
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

7-18-2023 

Fault aware task scheduling in cloud using min-min and DBSCAN Fault aware task scheduling in cloud using min-min and DBSCAN 

S. M.F.D.Syed Mustapha 
Zayed University 

Punit Gupta 
University College Dublin 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Mustapha, S. M.F.D.Syed and Gupta, Punit, "Fault aware task scheduling in cloud using min-min and 
DBSCAN" (2023). All Works. 5938. 
https://zuscholars.zu.ac.ae/works/5938 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5938?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5938&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae


Fault aware task scheduling in cloud using min-min and DBSCAN

S.M.F D Syed Mustapha a,*, Punit Gupta b

a College of Technological Innovation, Zayed University, Dubai, United Arab Emirates
b University College Dublin, Ireland

A B S T R A C T

Cloud computing leverages computing resources by managing these resources globally in a more efficient manner as compared to individual resource services. It
requires us to deliver the resources in a heterogeneous environment and also in a highly dynamic nature. Hence, there is always a risk of resource allocation failure
that can maximize the delay in task execution. Such adverse impact in the cloud environment also raises questions on quality of service (QoS). Resource management
for cloud application and service have bigger challenges and many researchers have proposed several solutions but there is room for improvement. Clustering the
resources clustering and mapping them according to task can also be an option to deal with such task failure or mismanaged resource allocation. Density-based spatial
clustering of applications with noise (DBSCAN) is a stochastic approach-based algorithm which has the capability to cluster the resources in a cloud environment. The
proposed algorithm considers high execution enabled powerful data centers with least fault probability during resource allocation which reduces the probability of
fault and increases the tolerance. The simulation is cone using CloudsSim 5.0 tool kit. The results show 25% average improve in execution time, 6.5% improvement in
number of task completed and 3.48% improvement in count of task failed as compared to ACO, PSO, BB-BC (Bib ¼ g bang Big Crunch) and WHO(Whale optimization
algorithm).

1. Introduction

Today we are living in the cloud computing era where cloud
computing is the key to future computing in both domestic and global
computing technologies. Rapid development of internet-based applica-
tions and expansion of internet usages have compelled the emergence of
cloud computing technologies. Cloud computing provides services to the
users based on pay per use which provides them dynamic and scalable
virtual resources accessible through the internet on demand, and also its
future development of traditional distributed, parallel and grid
computing [1–5]. Cloud computing provides a lifeline for many new
start-up’s due to the availability of cost-effective and reliable resources at
different times [6]. The cloud environment consists of five main key
components, resource pooling, service-on-demand, available resource
scalability, cost effectiveness, and most importantly is its availability [7].

Cloud Computing technology provides complete sets of computing
needs of users with different features in terms of heterogeneity, on de-
mand service, flexibility andmanymore. It has the capability to deal with
the amount of data with respect to task scheduling and resource alloca-
tion policies [8]. Workflow and task scheduling also play a major role in
cloud computing, which are the methods that provide the mapping of
tasks to appropriate resources for execution. Efficient task scheduling is
an essential part of cloud computing which is used to obtain high per-
formance in a cloud environment. To improve the efficiency of cloud

environment, researchers are working on this path where workflow
technology [9,10] promises to provide solutions for these problems in
cloud computing, mainly task scheduling and fault tolerance. The timing
fault, which is a significant concern for fault tolerance, occurs when users
cross the designated timeline or deadline for their tasks. Virtual Machine
(VM) migration policies were also followed to deal with fault, in such
situation data center broker migrate the virtual machine from one data
canter to another to complete the task in minimal time bound [11]. One
more thing that needs to be understood is that during the task execution,
if the user’s task requirement is big, then the time taken to execute the
task will be high [12]. Cloud resources experience fluxes while delivering
performance [13]. As user’s task is expanding due to expansion of
application or data, hence, an unavoidable growing of components will
cause failure if not manageable [14]. Once the task fails, it affects the task
scheduling and can lead to resource mismanagement. Hence, fault
tolerance is a major concern in cloud computing such that mechanism
building is required to deal with the fault. To deal with fault tolerance, it
is the major responsibility of cloudlet scheduler to provide safety and safe
delivery of user task even with the occurrence of failures in cloud envi-
ronment [15]. Enhancing reliability for users, the current focus of cloud
computing is to incorporate fault tolerance mechanisms into the cloud
environment, specifically during task scheduling optimization and
execution. Identifying faults poses a significant challenge, prompting
numerous researchers to explore sustainable algorithms and effective

* Corresponding author.
E-mail addresses: smfdsm@yahoo.com, syed.duani@zu.ac.ae (S.M.FD.S. Mustapha).

