001463 0.04958   

Red.Poly.vs.

Mono 

Potri.002G18

6200 

1.2788 1.8054 19.0892 1.25E-05 0.01392 (1 of 1) 

PTHR36027:

SF1 - 

ASYNAPTIC 

3 

Red.Poly.vs.

Mono 

Potri.015G00

8000 

1.2058 6.3588 17.3715 3.07E-05 0.0228 Rhodanese/Ce

ll cycle 

control 

phosphatase 

superfamily 

protein 

Red.Poly.vs.

Mono 

Potri.012G00

7500 

1.1243 4.7793 19.3938 1.06E-05 0.01356 TCV-

interacting 

protein 
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Table B.4 (Continued) 

Red.Poly.vs.

Mono 

Potri.002G15

8200 

1.1202 4.9521 14.5438 0.0001369 0.04871 AT hook 

motif DNA-

binding 

family protein 

Red.Poly.vs.

Mono 

Potri.001G07

9900 

1.119 2.5343 16.56 4.71E-05 0.02748   

Red.Poly.vs.

Mono 

Potri.002G01

0100 

1.1063 6.7817 16.3887 5.16E-05 0.0281 BTB/POZ 

domain-

containing 

protein 

Red.Poly.vs.

Mono 

Potri.001G24

9800 

1.0364 6.0297 18.1155 2.08E-05 0.01989 phosphate 

transporter 

4;1 

Red.Poly.vs.

Mono 

Potri.002G14

7100 

1.0337 3.0568 15.6225 7.73E-05 0.0351 Protein of 

unknown 

function 

(DUF1442) 

Red.Poly.vs.

Mono 

Potri.002G09

3300 

-1.0016 3.5956 14.8062 0.0001191 0.04564 Phosphoglyce

rate mutase 

family protein 

Red.Poly.vs.

Mono 

Potri.018G00

5300 

-1.8199 2.7478 14.7749 0.0001211 0.0457   
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Table B.4 (Continued) 

Red.Poly.vs.

Mono 

Potri.003G06

6400 

-2.0722 7.6333 17.7335 2.54E-05 0.02195   

Red.Poly.vs.

Mono 

Potri.009G13

9800 

-2.1589 3.6364 22.7131 1.88E-06 0.004198 O-

methyltransfer

ase family 

protein 

Red.Poly.vs.

Mono 

Potri.011G03

1700 

-2.4352 0.4082 24.7787 6.43E-07 0.00287 NAD(P)-

binding 

Rossmann-

fold 

superfamily 

protein 

Red.Poly.vs.

Mono 

Potri.018G05

1300 

-3.056 4.2649 18.3921 1.80E-05 0.01784   

Red.Poly.vs.

Mono 

Potri.010G00

0600 

-3.2184 2.2757 15.7433 7.26E-05 0.03391   

Red.Poly.vs.

Mono 

Potri.001G23

9700 

-3.4988 3.207 15.9002 6.68E-05 0.03312   

Red.Poly.vs.

Mono 

Potri.003G06

6800 

-3.8073 4.9522 24.0867 9.21E-07 0.003318   

Red.Poly.vs.

Mono 

Potri.001G25

9904 

-4.5437 -2.0371 19.2498 1.15E-05 0.01392   

Locus name: Location of Differentially Expressed Gene, LogFC(Fold Change), and LogCPM(Counts per Million). Descriptions are 

blank if no annotation was available
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APPENDIX C 

GENE ONTOLOGY AND KYOTO ENCYCLOPEDIA OF GENES AND GENOMES  

SUPPLEMENTARY DATA 
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Table C.1 Gene Ontology Analysis Output for All Three Models  

Contrast GO ID Number of 

Genes 

Direction PValue False 

Discovery 

Rate 

TERM ONTOLOGY 

Polyclonal.vs.

Monoclonal 

GO:0009690 6 Down 0.00038 0.37 cytokinin 

metabolic 

process 

BP 

Polyclonal.vs.

Monoclonal 

GO:0019139 6 Down 0.00038 0.37 cytokinin 

dehydrogen

ase activity 

MF 

Polyclonal.vs.

