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A B S T R A C T

Cloud computing in today's computing environment plays a vital role, by providing efficient and scalable
computation based on pay per use model. To make computing more reliable and efficient, it must be efficient, and
high resources utilized. To improve resource utilization and efficiency in cloud, task scheduling and resource
allocation plays a critical role. Many researchers have proposed algorithms to maximize the throughput and
resource utilization taking into consideration heterogeneous cloud environments. This work proposes an algo-
rithm using DBSCAN (Density-based spatial clustering) for task scheduling to achieve high efficiency. The pro-
posed DBScan-based task scheduling algorithm aims to improve user task quality of service and improve
performance in terms of execution time, average start time and finish time. The experiment result shows proposed
model outperforms existing ACO and PSO with 13% improvement in execution time, 49% improvement in
average start time and average finish time. The experimental results are compared with existing ACO and PSO
algorithms for task scheduling.

1. Introduction

Cloud computing provides the convenience and on-demand facility of
access to a shared scalable resources pool of virtual machines with high
computation power and their services over the network [1]. Cloud
computing is a highly trending concept in both public and private domains
which is growing simultaneously with time. It provides various features of
on-demand scalability, fine accessibility over the network, and various
resources on demand. The vendor services provide many other features
which are putting their advancement in cloud computing as future tech-
nology. The major goal of the existence of cloud computing is to provide
computing over the globe based on user requirements and demand. Cloud
computing provides the most promising computing paradigms that fulfill
the computational requirements in different domains which deal with
huge data from various domains like image processing, bioinformatics,
earth science, astronomy, big data analysis, dataworkflow application, etc.
[2]. As cloud services are highly in demand, there is an increase in the load
over the cloud services and it is also necessary to maintain cloud perfor-
mance to meet the customer/user requirements and demands. Among the
many challenges, task scheduling is key to keeping the throughput to the
maximum of cloud services. Task scheduling is the most challenging one
because, firstly, it is a non-deterministic polynomial-time (NP) hard
problem, secondly, the number of users is increasing daily which adds up

to the difficulty for task scheduling [3]. Task scheduling can be categorized
as a single-objective or multi-objective optimization problem as it depends
on the scheduling policy. Some quality parameters like makespan, cost,
energy efficiency, execution time, and many other factors play vital roles
in task scheduling and the efficiency influences the task scheduling algo-
rithm [4]. Cloud deals with virtualization, load balancing, fault tolerance,
security, and scheduling are the major concerns needed to resolve for
better performance and also needed to maximize throughput. Load
balancing plays a crucial role in cloud resource utilization. The user sub-
mits the request to the data center to process the tasks which the tasks may
contain input data and the processing data may be having software re-
quirements, storage values, etc. Each task is executed over the VMs (Vir-
tual Machine) in the cloud. The execution of these tasks is dependent on
the task scheduler's scheduling algorithm which maps the arriving tasks
accordingly. The mapping of these tasks and VMs should be done in a fine
manner to achieve QoS (Quality of Service) [5]. The mapping of the tasks
to their most suitable resources is required to be performed successfully.
The performance depends on the performance parameters like minimum
makespan, least execution time which should be matched with the mini-
mum requirement of resources and many other factors that may be
included depending on the task. Researchers are still looking for a solution
to achieve optimal QoS and maximize resource utilization with high
throughput.
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In the current scenario, many resource allocation algorithms are
proposed using various optimization techniques taking into consider-
ation of the performance parameters such as execution time, start time,
waiting time, utilization, cost and power efficiency [6–15]. But these
algorithms only consider the performance of the machine in the current
situations but not the history of the machine [11–15]. This work con-
siders each resource as an independent component even if it resides in the
same data center and has similar behavior. So, in this work, we aim to
cluster the machine/resources with similar behavior like computation
capacity and cost.

The objective of this work is to overcome the drawback of existing
algorithms that consider the cloud as an independent unit in nature.
Whereas, in the existing setup, the whole data center is treated as a single
unit with multiple resources and with similar performance. This work
aims to improve the resource utilization and performance of the system at
the same time using DBSCAN algorithm to cluster the resources with
similar performance in the past and reduce the problem size by reducing
the resource scheduling time with optimal execution time.