Contents lists available at ScienceDirect

Internet of Things and Cyber-Physical Systems
journal homepage: www.keaipublishing.com/en/journals/

internet-of-things-and-cyber-physical-systems

https://doi.org/10.1016/j.iotcps.2023.07.003
Received 17 May 2023; Received in revised form 19 June 2023; Accepted 17 July 2023
Available online 18 July 2023
2667-3452/© 2023 The Authors. Published by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

mailto:smfdsm@yahoo.com
mailto:syed.duani@zu.ac.ae
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iotcps.2023.07.003&domain=pdf
www.sciencedirect.com/science/journal/26673452
www.keaipublishing.com/en/journals/internet-of-things-and-cyber-physical-systems
www.keaipublishing.com/en/journals/internet-of-things-and-cyber-physical-systems
https://doi.org/10.1016/j.iotcps.2023.07.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.iotcps.2023.07.003
https://doi.org/10.1016/j.iotcps.2023.07.003


mechanisms for fault detection and handling. Fault detection plays a key
role in fault tolerance which enables the task scheduler to sense the fault
and execute the event to tolerate the fault and to improve the user’s
experience. This is such an NP-hard problem, probabilistic solution
techniques are less exponential and have to deal with such hard problems
[16]. Fault tolerance awareness is also being considered and many al-
gorithms are being proposed by researchers, most of them are based on
traditional algorithms such as ACO [17](Ant Colony Optimization),
Modified ACO, PSO (Particle Swarm Optimization [18], GA (Genetic
Algorithm), Min-Max, Min-Min [19] and there are manymore algorithms
that are being proposed by researchers. However, there is still some left
to do in order to maximize the resource utilization and an optimistic
approach is needed to deal with the task scheduling fault and to handle
tolerance on it. The attainment of this goal relies on several crucial fac-
tors, such as employing advanced fault-aware algorithms [20–29],
implementing a meticulous task scheduling approach, adopting a robust
VM allocation policy, and taking into account other significant aspects
during the design and proposal of a high-quality cloud environment.

Proposed traditional approaches are good but cloud environments
require a different methodology to deal with fault tolerance and impro-
vised task scheduling. Certain researchers suggest alternative clustering
mechanisms to effectively group application or data elements, aiming to
determine the optimal approach for handling fault tolerance. They
explore various strategies to identify which elements should be clustered
together and determine the most suitable approach for maintaining fault
tolerance within the system. When striving for enhanced task scheduling
and fault handling, the proposed algorithm should aim to maximize
resource utilization, minimize the frequency of faults, and exhibit fault
tolerance. It is imperative to explore improved task scheduling ap-
proaches and consider various other factors during the design process.
Clustering of data of task, user’s request and availability of VMs over the
data center are also being considered. Certain approaches can be applied
to maximize resource utilization and to improve efficiency byminimizing
the fault. DBSCAN algorithm [30] is an advanced algorithm in the
context of clustering and it is an unsupervised learning algorithm which
has the capability to cluster the data (task information). Clusters are the
formation of groups that can be mapped with suitable VM data, in other
words, the user’s tasks/requests for VM can be mapped with the suitable
available VM. With this proposed solution task scheduling can also be
optimized and fault handling can be improved, which leads to
improvement in data center efficiency and resource utilization in a better
manner. Traditional approaches like ACO, GA, PSO [17,18,31,32] etc.
provide solution to handle the fault tolerance. These solutions focused
task scheduling but not the efficiency in terms in-time and out-time, in
other work completion of task and response time. Here proposed algo-
rithm scheduling the user’s task in cluster formwith fittest VM, i.e., based
on user’s requirement, if task demands to highly configured VM then it
will pick up from the highly configured VM pool(cluster) and associates
with that tasks accordingly.

The work is divided into five sections. In section 2, some of the related
works from task scheduling in cloud are discussed. In section 3, the
proposed approach utilizing DBSCAN with the complete formulation is
discussed. In section 4, experimental results are showcased with some
comparative studies. In section 5, the conclusion and the outcomes of the
proposed model in its improvement are discussed.

2. Related work:

Cloud service specialty is that it can be accessed from anywhere or
any time on the basis of subscription, without user interaction tasks being
scheduled and complete. Problems come out when the cloud environ-
ment is lacking with resource requests which creates a dilemma of how
the task is going to be handled. This common situation is known as a fault
in resource allocation or equalization and has to be handled without user
noticing it. Many researchers have proposed solutions for fault aware and
tolerance algorithms like in Ref. [33] that proposed fault power aware