Monoclonal 

GO:0004108 1 Down 0.0014 0.61 citrate (Si)-

synthase 

activity 

MF 

Polyclonal.vs.

Monoclonal 

GO:0006101 1 Down 0.0014 0.61 citrate 

metabolic 

process 

BP 

Polyclonal.vs.

Monoclonal 

GO:0033180 7 Down 0.0016 0.61 proton-

transporting 

V-type 

ATPase, V1 

domain 

CC 

Polyclonal.vs.

Monoclonal 

GO:0010338 1 Up 0.0033 0.67 leaf 

formation 

BP 

Polyclonal.vs.

Monoclonal 

GO:0006595 3 Down 0.0035 0.67 polyamine 

metabolic 

process 

BP 
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Table C.1 (continued) 

Polyclonal.vs

.Monoclonal 

GO:0034477 1 Up 0.004 0.67 U6 snRNA 

3’-end 

processing 

BP 

Polyclonal.vs

.Monoclonal 

GO:0003923 1 Down 0.0043 0.67 GPI-anchor 

transamidas

e activity 

MF 

Polyclonal.vs

.Monoclonal 

GO:0003952 2 Down 0.0053 0.67 NAD+ 

synthase 

(glutamine-

hydrolyzing

) activity 

MF 

Polyclonal.vs

.Monoclonal 

GO:0004367 4 Down 0.0053 0.67 glycerol-3-

phosphate 

dehydrogen

ase [NAD+] 

activity 

MF 

Polyclonal.vs

.Monoclonal 

GO:0006893 2 Down 0.0057 0.67 Golgi to 

plasma 

membrane 

transport 

BP 

Polyclonal.vs

.Monoclonal 

GO:0005875 9 Up 0.0068 0.67 microtubule 

associated 

complex 

CC 

Polyclonal.vs

.Monoclonal 

GO:0004149 3 Down 0.0072 0.67 dihydrolipo

yllysine-

residue 

succinyltran

sferase 

activity 

MF 
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Table C.1 (continued) 

Polyclonal.vs.

Monoclonal 

GO:0045252 3 Down 0.0072 0.67 oxoglutarate 

dehydrogen

ase complex 

CC 

Polyclonal.vs.

Monoclonal 

GO:0009331 5 Down 0.0082 0.67 glycerol-3-

phosphate 

dehydrogen

ase complex 

CC 

Polyclonal.vs.

Monoclonal 

GO:0048037 3 Down 0.0084 0.67   
 

Polyclonal.vs.

Monoclonal 

GO:0000062 8 Down 0.0087 0.67 fatty-acyl-

CoA 

binding 

MF 

Polyclonal.vs.

Monoclonal 

GO:0003830 5 Up 0.009 0.67 beta-1,4-

mannosylgl

ycoprotein 

4-beta-N-

acetylglucos

aminyltransf

erase 

activity 

MF 

Polyclonal.vs.

Monoclonal 

GO:0006904 14 Down 0.0094 0.67 vesicle 

docking 

involved in 

exocytosis 

BP 

White.Poly.vs

.Mono 

GO:0031012 14 Up 0.0017 0.98 extracellular 

matrix 

CC 
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Table C.1 (continued) 

White.Poly.

vs.Mono 

GO:0046522 2 Down 0.002 0.98 S-methyl-5-

thioribose 

kinase 

activity 

MF 

White.Poly.

vs.Mono 

GO:0008429 2 Up 0.0025 0.98 phosphatidy

lethanolami

ne binding 

MF 

White.Poly.

vs.Mono 

GO:0009909 2 Up 0.0025 0.98 regulation 

of flower 

developmen

t 

BP 

White.Poly.

vs.Mono 

GO:0048573 2 Up 0.0025 0.98 photoperiod

ism, 

flowering 

BP 

White.Poly.

vs.Mono 

GO:0008897 5 Up 0.0034 1 holo-[acyl-

carrier-

protein] 

synthase 

activity 

MF 

White.Poly.

