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Abstract: The rise in crime rates in many parts of the world, coupled with advancements in computer
vision, has increased the need for automated crime detection services. To address this issue, we
propose a new approach for detecting suspicious behavior as a means of preventing shoplifting.
Existing methods are based on the use of convolutional neural networks that rely on extracting
spatial features from pixel values. In contrast, our proposed method employs object detection based
on YOLOv5 with Deep Sort to track people through a video, using the resulting bounding box
coordinates as temporal features. The extracted temporal features are then modeled as a time-series
classification problem. The proposed method was tested on the popular UCF Crime dataset, and
benchmarked against the current state-of-the-art robust temporal feature magnitude (RTFM) method,
which relies on the Inflated 3D ConvNet (I3D) preprocessing method. Our results demonstrate an
impressive 8.45-fold increase in detection inference speed compared to the state-of-the-art RTFM,
along with an F1 score of 92%,outperforming RTFM by 3%. Furthermore, our method achieved these
results without requiring expensive data augmentation or image feature extraction.

Keywords: automated crime detection; suspicious behavior; crime prevention; temporal features;
time-series classification

1. Introduction

The problem of suspicious-behavior detection is crucial in addressing crime prevention.
Despite a myriad of work related to anomaly detection in videos, there has been little focus
on suspicious-behavior detection tasks for crime prevention. Crime prevention detection
is a very difficult task due to several reasons. First, crime prevention requires detecting
suspicious behavior before the actual crime occurs. This is a considerable challenge, since
typical suspicious behavior in a slow-paced environment is highly similar to normal
behavior. Second, abnormal actions from suspicious activities generally occur at a slower
pace compared to actual criminal activities such as theft, burglary, and robbery. Third, it
often requires relatively longer observations of a person’s activity before any inference can
be made. Lastly, there are significantly fewer data available for training the model. In this
project, we propose an effective method for detecting suspicious behavior that works with
minimal training.

With the advancement of computer vision technology, various techniques have been
proposed for crime prevention through video-anomaly detection. However, the effective-
ness of these techniques varies depending on the use cases, such as traffic monitoring,
crowd monitoring, and security surveillance. In this paper, we specifically focus on the use
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case of retail theft prevention, which aims to identify suspicious behavior in retail stores
such as shoplifting or similar types of theft.

Several state-of-the-art techniques for preventing shoplifting have been proposed,
including those by Kirichenko L. et al. [1], Gandapur et al. [2], Qin Z. et al. [3], and Wu
Y. et al. [4]. These techniques heavily rely on CNN-based feature extraction methods that
use pretrained models to extract visual appearance and optical flow features in order to
represent spatiotemporal information. However, such methods are computationally costly,
and prone to excessive and redundant information. For example, Inflated 3D ConvNet
(I3D) is the state-of-the-art deep learning preprocessing method for video classification and
action recognition in computer vision. It was proposed by researchers at Google in 2017,
and it builds on the success of 2D convolutional neural networks (CNNs) by extending
them to 3D. I3D uses 3D convolutional layers to process spatiotemporal data in video
frames. It starts with a pretrained 2D CNN on ImageNet, and then extends it to 3D by
inflating each 2D filter into a 3D filter. This allows for the network to capture both spatial
and temporal information from video frames. The I3D achieved state-of-the-art results on
several benchmark datasets for action recognition, including Kinetics and HMDB51. It is
widely used in research and applications related to security surveillance.

The I3D method is a powerful approach to video analysis, but it demands a consid-
erable amount of processing power to preprocess each frame that can take around 0.5 to
5 s to preprocess a single frame using I3D on a high-spec hardware configuration. Object
detection techniques such as YOLO, Faster R-CNN, and Mask R-CNN, on the other hand,
can perform real-time video processing, detecting and extracting human object bounding
box coordinates at a rate of 30 frames per second or higher. Thus, by efficiently utilizing
video frame features in real time to detect suspicious behavior (without relying on I3D or
similar approach), it is possible to significantly reduce the inference detection time.

The question that arises next is which features we should extract from video frames to
effectively detect suspicious behaviors. Our hypothesis is that, by examining a sequence
of video frames depicting a person’s activity and behavior, we can increase the likelihood
of detecting suspicious behavior. Time-series deep learning classification models can be
trained to track and learn the sequences of people’s actions and movements, which can lead
to more efficient and improved detection performance. To achieve this, we propose a novel
approach that involves extracting the bounding box features of individuals in CCTV videos,
and analyzing the data using time-series deep learning algorithms. We aim to address the
following research questions:

• How effective is using a sequence of video frames depicting a person’s activity and
behavior in increasing the likelihood of detecting suspicious behavior?