In recent years many researchers have proposed many algorithms to
improve task scheduling over the cloud such as ACO(Ant Colony Opti-
mization), modified ACO [6], PSO(Particle Swarm Optimization) [10],
GA(Genetic Algorithm), WOA(Whale Optimization Algorithm),
BAT(Bio-Inspire Bat Algorithm), Firefly, Min-Min, Max-Min and many
other algorithms. However, these algorithms lack proper task mapping
and scheduling. Whenever the tasks reach the data center, they have to
be mapped with suitable efficient VMs over to the cloud. While sched-
uling, some major points have to satisfy like-resource utilization scal-
ability of VM, throughput, timespan, and many other key points.
Scheduling also must be optimized to improve the resource utilization of
the data center. The traditional algorithms have some issues, but the
DBSCAN algorithm has advantages over ACO, PSO and BAT in the
context of mapping. DBSCAN algorithm is a cluster-based algorithm that
comes under an unsupervised learning algorithm such that it has the
capability to group the data point in similar groups based on specific
properties. Here, using the DBSCAN algorithm, the tasks can be grouped
based on their required attributes and also using the same DE list of VMs,
they can also be grouped together to have a group-specific list of VMs.
The proposed scheduling algorithm creates the cluster of VMs with
respect to their configuration and schedules the task as per user's tasks.
DBSCAN creates the cluster with the DE specification and allocates tasks
to the best-fit VM in the cluster as per requirement. It ensures that user
tasks are scheduled or mapped to the best-fitted VMs.

Now task scheduling will be more convenient and reliable if the
scheduling takes place with these similar groups and also mapping of
tasks with VMs will be more efficient which will maximize the
throughput and utilization, to increase the throughput over the data
centers. The main contributions of this work are as follows:

1. The use of a clustering algorithm to cluster the cloud resources, such
that it allows reducing the search space.

2. The proposed approach using DBSCAN algorithm outperforms exist-
ing ACO [6] and PSO [10] algorithms using execution time, average
start time and average execution time.

3. The proposed approach using DBSCAN algorithm allows clustering
and sorting the resources i.e. virtual machine. This allows finding the
resources which are underutilized and over-utilized over a period of
time.

The work is divided into five sections. In section 2, some of the related
works from task scheduling in cloud are discussed. In section 3, the
proposed approach utilizing DBSCAN with the complete formulation is
discussed. In section 4, experimental results are showcased with some
comparative studies. In section 5, the conclusion and the outcomes of the
proposed model in its improvement are discussed.

2. Related work

In this section, a set of related work from the domain of task sched-
uling models is showcased as shown in Table 1. Cloud task scheduling
plays an important role in the performance of cloud datacenters and
services provided to the client.

In [6], the author has proposed a trust and deadline-aware task
scheduling model to improve the reliability of the system using fault and
deadline as one of the performance metrics to evaluate the fitness of the
data center. The model uses poison distribution to evaluate the occur-
rence of the fault. The task scheduling is inspired using ant colony
optimization algorithm. Whereas the ants are used to find the most
suitable food source where fitness is evaluated based on the number of
faults that occurred and the execution time required to complete the task.
In this work the proposed model is compared with PSO and the existing
ACO model.