vs.Mono 

GO:0017176 5 Down 0.0037 1 phosphatidy

linositol N-

acetylglucos

aminyltransf

erase 

activity 

MF 

White.Poly.

vs.Mono 

GO:0031347 11 Up 0.0042 1 regulation 

of defense 

response 

BP 
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Table C.1 (continued) 

White.Poly.

vs.Mono 

GO:0006506 11 Down 0.0055 1 GPI anchor 

biosynthetic 

process 

BP 

White.Poly.

vs.Mono 

GO:0009415 4 Up 0.0061 1 response to 

water 

BP 

White.Poly.

vs.Mono 

GO:0008237 28 Up 0.0079 1 metallopepti

dase activity 

MF 

White.Poly.

vs.Mono 

GO:0004000 1 Down 0.0093 1 adenosine 

deaminase 

activity 

MF 

White.Poly.

vs.Mono 

GO:0009001 4 Down 0.0096 1 serine O-

acetyltransf

erase 

activity 

MF 

White.Poly.

vs.Mono 

GO:0007067 6 Up 0.0098 1   
 

Red.Poly.vs

.Mono 

GO:0033180 7 Down 1.80E-05 0.035 proton-

transporting 

V-type 

ATPase, V1 

domain 

CC 

Red.Poly.vs

.Mono 

GO:0004364 2 Up 0.0003 0.2 glutathione 

transferase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0004106 4 Down 0.00049 0.2 chorismate 

mutase 

activity 

MF 
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Table C.1 (continued) 

Red.Poly.vs

.Mono 

GO:0009690 6 Down 0.00052 0.2 cytokinin 

metabolic 

process 

BP 

Red.Poly.vs

.Mono 

GO:0019139 6 Down 0.00052 0.2 cytokinin 

dehydrogen

ase activity 

MF 

Red.Poly.vs

.Mono 

GO:0003983 2 Down 0.0011 0.27 UTP:glucos

e-1-

phosphate 

uridylyltran

sferase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0006011 2 Down 0.0011 0.27 UDP-

glucose 

metabolic 

process 

BP 

Red.Poly.vs

.Mono 

GO:0003952 2 Down 0.0012 0.27 NAD+ 

synthase 

(glutamine-

hydrolyzing

) activity 

MF 

Red.Poly.vs

.Mono 

GO:0004861 6 Up 0.0015 0.27 cyclin-

dependent 

protein 

serine/threo

nine kinase 

inhibitor 

activity 

MF 
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Table C.1 (continued) 

Red.Poly.vs

.Mono 

GO:0009331 5 Down 0.0017 0.27 glycerol-3-

phosphate 

dehydrogen

ase complex 

CC 

Red.Poly.vs

.Mono 

GO:0009029 1 Up 0.0021 0.27 tetraacyldisa

ccharide 4’-

kinase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0046835 8 Down 0.0022 0.27 carbohydrat

e 

phosphoryla

tion 

BP 

Red.Poly.vs

.Mono 

GO:0006595 3 Down 0.0022 0.27 polyamine 

metabolic 

process 

BP 

Red.Poly.vs

.Mono 

GO:0004108 1 Down 0.0022 0.27 citrate (Si)-

synthase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0006101 1 Down 0.0022 0.27 citrate 

metabolic 

process 

BP 

Red.Poly.vs

.Mono 

GO:0046417 3 Down 0.0023 0.27 chorismate 

metabolic 

process 

BP 

Red.Poly.vs

.Mono 

GO:0004367 4 Down 0.0028 0.29 glycerol-3-

phosphate 

dehydrogen

ase [NAD+] 

activity 

MF 
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Table C.1 (continued) 