• How can time-series deep learning classification models be trained to track and learn
sequences of individual actions and movements to improve detection performance?

• How does the proposed method compare to the I3D preprocessing method and the
state-of-the-art Robust Temporal Feature Magnitude (RTFM) deep learning anomaly
detection method in terms of detection performance on shoplifting incidents?

To this end, we propose YOLOv5 with Deep Sort method to detect and track individu-
als across multiple frames in video sequences. We then extract the resulting bounding box
coordinates as temporal features and use them as inputs to time-series classification deep
learning models. We evaluated our approach using the UCF Crime dataset, which includes
labeled video frames of shoplifting incidents. Our proposed method was compared against
the state-of-the-art Robust Temporal Feature Magnitude (RTFM) deep learning anomaly
detection method. Our results revealed that our method exhibits faster detection speed and
higher accuracy scores. Impressively, we achieved an 8.45-fold increase in detection speed
and a F1 score of 92%, surpassing RTFM by 3%, all without the need for data augmentation
or I3D image feature extraction.

The paper is organized as follows: Section 2 provides a review of the related work,
while Section 3 details the proposed method. Section 4 describes the used datasets and
the applied preprocessing techniques. The experimental setup is discussed in Section 5,
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while Section 6 presents the results and their discussion. Lastly, in Section 7, the paper is
concluded with a summary of the findings.

2. Related Work

Anomaly detection has been widely studied in computer vision [5–9] in various prob-
lem settings such as fighting/violence alerts, people fall detection, unusual pedestrian mo-
tion patterns, and traffic accidents. Three common techniques have been extensively studied
in the field of video anomaly detection, namely, unsupervised [10–15], supervised [16–18],
and semi-supervised/weakly supervised [19–24]. The unsupervised technique attempts to
detect abnormal activities where no labeled normal/abnormal training data are provided.
The supervised technique, on the other hand, uses labeled normal/anomalous data during
the training process. Recently, the semi-supervised/weakly supervised technique has
been discovered, and it is often cited as the state-of-the-art technique for video anomaly
detection. The weakly supervised technique uses video-level labels to selectively segment
videos into normal and abnormal frames. During the training phase, if a video comprises
all normal events, each frame is labeled as normal. However, if the video has at least one
abnormal frame, all the frames in the video (including the normal event frames) are labeled
as abnormal. This labeling assignment is known as “noisy labels” in the literature because
normal frames are labeled as abnormal. After such labeling, a rank loss is applied to assign
higher scores to the anomaly frame in the video. Recent results [19,20] showed that these
approaches are very effective in video anomaly detection.

Due to the extensive work of video anomaly detection, it is not feasible or practical to
compare the effectiveness of different techniques without considering the use cases. In this
paper, we specifically focus on shoplifting crime prevention. The objective is to detect a
crime via the suspicious behavior of individuals before the actual shoplifting crime occurs.

Kirichenko L. et al. [2] presented a hybrid neural network for detecting shoplifting
in video records. The network combined convolutional and recurrent networks, with
gated recurrent units being used as the recurrent component. Ansari et al. [25] proposed a
dual-stream convolutional neural network and a long short-term memory (LSTM)-based
deep learner to extract appearance and salient motion features from video sequences.

Gandapur et al. [2] proposed a three-layered bidirectional gate recurrent unit (BiGRU)
and a convolutional neural network (CNN). The CNN was used to extract the spatial
features from video frames, whereas temporal and local motion features were extracted
by the BiGRU from the CNN-extracted features of multiple frames. The limitation of this
method is due to the video frames of certain actions that need to be manually chosen as part
of the video-processing phase. The approach also requires ranked-based loss to effectively
detect and classify suspicious activity.

Qin Z. et al. [3] proposed a two-stage method to detect and prevent criminal activities
in shopping malls in real time. The first stage involves the CNN feature extraction method
using a pretrained VGG-16 model. The second involves a classification task using either
SVM or LSTM using a custom ranking loss.

Wu Y. et al. [4] proposed a three-dimensional convolutional neural network (3D-CNN)
to extract information features from continuous multiframe cube data and acquire the
features of spatial–temporal dimensions. A three-dimensional CNN was proposed to
represent time-series information on continuous multiframe cube data. The input data
of the three-dimensional CNN were cube data composed of multiple consecutive video
frames aiming to improve crime detection events.