In [7], Sanaj et al. proposed a multi-objective scheduling model for
task scheduling in cloud infrastructure. The model is inspired by the
behavior of a squirrel and its mechanism to search for food sources. The
proposed model is compared with Bat inspired model, PSO and Hybrid
genetic algorithm by taking into consideration energy consumption, cost
and utilization as performance parameters. The proposed model im-
proves the performance of cloud in terms of energy and cloud as
compared to existing models with increasing task load. In Ref. [8], the
author has proposed a Grey wolf nature-inspired algorithm for task
scheduling in cloud infrastructure. The model is proposed to improve the
makes span on the tasks that are to be scheduled. The work uses execu-
tion time as the fitness function in order to find the best solution. The
work is compared with existing ACO, PSO and first come first serve al-
gorithms to study the performance of the proposed model. The work
shows on increasing the task load proposed model takes the least time to
complete the task as compared to the existing models. In Ref. [9], Gupta
and Tewari presented a nature-inspired monkey search algorithm for task
scheduling in cloud. The scheduling algorithm is inspired by monkey
search where the behavior of a monkey climbing the hill is used. The
proposed algorithm uses network delay and execution time as the fitness
function. The work is compared with ACO, PSO and FCFS algorithms.
The work uses the average completion time, execution time and network
delay as performance metrics. In Ref. [10], Zeo et al. proposed a

Table 1
Existing models.

Reference Algorithm Name Parameters optimized

[6] Ant Colony Optimization Fault and Trust
[7] Squirrel Optimization Execution time
[8] Grey Wolf Execution time,

makespan
[9] Monkey Search Utilization and Execution

Time
[10] Self Adaptive PSO Deadline Failure
[11] HEFT algorithm Power Efficient
[12] Ant Colony Algorithm Time, Cost and

Reliability
[13] Longest Cloudlet Fastest Processing

element (LCFP) and Shortest Cloudlet
Fastest Processing element (SCFP)

Makespan

[14] Hybrid model Turnaround Time and
Resource Utilization

[15] Tournament-Selection Genetic Algorithm Cost, Resource and Time
[16] Tournament Selection Genetic Algorithm Execution time and

waiting time
[17] Genetic algorithm Memory utilization
[18] QoS priority Acceptance Rate and

Completion Time
[19] Oppositional based learning Execution time and start

time
[20] Ant Colony Optimization Utilization
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deadline-aware self-adaptive PSO model for task scheduling in cloud.
The work is a modified PSO for task scheduling which is able to adapt
based on situations such as under-loaded, overloaded and
average-loaded data center conditions. In Ref. [11], the authors proposed
a method using power utilization aware task scheduling that takes care of
a power efficient solution to find a task scheduling pattern with the least
power consumption. The algorithm is aimed to select a resource with the
least utilization in the past based on the past history. The model used the
cubic power model to simulate the power consumption of the machine
which is considered to be HP workstation.

In [12], the authors proposed an adaptive task scheduling algorithm
to perform adaptation on the advantage of other algorithms based on the
situations, while considering the distribution and scalability feature of
the algorithm. In Ref. [13], the authors proposed two algorithms to
minimize the turnaround time and maximize resource utilization in the
cloud. To achieve this, the authors consider computation complexity and
computing capacity of process elements as matrices to schedule the task.
In Ref. [14], the authors did a review on different MapReduce algorithms
like FIFO (first in first out), Matchmaking, Delay, and multithreading
locality algorithms. In Ref. [15], the authors proposed a genetic base task
scheduling algorithm for maximum utilization of resources. The authors
proposed Tournament Selection Genetic Algorithm (TS-GA) which is not
selected as a good candidate for a solution but having the capability to
provide the solution. In Refs. [16,17], the authors proposed andmodified
GA (Genetic Algorithm) to schedule an independent and divisible task in
adaptive manners for separate computation and memory requirements.
In Ref. [18], the authors proposed the QoS(Quality of Service) based
scheduling algorithm which comprises of QoS matrices of three param-
eters which are the task arrival time, the cost in use for the communi-
cation and the time taken by the task for execution. In Ref. [19], the
authors proposed a task scheduling algorithm by merging two algo-
rithms, the first one is cuckoo search algorithm (CSA) and the second one
is oppositional-based learning (OBL). These two algorithms build up a
hybrid oppositional cuckoo search algorithm (OCSA) algorithm to
maximize the throughput with maximum utilization of resources. In
Ref. [20], the authors proposed ACO (ant colony optimization) based
algorithm to optimize task scheduling with pheromone intensity updat-
ing strategies to maximize the utilization. The authors took the intensity
in terms of the resources which will reduce with respect to scheduled
tasks. In Ref. [21], the author proposed MCC(minimum completion
cloud), MEMAX(Median MAX) and Cloud Min-Max normalization algo-
rithms for task scheduling, these scheduling algorithms will work in two
phases. In the first phase, MCC single-phase scheduling, while MEMAX
and Cloud Min-Max will take place in the second phase. In Ref. [22], the
authors investigated the MCC (Mobile cloud computing)-assisted mul-
ti-task scheduling problem in the hybrid cloud system and proposed
corporative multi-task scheduling based on ACO algorithm. In Ref. [23],
the author proposed a pair-based task scheduling algorithm which is
based on the famous Hungarian algorithm to minimize layover time
where layover time is considered timing gaps between the tasks during
the task scheduling. In Ref. [24], the authors proposed a monetary cost
optimization algorithm to minimize the execution cost and maximize
utilization by following upward and downward approaches together. In
Refs. [25–33] various other recent works from the field of optimizations
that can be used in the cloud.