Red.Poly.vs

.Mono 

GO:0005875 9 Up 0.0028 0.29 microtubule 

associated 

complex 

CC 

Red.Poly.vs

.Mono 

GO:0006749 6 Down 0.0029 0.29 glutathione 

metabolic 

process 

BP 

Red.Poly.vs

.Mono 

GO:0000266 3 Up 0.003 0.29 mitochondri

al fission 

BP 

Red.Poly.vs

.Mono 

GO:0000786 73 Up 0.0032 0.29 nucleosome CC 

Red.Poly.vs

.Mono 

GO:0000062 8 Down 0.0033 0.29 fatty-acyl-

CoA 

binding 

MF 

Red.Poly.vs

.Mono 

GO:0006904 14 Down 0.0038 0.32 vesicle 

docking 

involved in 

exocytosis 

BP 

Red.Poly.vs

.Mono 

GO:0016624 8 Down 0.0048 0.35 oxidoreduct

ase activity, 

acting on 

the aldehyde 

or oxo 

group of 

donors, 

disulfide as 

acceptor 

MF 
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Table C.1 (continued) 

Red.Poly.vs

.Mono 

GO:0003949 2 Up 0.0051 0.35 1-(5-

phosphoribo

syl)-5-[(5-

phosphoribo

sylamino)m

ethylidenea

mino]imida

zole-4-

carboxamid

e isomerase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0008534 2 Up 0.0052 0.35 oxidized 

purine 

nucleobase 

lesion DNA 

N-

glycosylase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0004322 1 Up 0.0053 0.35 ferroxidase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0008483 26 Down 0.0056 0.35 transaminas

e activity 

MF 

Red.Poly.vs

.Mono 

GO:0004565 5 Down 0.0058 0.35 beta-

galactosidas

e activity 

MF 

Red.Poly.vs

.Mono 

GO:0004470 9 Down 0.0059 0.35 malic 

enzyme 

activity 

MF 
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Table C.1 (continued) 

Red.Poly.vs

.Mono 

GO:0004471 9 Down 0.0059 0.35 malate 

dehydrogen

ase 

(decarboxyl

ating) 

(NAD+) 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0006659 2 Up 0.0062 0.35 phosphatidy

lserine 

biosynthetic 

process 

BP 

Red.Poly.vs

.Mono 

GO:0001735 2 Down 0.0062 0.35 prenylcystei

ne oxidase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0019030 1 Up 0.0063 0.35 icosahedral 

viral capsid 

CC 

Red.Poly.vs

.Mono 

GO:0046982 107 Up 0.0064 0.35 protein 

heterodimer

ization 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0004748 3 Down 0.0066 0.35 ribonucleosi

de-

diphosphate 

reductase 

activity, 

thioredoxin 

disulfide as 

acceptor 

MF 
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Table C.1 (continued) 

Red.Poly.vs

.Mono 

GO:0006893 2 Down 0.0067 0.35 Golgi to 

plasma 

membrane 

transport 

BP 

Red.Poly.vs

.Mono 

GO:0006480 1 Up 0.0071 0.35 N-terminal 

protein 

amino acid 

methylation 

BP 

Red.Poly.vs

.Mono 

GO:0051499 1 Down 0.0071 0.35 D-

aminoacyl-

tRNA 

deacylase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0003923 1 Down 0.0075 0.36 GPI-anchor 

transamidas

e activity 

MF 

Red.Poly.vs

.Mono 

GO:0016992 6 Up 0.0077 0.36 lipoate 

synthase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0003830 5 Up 0.0081 0.37 beta-1,4-

mannosylgl

ycoprotein 

4-beta-N-

acetylglucos

aminyltransf

erase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0004335 3 Down 0.0083 0.37 galactokinas

e activity 

MF 
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Table C.1 (continued) 

Red.Poly.vs

.Mono 

GO:0003856 2 Down 0.0085 0.37 3-

dehydroquin

ate synthase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0050662 69 Down 0.0088 0.37   
 

Red.Poly.vs

.Mono 

GO:0000287 121 Down 0.0089 0.37 magnesium 

ion binding 

MF 

Red.Poly.vs

.Mono 

GO:0016872 6 Down 0.0089 0.37 intramolecul

ar lyase 

activity 

MF 

Red.Poly.vs

.Mono 

GO:0030915 6 Up 0.0091 0.37 Smc5-Smc6 

complex 

CC 

Red.Poly.vs

.Mono 

GO:0006072 6 Down 0.0096 0.37 glycerol-3-

phosphate 

metabolic 

process 

BP 

Red.Poly.vs

.Mono 

GO:0000123 7 Up 0.0098 0.37 histone 

acetyltransf

erase 

complex 

CC 

Number of Genes signifies the number of genes in that gene set associated with the Gene Ontology ID. Blank descriptions had no 

annotations available for that specific GO ID.  
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Table C.2 Kyoto Encyclopedia of Genes and Genomes Pathway Analysis Output for All Models 