scheduling algorithm that minimizes the power consumption, request
failure rate and minimize cost overall of the data center, but it is limited
to power aware fault tolerance. Similarly fault tolerance and privacy
security algorithm [34] in multi cloud environments where the authors
use DeepSky and virtual storage concept to ensure security, which deal
with SLA (service level agreement) and not with the task scheduling
based fault tolerance. Other research works are done in a similar manner
which provided survey reports over the cloud computing 's different
areas such as hardware fault tolerance [20], software fault tolerance,
proactive fault tolerance and currently proposed solutions for respective
fault tolerance, and they lighten the solutions provided by the re-
searchers. Here hardware fault tolerance can be minimized by using fault
masking and dynamic recovery mechanism and can improve the output.
Similarly, software fault tolerance can be handled with react fault
tolerance technique with checkpoint and replication strategy and
improvise the throughput. The author also introduced fault tolerance
manager architecture and message passing interface which are being
suggested by other researchers. An automatic fault tolerance approach
for scientific workflow [21] that will handle such problems automati-
cally. The proposed solution is having two phases, in the first phase
heuristic hybrid scheduling is being proposed to schedule the workflow
and in the second phase VM migration approach is being proposed. The
proposed work shows that VM can be automatically migrated between
the data centers whenever resource overutilization conditions occur.
Fault tolerance can be handled with trust aware min-min scheduling and
trust aware max-min algorithm to overcome the fault tolerance and to
maximize the resource utilization [22]. Researchers are also considering
adaptive framework-based solutions [23] to handle fault tolerance. Such
methodology is applied by using replicas of VM and the checkpoint de-
tails to deal with fault. A Work Design Scheduling algorithm (WSSS)
deals with Byzantine faults [24] that are not easily detected. Proposed
work also includes check point optimization (TCC) to tolerate and
eliminate the Byzantine fault. Here the WSSS algorithm helps to monitor
server performance and also to detect Byzantine error prone regions
which is related to workflow-based task scheduling and fault tolerance.
Task scheduling with QoS (Quality of Service) is a major concern in cloud
environment, fault tolerance and QoS maintain scheduling algorithm
which is based on CNN (Content Addressable Network) model for mobile
social cloud computing (MSCC) [25]. MSCC handles the task scheduling
but the fault. Another way to schedule tasks in a more prominent way is
to consider checkpoint strategies where checkpoint will be placed in
several places to ensure the availability of appropriate resources. Such
work is proposed [26] optimal checkpoint strategies to maximize the
availability of a highly configured system and reduce the service time of
the system in the terms of finishing time. Another mechanism proposed
to stigmatize the fault tolerance using classification technique [27] which
is based on Naive Bayes classification. This approach is a proactive based
learning technique. It shows how artificial intelligence can provoke
classification in cloud environments [28]. To handle fault in cloud
computing adaptive fault tolerance mechanism being proposed by
researcher [29] that provides a shade to an implementation of cloudlets
and avoid network congestion and monitoring fault detection using
migration method for adaptive approach. Targeting fault tolerance with
avoidance of network congestion and applying VM migration. Proactive
fault tolerance approach [35] in which clusters of VMs are made based on
VM characteristics that deal with network resource consumption issues
and energy being used while a physical machine is executing. The author
compared the proposed approach with a traditional fault tolerance al-
gorithm. Another survey report [36] lists out the challenges in scheduling
techniques which show that good scheduling affects the QoS, Quality of
Experience, latency, and performance of cloud services. Many re-
searchers are working in this area but a highly optimized scheduling
technique is still in demand. Correction of faulty application output and
most of the algorithm result is erroneous andmost of it contains error free
data. Instead of rolling back all the operation in the segment being pro-
posed the error localization [37]. This type of survey report shows that

S.M.FD.S. Mustapha, P. Gupta Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

69



only few focus on fault tolerance mechanisms to deal with fault, even
many researchers also showed their work to predict the fault occurrence
rate with their calculator to predict the fault probability and tolerance
policy to maintain QoS of cloud service. A fault tolerant allocation
(FTVMA) strategy also proposed where data of fail rate, execution time
(start time þ end time), VM (Virtual Machine) properties (Configuration
of VM in terms of mips, core, space, connectivity etc.) are also being
considered. In search for the solution of fault implementing fault aware
scheduling policy to get the prediction of fault and then apply the
tolerance solution. The solutions manifest through the availability of
resources and a fault-aware job scheduling method proposed by
Ref. [38]. This method incorporates a checkpoint mechanism that facil-
itates task migration in the event of resource failure. In this context, an
integral aspect involves considering the failure history, including the
user's satisfaction value, along with the proposal of a proactive fault
tolerance method [39]. These parameters demonstrate their significance
in formulating a robust methodology for cloud environments, effectively
enhancing the performance of cloud resources while maintaining the
quality of service (QoS). In this domain, traditional algorithms have also
been employed to address faults within specific contexts. For instance, a
suggested approach [40] adopts a greedy selection strategy where tasks
are scheduled based on the quality of service (QoS) of the corresponding
services. This entails monitoring QoS information across the cloud
environment and processing task scheduling accordingly. However, a
challenge arises as an additional process is needed to maintain records of
the QoS for each data center and categorize tasks, which introduces
complexity and requires additional parameters. This approach is reactive
fault tolerance and mixes with resource allocation methodology which
tolerates the fault by allowing the resources with respective QoS. To
amplify the resource utilization and minimize the makespan of task Load
Balanced improved Min-Min (LBIMM) algorithm also has been proposed
[19] to allocate the task based on their resource budget constraints and
balancing load. In the realm of cloud environments, a task scheduling
approach with a focus on data-intensive tasks has been proposed by
researcher [41]. This approach prioritizes the consideration of response
time and task deadlines to minimize timespan, communication latency
overhead, and maximize the hit rate. A task scheduling algorithm has
been suggested that takes into account task deadlines when allocating
resources during task scheduling in the cloud environment.

Certain algorithms adopt a holistic perspective of cloud resources,
considering clusters of both unallocated and allocated resources. Task
scheduling takes place based on specific requirements and timespan con-
siderations. Notably, researchers like [42] have delved into this area and
proposed a clustering-based fault tolerance mechanism. This mechanism
focuses on real-time task scheduling to prevent faults and ensure effective
fault tolerance. Furthermore, power consumption is monitored in relation
to resource utilization. Additionally, an efficient approach utilizing fuzzy
logic [43] has been introduced to handle fault tolerance in an effective
manner. Usual error detection algorithm, fuzzy logic based, common error
detection enabled with trained in cloud environment which can detect
fault using analysis detection approach to predict the common error sub-
sequently, initialization fault detection and keep the record of fault rate for
better design of fuzzy logic to enrich the QoS of cloud computing envi-
ronment. A dynamic clustering league championship algorithm (DCLCA)
[30] has been proposed, aiming to cluster cloud resources based on a
predefined set of criteria. This algorithm considers task scheduling and the
allocation of virtual machines (VMs) with the necessary cloud resources.
Clustering of cloud resources sounds like a novel approach but where we
are going to apply also an important, place where it going to apply will
decide whether it is good or bad. In this manner high execution power
enabled data centers which are highly configured having low fault rate.
Another major concern of fault probability which can be distinguished is
the high and low fault probability of data centers. In this concept high
probability of handling fault tolerance in efficient manner is high and also
increase the QoS in both aspects as vendor and cloud service provider also
add plus point to cloud resource utilization.