In [32] author has proposed an energy-efficient task scheduling al-
gorithm for cloud and fog computing using an AI-based model using
HunterPlus. The work proposes a hybrid version of whale algorithm and
machine learning model to improve energy efficiency in cloud. The work
aims to improve makespan and energy efficiency in the cloud.

In [33] Chandrashekar et al. proposed a hybrid Ant Colony algorithm
for task scheduling in cloud. The work is aimed to improve cost and
makespan at the same time. The work is compared with basic ACO,
min-min, First come first serve and Quantum computing-based task
scheduling. The result shows better result but the work does not consider
energy.

The work by Saif et al. [34] proposes a new algorithm for task
scheduling in cloud-fog computing. The authors highlight the challenges
faced in task scheduling in cloud-fog computing environments, such as
resource allocation, energy efficiency, and response time. The authors
propose a new algorithm called Multi-objective Grey Wolf Optimizer
(MOGWO) that aims to optimize multiple objectives simultaneously,
including makespan, energy consumption, and response time. The
MOGWO algorithm is compared to other state-of-the-art algorithms,
including Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), based on various performance metrics. One of the strengths of this
article is its focus on a specific problem in cloud computing and propose a
novel algorithm to address it. The authors provide a detailed analysis of
the MOGWO algorithm and compare its performance with other popular
optimization algorithms. The results obtained show that the MOGWO
algorithm outperforms other algorithms in terms of makespan, energy
consumption, and response time. and load into consideration.

Liang et al. [35] has proposed a new framework for characterizing
data-parallel jobs in data centers. The authors highlight the challenges
faced in job characterization, such as the complexity of data-parallel jobs
and the large amount of job data generated. The authors propose a new
framework called DeGTeC that utilizes deep graph and temporal clus-
tering techniques to characterize data-parallel jobs in data centers. The
framework consists of three main components: job feature extraction,
graph representation learning, and temporal clustering. The results show
that the DeGTeC framework outperforms other methods in terms of ac-
curacy and efficiency.

In another work by Saravanan et al. [36] an algorithm for task
scheduling in cloud computing using traditional horse optimization algo.
The authors highlight the challenges faced in task scheduling, such as
minimizing response time and maximizing resource utilization, and
propose a new algorithm that combines the Wild Horse Optimization
(WHO) algorithm with the Levy Flight algorithm. It proposes a new al-
gorithm that combines the Wild Horse Optimization algorithm with the
Levy Flight algorithm and outperforms other popular algorithms. The
work tries to improve execution time and waiting time, where the pro-
posed model is compared with the genetic algorithm and PSO(particle
swarm optimization).

3. Problem formulation

The literature that is reported shown that various optimization
techniques had been used and applied on one or more parameters which
are set in the objective functions such as Genetic Algorithm, TS-GA,
Squirrel Optimization and Self-adaptive PSO. Other approaches are
looking at finding the optimal solution in the search space such as using
the Monkey Search, Oppositional-based Learning and ant colony algo-
rithm. These algorithms try to find a solution to schedule the task over
the global resources without taking into consideration their current
resource utilization, performance and computational capability. This
work formulates a new strategy to solving the problem by clustering the
resources with similar resources and computational capability and based
on the performance. This approach allows the searching algorithm to find
a suitable VM for small, medium and large tasks size in an appropriate
cluster of VM's. Which reduces the search time and finds the best solution
in less time. So that the cluster of the equivalent performing devices can
be optimally assigned to the suitable VM. The main objective of this work
is to solve task-scheduling problem to improve the user experience and
quality of service by improving execution time and task waiting time.