Contrast PathwayID NGenes Direction PValue FDR PValue.Mixed FDR.Mixed Description 

White.Poly.

vs.Mono 

pop00920 40 Down 0.004 0.55 0.34 1 Sulfur 

metabolism 

White.Poly.

vs.Mono 

pop00543 4 Down 0.0087 0.61 1 1 Exopolysac

charide 

biosynthesis 

Red.Poly.vs.

Mono 

pop00330 63 Down 0.00033 0.026 0.093 0.26 Arginine 

and proline 

metabolism 

Red.Poly.vs.

Mono 

pop00960 36 Down 0.0005 0.026 0.011 0.19 Tropane, 

piperidine 

and pyridine 

alkaloid 

biosynthesis 
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Table C.2 (continued) 

Red.Poly.vs.

Mono 

pop00514 16 Down 0.00056 0.026 0.046 0.25 Other types 

of O-glycan 

biosynthesis 

Red.Poly.vs.

Mono 

pop00950 31 Down 0.001 0.033 0.009 0.19 Isoquinoline 

alkaloid 

biosynthesis 

Red.Poly.vs.

Mono 

pop00400 54 Down 0.0012 0.033 0.0011 0.077 Phenylalani

ne, tyrosine 

and 

tryptophan 

biosynthesis 

Red.Poly.vs.

Mono 

pop00052 59 Down 0.0015 0.035 0.046 0.25 Galactose 

metabolism 

Red.Poly.vs.

Mono 

pop00620 121 Down 0.0019 0.038 0.072 0.26 Pyruvate 

metabolism 

Red.Poly.vs.

Mono 

pop00360 45 Down 0.0027 0.044 0.0054 0.19 Phenylalani

ne 

metabolism 
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Table C.2 (continued) 

Red.Poly.vs.

Mono 

pop00350 56 Down 0.0028 0.044 0.023 0.19 Tyrosine 

metabolism 

Red.Poly.vs.

Mono 

pop00380 52 Down 0.0065 0.085 0.076 0.26 Tryptophan 

metabolism 

Red.Poly.vs.

Mono 

pop01110 1334 Down 0.0071 0.085 0.046 0.25 Biosynthesi

s of 

secondary 

metabolites 

Red.Poly.vs.

Mono 

pop00905 15 Down 0.0074 0.085 0.025 0.19 Brassinoster

oid 

biosynthesis 

Red.Poly.vs.

Mono 

pop01200 320 Down 0.0093 0.099 0.023 0.19 Carbon 

metabolism 

Polyclonal.v

s.Monoclon

al 

pop00620 121 Down 0.0047 0.25 0.16 0.67 Pyruvate 

metabolism 
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Table C.2 (continued) 

Polyclonal.v

s.Monoclon

al 

pop00514 16 Down 0.0054 0.25 0.089 0.67 Other types 

of O-glycan 

biosynthesis 

Polyclonal.v

s.Monoclon

al 

pop00020 68 Down 0.0075 0.25 0.008 0.67 Citrate cycle 

(TCA cycle) 
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Table C.3 Kyoto Encyclopedia of Genes and Genomes Mixed Analysis Output 

Contrast PathwayID NGenes Direction PValue FDR PValue.Mixed FDR.Mixed Description 

Red.Poly.vs.Mono pop00941 46 Down 0.027 0.18 0.0069 0.19 Flavonoid 

biosynthesis 

Red.Poly.vs.Mono pop04146 114 Down 0.74 0.89 0.0035 0.16 Peroxisome 

Red.Poly.vs.Mono pop00760 26 Down 0.75 0.89 0.00061 0.077 Nicotinate and 

nicotinamide 

metabolism 
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