3. Proposed model

Cloud service is provided based on pay per use which is also required
for maintaining QoS and fault handling as major concern of service. As
discussed, many approaches have been proposed by many researchers to
maintain the QoS and handle fault tolerance in an efficient manner. Some
suggested fuzzy logic-based training to detect the common fault, some
clustering league approach and many more researchers are working on
this problem. The presence of fault issue plays a vital role and affects
efficiency and QoS of the cloud environments. Researcher proposing
different approaches and trying to minimize the fault and tolerate it but
still it requires some improvement. Here if we change our view and filter
the cloud resources with their capability, in this aspect user task can be
scheduled to as per its requirement of resource which enhance the
throughput also maximize the resource utilization in good manner.
Proposed models based on clustering of cloud resource and their prob-
ability of low and high fault prediction. Let’s take a dig upon the cluster
of resources, in this we will collect the data of available resources, their
space and other key elements details, with these details we can make
cluster of them using sort of calculation on the probability of fault
toleration and categorize the low and high fault occurrence. Keeping all
these aspects to schedule the user’s task which enhance the throughput
and maximize the resource utilization with least probability of failure or
fault of data centers. One more key aspect also being proposed here is
having least probability of fault also make sure that task being schedule
to highly configured and least fault probable data center. At the data
center VM creation and VM allocation policy will be preferred with
calculated probability. With the least number of fault rate user task
scheduled and number of faults reduced.

The proposed algorithm is divided into two parts:

a) Clustering
b) Scheduling

3.1. Clustering

Scheduling task to highly configured VM and least fault probability
can be clustered and user task scheduling can be implemented on top of
that, to do so a best performing clustering algorithm is required which
full fill our needs and deeds. Here proposed algorithm which is efficient
and least time consuming to make desired cluster of input value is
Density-based spatial clustering of applications with noise (DBSCAN)
which is stochastic clustering algorithm that help to create the cluster
based on density of elements and their distance with respected to
closeness of item. In cloud environment data centers, their resources,
VMs, and probability of fault occurrence. With this data we can also sub-
cluster the data centers, resources, VMs, and probability of fault occur-
rences like data centers can b sub-clustered with their availability and
their load of task, resource also sub clustered with respect to their
configuration and also be subcategories with their high execution power,
VMs also similarly sub clustered. These clusters distinguished the each
and every resource which will be used to schedule the user task with their
requirement of resource.

DBSCAN is described as stochastic clustering algorithm [30] which
cluster the nodes based on their distance and divide them in cluster on
the basis of distance from the initialize point we calculate or try to adjust
the epsilon distance to get the main centroid point also known as core
point which having two edges which are calculated with the help of
distance that we initially put and calculate the radius of core points. The
elements lying in that region will be consider in the cluster of that core
point some elements or node lying at the edge of the region which draw
its region with same procedure as core point. Here noisy data which
doesn’t meant to in any cluster discarded.

DBSCAN clustering algorithm can be divided in three segments,
initially first part of the algorithm says that it needs to choose the epsilon

S.M.FD.S. Mustapha, P. Gupta Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

70



value that is used to calculate the distance where territory of the core
point will be marked from the core point, and with this marked region, it
calculates the points lying within that region. Those points lying in this
region are having similarity with their values. The second part of
DBSCAN is to take selection of core or centroid point recursively till be
get to the edge of the point or elements. The last phase of algorithm is to
draw the border line of the points or in other words we can say finding
the boarder of points or elements. Points which are not in range called
noisy data which will be discarded.

As we can see from Fig. 1(a), it can be observed that core c1, c2 are
connected with border point a, and b, also can be observed that a path
can be drawn from border point a to b which show the reachability throw
core points c1, c2. Edge point which lying at boarder of a, b call border
point beyond the reachability point considered as noisy points, these
noisy points discarded. Some point lying in both border and core point
region having both capability of core point as well as boarder points.

NðpÞ¼ fq ε D j dist ðp; qÞg < ¼ ε (i)

Where N(p)- Neighbour of a point p in the data set D.

dist (p, q) - distance between two neighbour.
so the core point can be defined as if jNðpÞj >¼ mPts.

A border point has fewer than mpts (minimum points) within it
ε-Neighbourhood (N).

Now for direct density reachability from point b if-

1. jNðbÞj >¼ mPts; i:e;b is a core point.
2. a ε NðbÞ; i.e, a is in the epsilon neighbourhood of b.

Also need to look for density reachable from a point b with respect to
ε and mPts,

For a chain of points b1, b2, b3 … ….bn, where b1 ¼ b, bn ¼ a in such
that biþ1 is direct density reachable from point b.