4. Methodology

DBSCAN algorithm is a stochastic algorithm that provides results in
the manner of search optimization for real values. The genetic algorithm
also comes under the same category, but it works with the evolutionary
approach of best fit while DBSCAN provides the solution in multidi-
mensional where the data set comes in the form of real value with
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continuity. The proposed approach also has some lakes like, and it does
not deal with gradient value in search, but it has higher valued results
with nonlinear objects. DBSCAN is an efficient and powerful population-
based stochastic optimization algorithm [25] that is applied in many
scientific and multiple domains of engineering where it has shown its
usability and results make it a favorite algorithmwhen the solution has to
be found on a clustering basis.

DBSCAN algorithm has been used for clustering where clusters as
regions of high populated and respond well if all populated areas are
dense enough and maintained well distance with the low dense area.
Here in cloud computing, data centers are getting requests for task
scheduling with their requirements. These requirements have to be ful-
filled for better resource utilization and to maximize throughput. Task
scheduler comes into action to handle schedules where these tasks are
based on the applied scheduling algorithm. Some tasks are static, and
some are dynamic, and it needs scaler resources that can expand on
demand.

The work is divided into two steps:

1. DBSCAN Clustering
2. Scheduling

4.1. DBSCAN clustering

In this section the clustering phase of the proposed model is
explained. DBSCAN stands for Density-based spatial clustering algorithm
which clusters the nearest elements depending on whether the points are
on boundary point or density point or core point and it discards other
points that is considered as noisy points if they are not in the clusters.
DBSCAN is a fine clustering algorithm which has the capability to make
fine clusters of a given data.

It is executed in three phases:

1. First phase: In this phase is selection of epsilon value which is used to
mark the distance value from the core point, with this distance, we
calculate area of region where data points lie.

2. Second phase: In this phase a decision or election of core point or
centroid from where we calculate the points whether they lie in a
circle or not.

3. Third Phase: Third and most important part of the algorithm is
border line points or known as boundary points which helps to find
out cluster data point, and also to get the data point in cluster. It will
find out cluster noisy point which are never included in the cluster, or
we can say they always being discarded.

Aswe can see in the above Fig. 1a and b, P is the core point and e epsilon
value are the two parameters, which will be considered for the distance of
data elements. Both a, b are reachable data points in cluster C1, similarly
cluster C2 and cluster C3will be having certain reachable points which are
closer to core point or cluster 1. Here T and U are at the boundary point in
cluster C3 and cluster C2 respectively. Data point S can also be seen in the
figure that shows the noisy value which is excluded from clusters.

As per the DBSCAN properties, the data points which are not
considered in the cluster are discarded by the algorithm. As described
above, if we summarize the working of DBSCAN in brief, we can say that
a similar featured-based data set being clustered in the same region as
can be seen in cluster C1,C2,C3 and datasets which have different fea-
tures has been discarded or considered as Noisy value.

Using the above mechanism, the clustering of tasks is done based on
their task size and minimizes the expected total execution time. Where
task size is defined by the number of instructions in a task. Based on the
DBSCAN clustering and the clustered generated, the virtual machine is
assignedwhich can complete that set of tasks in the cluster usingmin-min
methodology.

Task scheduling mechanism defines the efficiency of user's tasks and
also plays a vital role in resource utilization. The proposed approach is
based on the DBSCAN algorithm where VMs and tasks are clustered
together mapping of tasks and VMs will be done by the proposed task
scheduling algorithm. All VMs and tasks are clustered together based on
their computing size and load. When the request is received by the data
center, the DBSCAN algorithm takes place. The fitness function that is
applied to DBSCAN algorithm is the computing power of the VMwhich is
defined by equation (1). The fitness function depends on the number of
processor and number of MIPS (million of instruction per second)
available for execution. This allows to evaluate both the computational
capacity and current load on the virtual machine.