Cloud environments resources also can be considered as density of
elements where VMs could be high configured or not. It is important to
understand that highly configured virtual machines (VMs) with sub-
stantial computing power result in a lower failure probability for user
tasks. When user tasks are scheduled on such highly configured VMs, the
ratio of failure probability decreases significantly.

The scheduling of user tasks involves considering task requests and
resource availability. User tasks can be viewed as individual elements,
while virtual machines (VMs) can be seen as clusters of VMs with their
specific specifications. When a user task arrives in the scheduler, it
searches for the most suitable VM based on its core requirements. To
achieve this, a proposed model based on DBSCAN is utilized, which
handles fault tolerance by rescheduling tasks with the best fit VM. The
selection of the best-fit VM is determined by choosing the VM with the
least distance within the cluster. As we can see in the above figure noisy
elements are those VMwhich are not being part of cluster and terminated
immediately, searching for best fittest goes till the border point of cluster
from cluster to cluster till the end point of border of cluster.

Fig. 1(a). DBSCAN basic structure with core points c1, c2, border points a and b [30].

VM’S¼ðvm1; vm2; vm3;…………………:vmiÞ ½set of VMs over the cloud environments�

VM’SC ¼ðvvm1; vm2; vm3;…………………:vmnÞ ½set of highly configured VMs over the cloud environments�

S.M.FD.S. Mustapha, P. Gupta Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

71



tskT¼ðt1; t2; t3;……………::tiÞ½set of tasks�

T(2)asks scheduling first as per user task arrived and mapping with
best suitable strategies, when tasks has been scaled or required high
configured VMs then need to look for density reachable approach of
DBSCAN and associated with best fit VM’s for tasks. As shown in
Fig. 1(a), the blue dots show the VM’s which having high configured VMs
and yellow dots show ordinary VMs which are being part of cloud en-
vironments. Noisy elements are nothing but VMs which are either busy or

not having enough configuration to satisfy the task, so all such noisy VMs
are ignored while scheduling.

Now the tasks are going to be mapped with most suitable highly
configured VMs even users request made with scalability inputs.

User tskT¼
X

VM’Sc ffrom i to ng

Here the tasks are going to be associated with best suitable VMs.
Fitness function:

Fig. 1(b). Flow diagram of proposed task scheduling algorithm.

tskT¼ðtreq1; treq2; treq3;……………::treqnÞ½set of tasks which required high configured VMs�

S.M.FD.S. Mustapha, P. Gupta Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

72



Execution timei ¼ Task Length
VM MIPS*core

(1)

f ðnÞ¼α*
1

Number of task failed
þ β*Execution time (2)

Where αþ β ¼ 1.

3.2. Scheduling

In second phase the min-min algorithm is used to select a VM from the
cluster of VM with least execution time and least faults in the cluster
based on the fitness value shown in Equation (2). Fig. 1(b) shows the

working of the proposed algorithm with clustering and scheduling using
min-min algorithm. This allows the VM which is the least loaded in the
cluster. Clusters are basically the group of VM's with the same computing
power and failure probability. The clustering is repeated after equal in-
terval of time to maintain the VM based on their performance in the
cluster. So, migration of VM from one cluster to another cluster takes
place in re-clustering phase.

4. Experiment & result

The simulation is carried out on Cloudsim 5.0. The simulation is done
using 4 data centers with 2 host each task varying from 1000 to 10000 to
study the performance in underloaded and over loaded condition. The
simulation is done with scaling task load in order to study the perfor-
mance of the proposed algorithm in under loaded and over loaded con-
dition. To study the work with scaled resources the simulation is done
with 5 VM’s and 10 VM’s. The work uses SWF(Standard Workload
Format) files from parallel-workload repository. The work uses NASA
iPSC workload log file. The details are shown in Table 1, Table 2 and
Table 3 accordingly.

The results show that the proposed fault aware DBSCAN performs
better than exiting ACO,PSO, BB-BC [44] and WHO [45] algorithms. The
performance Matrix taken into consideration is the number of task failed,
number of task completed and execution time.

Fig. 2(a) shows the comparative study of execution time i.e. the total
time taken to execute the tasks taking into consideration 5 VM's. The
experiment is done with scaling tasks to study the performance with
increasing load. The result shows that the proposed model takes less time
to complete tasks as compared to PSO and ACO.

Fig. 2(b) shows the comparative study of execution time i.e. the total
time taken to execute the tasks taking into consideration 10 VM's. The
experiment is done with scaling tasks to study the performance with
increasing load. The result shows that the proposed model takes less time
to complete tasks as compared to PSO and ACO. The study is important
because even the proposed model completed most of the tasks and with
least time.

Fig. 3(a). shows a comparative study of number of tasks completed for
5 VM's. The study shows that the proposed model completed more tasks
as compared to exiting models. This is because the model is able to find a
least faulty data center and VM with least failure probability.

where the experiment scales the task from 1000 to 5000 tasks.
Fig. 3(b) shows the comparative study of number of tasks complete

for 10 VM's to study the performance with increasing infrastructure. The
experiment is done with scaling tasks to study the performance with
increasing load. The result shows that the proposed model completes
more tasks as compared to PSO and ACO. As shown in Fig. 3(a) and (b)

Table 1
Configuration Parameters of user tasks.

Parameters Values

Task length 300 (small)
2000/3000(medium)
4000(high)

Input File Size 200 Byte
Output File Size 400 Byte
PE 1–2
Population(PSO/ACO) 100
Number of swarm/Ant 10
Fitness Function Execution time

Table 2
Types of VM’s.