Fig. 1a. Working of DBSCAN

Fig. 1b. Flow diagram of applying DBSCAN algorithm.
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Execution Timei ¼ TaskLengthi
No: of processor*VM MIPSj

þ Network Delayi (1)

To have a better understanding of the proposed algorithm let us take a
scenario wherein a pool of VMs. The VMs are available in numbers such
as i, j, p, m and have to map with tasks (in number from i, j, p, m) in such
a manner that each task must fulfill its requirement of resources. The
selection of VMs for the task is mapped on the basis of the DBSCAN al-
gorithm in that clusters are made and the algorithm has desired
advancement over traditional scheduling algorithms (such as ACO, min-
min, min-max, etc). Results show that the application of DBSCAN algo-
rithm has better scheduling output.

4.2. Scheduling

Scheduling is based on selecting a cluster with a VM with the least
execution time and network delay. For this process the algorithm used
Min-Min algorithm to find the best cluster. Next step after scheduling, a
few tasks in the clustering are repeated based on the execution power
available and network delay. This allows the algorithm to just check for
few cluster not all large amount of virtual machine which reduces the
search space and the time taken to find the under loaded VM.Where time
complexity of the proposed algorithm is O(nlog n) [37] on the other hand
the complexity of particle swarm optimization in O(n3).

5. Experiment & result

The simulation is carried out on cloudsim 4.0. The simulation is done
using 4 data centers with 2 hosts each, 5 & 10 VM's and the tasks are
scaled from 1000 to 10000. The simulation is done with a scaling task
load to study the performance of the proposed algorithm in underloaded
and overloaded conditions. The work uses SWF (Standard Workload
Format) files from the parallel-workload repository. The work uses NASA
iPSC workload log file. Simulation results show that utilizing DBSCAN as
a solution is having an advantage over PSO (particle swarm optimization)
and ACO (Ant colony Optimization) algorithms. To simulate the pro-
posed algorithm cloudsim simulation framework is used and a compar-
ative study is done with PSO and ACO algorithms in different aspects.
Table 2 shows the 3 type of tasks and their task size and other input
parameters. Table 2 also showcases input parameters taken into consid-
eration of ACO and PSO.

Here in Fig. 2a and b comparative study is showcased using execution
time as a performance parameter. Execution is defined as the total time to
complete all tasks by virtual machines in milliseconds. Execution times
that are taken by ACO and PSO are higher as compared to the proposed
algorithm with increasing task load.

Fig. 2a and b show the comparison between the execution time in
milliseconds against the number of tasks. It can be seen that, as much as
we create the tasks, the execution time is getting less in ACO and PSO
algorithms whereas in DBSCAN, it stays at a minimum. The study shows
the performance with scale resources from 5 VM to 10 VM's, where the
DBSCAN performs better than ACO and PSO. We followed the simulation
parameter of Rawat et al. [25] as shown in Tables 2 and 3. The

performance parameters taken into consideration to study the improve-
ment are: Execution Time, Average Start time and Average Finish time. In
this experiment workload file in SWF format from parallel workloads are
used to generate tasks. The types of VM is listed in Table 4.

Tables 5 and 6 shows the simulation results for execution time as
performance metrics with scaling VM's from 5 to 10. The average start
time with respect to ACO and PSO, DBSCAN performance is much better
as compared to both algorithms as shown in Fig. 3a and b which shows

Table 2
Configuration Parameters of user tasks.

Parameters Values

Task length 300 (small)
2000/3000(medium)
4000(high)

Input File Size 200 Byte
Output File Size 400 Byte
PE 1–2
Population(PSO/ACO) 100
Number of swarm/Ant 10
Fitness Function Execution time

Fig. 2a. Execution time comparisons between PSO, ACO and DBSCAN with
5 VM's.