MIPS/Ram (mb)/PE

VM1 1000/512/1 Small machine
VM2 2000/1024/2 Medium machine
VM3 4000/2156/4 Large machine

Table 3
Parameter for existing algorithm.

DBSCAN Min point: 10
Distance: euclidean
Eps: 0.5

PSO Number of Swarms: 100
Initial inertia weight: 0.9
Variable inertia weight: 0.2

ACO Number of Ants:100
Evaporation rate ρ: 0.1
Pheromone factor α:1
Heuristic factor β: 1

Fig. 2(a). Execution time comparisons for 5 VM's.

S.M.FD.S. Mustapha, P. Gupta Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

73



for task count 100 and 2000 the performance of proposed algorithm is
poor due to small size of clusters and initial phase of the algorithm, but
with increasing load the performance of the algorithm improves with
increasing number of tasks.

Similarly Fig. 4(a) and (b) shows the comparative study of number of
tasks that failed for 5 and 10 VM's. The experiment is done with scaling

tasks to study the performance with increasing load. The result shows
that with the proposedmodel less number of task are failed as compare to
PSO and ACO exiting algorithms. The study is important because the
algorithm is able to find the least failure probability infrastructure which
improves the failure tolerance of the system. The proposed model im-
proves the reliability of the system as the number of faults reduces. In the

Fig. 2(b). Execution time comparisons for 10 VM's.

Fig. 3(a). Number of tasks Completed comparisons for 5 VM's.

Fig. 3(b). Number of tasks Completed comparisons for 10VM's.

S.M.FD.S. Mustapha, P. Gupta Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

74



beginning when the cluster size is small, the proposed algorithm shows
worst results but with increasing number of task, the number of task that
failed reduces with time.

5. Conclusion

The result section demonstrates the effectiveness of the proposed
algorithm for task scheduling in cloud infrastructure The result shows
that the proposed algorithm outperforms exiting ACO, PSO, BB-BC [44]
and WHO [45] algorithms for task scheduling in cloud with scaling load
taking 5 virtual machines and 2 data centers. The proposed model per-
formance is studied using number task that failed, completed and total
execution time as performance parameters. The performance is studied
using execution time, average start time, average finish time and total
execution time as performance parameters. The result shows that the
proposed algorithm performs better over the existing approaches algo-
rithms in the context of execution time, number of tasks completed and
failed. The evaluation is done by scaling the number of tasks from 100 to
10000 to study the performance in underloaded and overloaded condi-
tions and the second evaluation with increasing the number of virtual

machines i.e. scaling resources. Under both the conditions of under-
loaded, average and overloaded condition the proposed algorithm per-
forms better than the existing model with a 25% improvement in
execution time 6.5% improvement in number of tasks completed and
3.48% reduction in number of task failed. The work can further be
extended with more objective functions like cost and power efficient
algorithm. In future the algorithm can be merged with machine learning
algorithm to further improve the performance of the algorithm.

Data availability

The dataset for simulation is supported by parallel http://wor
kload.com for real-time analysis.

Funding

The research project is funded by Startup Research Grant R21043
from Zayed University, Dubai, United Arab Emirates.

Fig. 4(a). Number of tasks failed comparisons for 5 VM's.

Fig. 4(b). Number of tasks failed comparisons for 10 VM's.

S.M.FD.S. Mustapha, P. Gupta Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

75

http://workload.com
http://workload.com


Declaration of competing interest

The authors have no conflicts of interest to declare, and there is no
financial interest to report.

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing,
Commun. ACM 53 (4) (2010) 50–58.

[2] K. Chen, W.M. Zheng, Cloud computing: system instances and current research,
J. Softw. 20 (5) (2009) 1337–1348.

[3] J.X. Zhang, X.M. Gu, C. Zheng, Survey of research progress on cloud computing,
Appl. Res. Comput. 27 (2) (2010) 429–433.

[4] B.P. Rimal, E. Choi, A service-oriented taxonomical spectrum, cloudy challenges
and opportunities of cloud computing, Int. J. Commun. Syst. 25 (2012) 796–819.

[5] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-degree
compared, Grid Comput. Environ. Workshop (GCE’08) (2008) 1–10, https://
doi.org/10.1109/GCE.2008.4738445.

[6] R.K. Gupta, R.K. Pateriya, Balance resource utilization (BRU) approach for the
dynamic load balancing in cloud environment by using AR prediction model,
J. Organ. End User Comput. 29 (4) (2017) 24–50, https://doi.org/10.4018/
JOEUC.2017100102.

[7] B. Hicham, B. Said, A. Touhafi, A. Ezzati, Deadline and Energy Aware Task
Scheduling in Cloud Computing, 2018. Paper presented at the 2018 4th
International Conference on Cloud Computing Technologies and Applications
(Cloudtech).

[8] Z.C. Papazchos, H.D. Karatza, Scheduling of frequently communicating tasks, Int. J.
Commun. Syst. 25 (2012) 146–157.

[9] H. Luo, Y. Fan, C. Wu, Over view of workflow technology, J. Softw. 11 (7) (2000)
899–907.

[10] N. Kaur, T.S. Aulakh, R.S. Cheema, Comparison of workflow scheduling algorithms
in cloud computing, Int. J. Adv. Comput. Sci. Appl. 2 (10) (2011) 81–86.

[11] Z. Ahmad, A.I. Jehangiri, M. Iftikhar, A.I. Umer, Data-oriented scheduling with
dynamic-clustering fault-tolerant technique for scientific workflows in clouds,
Program. Comput. Software 45 (8) (2019) 506–516.

[12] B. Wu, K. Hao, X. Cai, T. Wang, An integrated algorithm for multiagent fault-
tolerant scheduling based on MOEA, Future Generat. Comput. Syst. 94 (2019)
51–61.

[13] A.Y. Gital, A.S. Ismail, M. Chen, H. Chiroma, A framework for the design of cloud
based collaborative virtual environment architecture, in: Proceedings of the
International Multi Conference of Engineers and Computer Scientists, 2014.

[14] Y.-H. Moon, C.-H. Youn, Multihybrid job scheduling for fault-tolerant distributed
computing in policy-constrained resource networks, Comput. Network. 82 (2015)
81–95.

[15] J. He, M. Dong, K. Ota, M. Fan, G. Wang, NetSecCC: a scalable and fault-tolerant
architecture for cloud computing security, Peer-to-Peer Netw Appl 9 (1) (2014)
67–81.

[16] N.M. Nawi, A. Khan, M.Z. Rehman, H. Chiroma, T. Herawan, Weight optimization
in recurrent neural networks with hybrid metaheuristic Cuckoo search techniques
for data classification, Math. Probl Eng. (2015) 1–18.

[17] L. Zuo, L. Shu, S. Dong, C. Zhu, T. Hara, A multi-objective optimization scheduling
method based on the ant colony algorithm in cloud computing, IEEE Access 3
(2015) 2687–2699.

[18] M. Farid, R. Latip, M. Hussin, N.A.W. Abdul Hamid, A survey on QoS requirements
based on particle swarm optimization scheduling techniques for workflow
scheduling in cloud computing, Symmetry 12 (4) (2020) 551.

[19] H. Chen, F. Wang, N. Helian, G. Akanmu, User-priority guided Min-Min scheduling
algorithm for load balancing in cloud computing, PARCOMPTECH) (2013), https://
doi.org/10.1109/ParCompTech.2013.6621389. Paper presented at the 2013
national conference on parallel computing technologies.

[20] Jasbir Kaur, Supriya Kinger, Analysis of different techniques used for fault
tolerance, IJCSIT) Int. J. Comput. Sci. Inform. Technol. 5 (3) (2014) 4086–4090.

[21] Anju Bala, Inderveer Chana, Autonomic fault tolerant scheduling approach for
scientific workflows in Cloud computing, Concurr. Eng. 23 (1) (2015) 27–39.

[22] Punit Gupta, et al., Trust Aware Workflow Scheduling in Scalable Cloud
Environment, 2019.

[23] Mohammed Amoon, Adaptive framework for reliable cloud computing
environment, IEEE Access 4 (2016) 9469–9478.

[24] Sathya Chinnathambi, et al., Scheduling and checkpointing optimization algorithm
for byzantine fault tolerance in cloud clusters, Cluster Comput. 22 (6) (2019)
14637–14650.

[25] SookKyong Choi, KwangSik Chung, Heonchang Yu, Fault tolerance and QoS
scheduling using CAN in mobile social cloud computing, Cluster Comput. 17 (3)
(2014) 911–926.

[26] Punit Gupta, Satya Prakash Ghrera, Load and fault aware honey bee scheduling
algorithm for cloud infrastructure, in: Proceedings of the 3rd International
Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA)
2014, Springer, Cham, 2015.

[27] Bashir Mohammed, et al., Failover strategy for fault tolerance in cloud computing
environment, Software Pract. Ex. 47 (9) (2017) 1243–1274.

[28] Deepak Kochhar, H. Jabanjalin, An approach for fault tolerance in cloud computing
using machine learning technique, Int. J. Pure Appl. Math. 117 (22) (2017)
345–351.

[29] T. Tamilvizhi, B. Parvathavarthini, A novel method for adaptive fault tolerance
during load balancing in cloud computing, Cluster Comput. 22 (5) (2019)
10425–10438.

[30] Derya Birant, Kut Alp, ST-DBSCAN: an algorithm for clustering spatial–temporal
data, Data Knowl. Eng. 60 (1) (2007) 208–221.

[31] Z. Zhou, F. Li, H. Zhu, H. Xie, J.H. Abawajy, M.U. Chowdhury, An improved genetic
algorithm using greedy strategy toward task scheduling optimization in cloud
environments, Neural Comput. Appl. 32 (2020) 1531–1541.

[32] P.S. Rawat, P. Dimri, S. Kanrar, G.P. Saroha, Optimize task allocation in cloud
environment based on big-bang big-crunch, Wireless Pers. Commun. 115 (2020)
1711–1754.

[33] Punit Gupta, S.P. Ghrera, Power and fault aware reliable resource allocation for
cloud infrastructure, Proc. Comput. Sci. 78 (2016) 457–463.

[34] Maha Tebaa, Said EL Hajji, From single to multi-clouds computing privacy and fault
tolerance, IERI Procedia 10 (2014) 112–118.

[35] Jialei Liu, et al., Using proactive fault-tolerance approach to enhance cloud service
reliability, IEEE Trans. Cloud Comput. 6 (4) (2016) 1191–1202.