Fig. 2b. Execution time comparisons between PSO, ACO and DBSCAN with
10 VM's.

Table 3
Parameter for existing algorithm.

PSO Number of Swarms: 100

Initial inertia weight: 0.9

Variable inertia weight: 0.2

ACO Number of Ants:100
Evaporation rate ρ: 0.1
Pheromone factor α:1
Heuristic factor β: 1

Table 4
Types of VM's.

MIPS/Ram (mb)/PE

VM1 1000/512/1 Small machine
VM2 2000/1024/2 Medium machine
VM3 4000/2156/4 Large machine
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that the average start time of task execution is less taking into consid-
eration of 5 VM's and 10 VM's.

Tables 7 and 8 shows the simulation result and the study of result with

increasing task load from 1000 to 10000 tasks and resources with 5 and
10 VM's. Fig. 4a and b shows that the average finishing time when
DBSCAN is used to complete the task is lower than compared to ACO and
PSO algorithms. It shows resource utilization and performance of the
data center in terms of task scheduling is higher and has high throughput.
Tables 9 and 10 shows the simulation result for average finish time and
the study of result with increasing task load from 1000 to 10000 tasks
and resources with 5 and 10 VM's.The above results show that DBSCAN
algorithm has high throughput and high resource utilization. DBSCAN
algorithm outperforms PSO and ACO in the experimental setup. The
DBSCAN algorithm performs better because the other optimization al-
gorithms are iterative and do not consider the resources dependent rather
consider all resources as independent which loses the behavior of the
clustered resources.

Fig. 5 shows a comparative study of various configurations of ACO
and PSO to study the performance that ACO and PSO can achieve as
compared to the proposed algorithm. Figure shows the change in existing
algorithms can not outperform the proposed algorithm. The proposed
algorithm proves to provide better execution time as compared to
existing algorithms. Table 11 shows the configurations of ACO and PSO
studied for comparison. The proposed algorithm shows a better result
because the proposedmodel can create a cluster of resources based on the
computational capacity and performance which allows the algorithm to
find a suitable virtual machine for the task based on real-time perfor-
mance of the resources. Where DBSCAN algorithm allows the best clus-
tering based on multi-parameters.

6. Conclusion

As shown in the result section, the proposed task scheduling for cloud
infrastructure surpasses the performance of the existing ACO and PSO
algorithm with the scaling load with increasing task load with 5 & 10
virtual machines. The performance is studied using execution time,
average start time, average finish time and total execution time as per-
formance parameters. The result shows that the proposed algorithm
performs better over the traditional approaches (PSO, ACO) algorithms
in the context of average start time and average finish time. The evalu-
ation is done by scaling the number of tasks from 100 to 10000 to study

Table 5
Simulation results of execution time with 5 VM's in milliseconds.

No. of Tasks PSO ACO DBSCAN

1000 2112.1 2132.1 1800.28
2000 4044.1 3992.1 3600.46
3000 5968.1 5708.1 5400.63
4000 7760.1 8416.1 7200.87
5000 9944.1 10048.1 9001.04
6000 11944.1 12488.1 10801.2
7000 16172.1 13728.1 12601.5
8000 16312.1 15968.1 14401.6
9000 17944.1 18480.1 16201.8
10000 19940.1 20096.1 18002

Table 6
Simulation results of execution time with 10 VM's in milliseconds.

No. of Tasks PSO ACO DBSCAN

1000 1478.47 1705.68 1080.168
2000 2830.87 3193.68 2160.276
3000 4177.67 4566.48 3240.378
4000 5432.07 6732.88 4320.522
5000 6960.87 8038.48 5400.624
6000 8360.87 9990.48 6480.732
7000 11320.47 10982.48 7560.87
8000 11418.47 12774.48 8640.978
9000 12560.87 14784.08 9721.086
10000 13958.07 16076.88 10801.22

Fig. 3a. Average start time of tasks for 5 VM's.

Fig. 3b. Average start time of tasks for 10 VM's.

Table 7
Simulation results of average start time with 5 VM's in milliseconds.