[36] Hassan Asghar, Eun-Sung Jung, A Survey on Scheduling Techniques in the Edge
Cloud: Issues, Challenges and Future Directions, 2022 arXiv preprint arXiv:
2202.07799.

[37] Joseph Sloan, Rakesh Kumar, Greg Bronevetsky, An algorithmic approach to error
localization and partial recomputation for low-overhead fault tolerance, in: 2013
43rd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), IEEE, 2013.

[38] A. Latiff, M. Shafie, A checkpointed league championship algorithm-based cloud
scheduling scheme with secure fault tolerance responsiveness, J Applied Soft
Computing 61 (2017) 670–680, https://doi.org/10.1016/j.asoc.2017.08.048.

[39] V. Sathiyamoorthi, et al., Adaptive fault tolerant resource allocation scheme for
cloud computing environments, J. Organ. End User Comput. 33 (5) (2021)
135–152.

[40] J. Li, L. Feng, S. Fang, An greedy-based job scheduling algorithm in cloud
computing, J. Softw. 9 (4) (2014) 921–925, https://doi.org/10.4304/jsw.9.4.921-
925.

[41] P. Suresh, P. Balasubramanie, User demand aware scheduling algorithm for data
intensive tasks in grid environment, Eur. J. Sci. Res. 74 (4) (2012) 609–616.

[42] M. Khaldi, M. Rebbah, B. Meftah, O. Smail, Fault tolerance for a scientific workflow
system in a cloud computing environment, Int. J. Comput. Appl. 42 (7) (2020)
705–714, https://doi.org/10.1080/12062 12X.2019.16476 51.

[43] M. Khaldi, M. Rebbah, B. Meftah, O. Smail, Fault tolerance for a scientific workflow
system in a cloud computing environment, Int. J. Comput. Appl. 42 (7) (2020)
705–714, https://doi.org/10.1080/12062 12X.2019.16476 51.

[44] P. Gupta, D.K. Saini, P.S. Rawat, S. Bhagat, Hybrid Big Bang-Big Crunch based
resource scheduling to improve QoS in cloud infrastructure, J. Intell. Fuzzy Syst. 43
(2) (2022) 1887–1895.

[45] P. Gupta, S. Bhagat, D.K. Saini, A. Kumar, M. Alahmadi, P.C. Sharma, Hybrid whale
optimization algorithm for resource optimization in cloud E-healthcare
applications, Comput. Mater. Continua (CMC) 71 (3) (2022).

S.M.FD.S. Mustapha, P. Gupta Internet of Things and Cyber-Physical Systems 4 (2024) 68–76

76

http://refhub.elsevier.com/S2667-3452(23)00046-9/sref1
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref1
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref1
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref1
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref2
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref2
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref2
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref3
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref3
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref3
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref4
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref4
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref4
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.4018/JOEUC.2017100102
https://doi.org/10.4018/JOEUC.2017100102
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref32
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref32
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref32
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref32
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref6
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref6
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref6
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref7
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref7
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref7
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref8
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref8
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref8
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref9
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref9
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref9
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref9
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref10
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref10
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref10
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref10
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref11
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref11
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref11
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref12
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref12
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref12
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref12
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref13
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref13
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref13
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref13
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref14
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref14
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref14
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref14
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref41
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref41
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref41
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref41
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref42
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref42
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref42
https://doi.org/10.1109/ParCompTech.2013.6621389
https://doi.org/10.1109/ParCompTech.2013.6621389
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref17
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref17
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref17
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref18
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref18
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref18
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref19
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref19
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref20
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref20
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref20
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref21
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref21
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref21
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref21
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref22
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref22
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref22
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref22
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref23
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref23
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref23
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref23
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref24
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref24
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref24
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref25
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref25
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref25
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref25
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref26
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref26
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref26
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref26
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref40
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref40
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref40
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref40
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref43
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref43
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref43
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref43
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref44
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref44
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref44
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref44
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref15
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref15
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref15
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref16
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref16
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref16
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref27
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref27
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref27
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref28
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref28
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref28
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref29
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref29
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref29
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref29
https://doi.org/10.1016/j.asoc.2017.08.048
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref34
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref34
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref34
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref34
https://doi.org/10.4304/jsw.9.4.921-925
https://doi.org/10.4304/jsw.9.4.921-925
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref37
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref37
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref37
https://doi.org/10.1080/12062 12X.2019.16476 51
https://doi.org/10.1080/12062 12X.2019.16476 51
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref45
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref45
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref45
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref45
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref46
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref46
http://refhub.elsevier.com/S2667-3452(23)00046-9/sref46

	Fault aware task scheduling in cloud using min-min and DBSCAN
	Recommended Citation

	Fault aware task scheduling in cloud using min-min and DBSCAN
	1. Introduction
	2. Related work:
	3. Proposed model
	3.1. Clustering
	3.2. Scheduling

	4. Experiment & result
	5. Conclusion
	Data availability
	Funding
	Declaration of competing interest
	References