No. of Tasks PSO ACO DBSCAN

1000 654.3151 625.3151 308.1501
2000 1291.485 1245.485 608.1507
3000 1906.083 1862.083 906.5555
4000 2572.358 2534.358 1260.109
5000 3135.073 3124.073 1531.313
6000 3831.687 3781.687 1870.464
7000 4450.215 4430.215 2200.98
8000 5002.013 4956.013 2408.498
9000 5681.914 5649.914 2783.913
10000 6320.839 6282.839 3098.454

Table 8
Simulation results of average start time with 10 VM's in milliseconds.

No. of Tasks PSO ACO DBSCAN

1000 458.0206 437.7206 215.7051
2000 904.0395 871.8395 425.7055
3000 1334.258 1303.458 634.5889
4000 1800.651 1774.051 882.0763
5000 2194.551 2186.851 1071.919
6000 2682.181 2647.181 1309.324
7000 3115.15 3101.15 1540.686
8000 3501.409 3469.209 1685.949
9000 3977.34 3954.94 1948.739
10000 4424.587 4397.987 2168.918
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the performance in underloaded and overloaded conditions and the
second evaluation with increasing the number of virtual machines i.e.

scaling resources. Under both the conditions of underloaded, average and
overloaded condition the proposed algorithm performs better than the
existing model with a 13% improvement in execution time. The work can
further be extended with more objective functions like cost and power-
efficient algorithms. In the future, the algorithm can be merged with a
machine learning algorithm to further improve the performance of the
algorithm.
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Fig. 4a. Average finish time of tasks for 5 VM's.

Fig. 4b. Average finish time of tasks for 10 VM's.

Table 9
Simulation results of average finish time with 5 VM's in milliseconds.

No. of Tasks PSO ACO DBSCAN

1000 699.304 630.304 313.4951
2000 1319.464 1250.464 613.4957
3000 1926.053 1867.053 911.9005
4000 2556.374 2539.374 1265.454
5000 3173.058 3129.058 1536.658
6000 3809.689 3786.689 1875.809
7000 4463.685 4435.685 2206.325
8000 5029.683 4961.683 2413.843
9000 5695.614 5655.614 2789.258
10000 6321.599 6288.599 3103.799

Table 10
Simulation results of average finish time with 10 VM's in milliseconds.

No. of Tasks PSO ACO DBSCAN

1000 489.5128 441.2128 219.4466
2000 923.6246 875.3246 429.447
3000 1348.237 1306.937 638.3304
4000 1789.462 1777.562 885.8178
5000 2221.14 2190.34 1075.66
6000 2666.782 2650.682 1313.066
7000 3124.579 3104.979 1544.427
8000 3520.778 3473.178 1689.69
9000 3986.93 3958.93 1952.481
10000 4425.119 4402.019 2172.659

Fig. 5. Execution time comparison for various variation in ACO and PSO.

Table 11
Configuration of PSO and ACO.

PSO 1 Population:100, iteration:100,Initial inertia weight: 0.9, Variable inertia
weight: 0.2

ACO
1

Population:100, iteration:100, Evaporation rate ρ: 0.1
Pheromone factor α:1
Heuristic factor β: 1

PSO 2 Population:100, iteration:150,Initial inertia weight: 0.8, Variable
inertia weight: 0.3

ACO
2

Population:100, iteration:100, Evaporation rate ρ: 0.1
Pheromone factor α:0.8
Heuristic factor β: 0.8

PSO 2 Population:100, iteration:200,Initial inertia weight: 0.6, Variable
inertia weight: 0.1

ACO
2

Population:100, iteration:100, Evaporation rate ρ: 0.2
Pheromone factor α:0.7
Heuristic factor β: 0.7
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Abbreviation Definition

ACO: Ant colony Optimization
PSO: Particle Swarm Optimization
VM: Virtual Machine
RAM: Random access memory
BAT: Bat inspired algorithm
GA: Genetic algorithm
MCC: Mobile cloud computing
DE: Datacenter
WOA: Whale Optimization Algorithm
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