These state-of-the-art techniques rely heavily on CNN-based feature extraction meth-
ods (e.g., I3D, S3D, CLIP, RAFT, ResNet, and VGGish) using a pretrained model to extract
visual appearance and optical flow features in order to represent spatiotemporal informa-
tion. The learned feature representations from such methods are susceptible to excessive
and redundant information because they track all surfaces and edges on each frame. Fur-
thermore, they are computationally costly because each object and scene typically move in
each video frame. In this paper, we propose a much simpler and more efficient approach to
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capturing and extracting spatiotemporal features. Rather than capturing all motion objects
and surfaces, we aimed to capture the sequence of the bounding boxes of individuals at
consecutive frames. This minimizes the motion-feature representation into four attributes
(i.e., x1, x2, y1, y2) for each person. The movement velocity of each person is also tracked
and represented as a sequence of time-series data points. This approach has significantly
fewer motion-feature representations and less computational overhead compared to those
of existing approaches.

3. Proposed Method

The proposed approach is based on a two-stage algorithm consisting of feature extrac-
tion and deep-learning time-series analysis. The first stage uses YOLOv5 with Deep Sort
to track individuals across a video and capture the bounding box information that tracks
each individual in the video. The extracted information from the bounding boxes is used to
create a new dataset. In the second stage, the extracted temporal features are supplied to
deep-learning models for analysis and classification.

The first stage employs object detection and video tracking algorithm YOLOv5 with
Deep Sort [26] to track multiple individuals across each video. This allows for the extraction
of bounding box features across multiple time steps. Hence, the video-based dataset is
converted into a tabular format, as shown in Figure 1.

Figure 1. Extracted dataset format.

The second stage of the proposed method involves applying various state-of-the-art
time-series deep-learning methods to the extracted dataset. We explored different time-
series classification algorithms imported from the popular Time Series Artificial Intelligence
(TSAI) library.

The final dataset is constructed by noting the video number, the frame number, and
the bounding box coordinates of each person in the frame as identified by YOLOv5 with
Deep Sort. An example of the final dataset structure is shown in Figure 1. The description
of the columns in the dataset is provided in Figure 2. This conversion of video data into a
tabular format using YOLOv5 with Deep Sort leads to rapid data processing and includes
no other preprocessing or particular image data augmentation techniques, allowing for
quick data augmentation into the described tabular format.



Sensors 2023, 23, 5811 5 of 19

Figure 2. Description of the columns in Figure 1.

We employed YOLOv5 with Deep Sort using the default parameters loaded with the
pretrained weights from crowdhuman_yolov5m [26]. This set of weights were chosen
because they were trained to identify humans in crowded scenarios, which applies to
our case. Moreover, we configured the model to only track humans and not any other
animals/objects by setting the class parameter to 0. Hence, all the resulting bounding boxes
tracked people through multiple frames.

The proposed method for tracking people through videos reduces the impact of
cluttered videos, and removes any possible dependency of the classification model on
the scene itself, which allows for better generalization. Instead, a popular model such
as YOLOv5 with Deep Sort is able to easily identify humans in different scenarios and
focus on only that, while classification models focus more on analyzing the movement and
positions of people. The proposed pipeline is illustrated in Figure 3.

Figure 3. Proposed model pipeline.

An example of the bounding boxes tracking people in successive frames can be seen
below. Examining the video at 18, 20, 33, 36, 41, and 48 s in Figure 4 demonstrates how
Deep Sort was able to track two individuals in a store and consistently label each person as
P23 and P24 (Persons Number 23 and 24). This implementation successfully allowed for
tracking multiple people, even if they switched positions, as was the case at 41 and 48 s,
when the people switched positions, but the algorithm was able to consistently track both
of them.

Existing state-of-the-art anomaly detection models, such as RTFM, apply sophisticated
data transformation and segmentation techniques to train deep-learning models. In con-
trast, instead of using pixels as features (as in CNN-based models), our approach generates
the numerical features of human activity that represent coordinates from a real-time person
tracker. A real-time person tracker generates movement coordinates for each time frame
that could be used as features for our deep learning model.

Due to the nature of the time-series data from the coordinates and time frame, we
employed recurrent neural networks capable of learning the order in sequence prediction
problems. Therefore, long short-term memory (LSTM)-based networks are proposed as the
ideal candidate for Stage 2 of the proposed approach due to their ability to capture temporal
dependencies. We also explored state-of-the-art time-series deep learning classification
models An Explainable Convolutional Neural Network (Fauvel, 2021) and MiniRocket
(Dempster, 2021), as they both offer the best performance for time-series classification tasks.
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Figure 4. Capturing bounding boxes with YOLOv5 with Deep Sort.

4. Data
4.1. Datasets

The used dataset in the numerical experiments was the popular UCF Crime dataset [27]
that contains approximately 128 h of video and 2 types of data—normal and crime videos.
The crime-labeled samples consisted of videos capturing the occurrence of different illegal
activities, including crimes such as abuse, arrest, arson, assault, road accidents, burglary,
explosion, fighting, robbery, shooting, stealing, shoplifting, and vandalism. In our study,
we considered shoplifting crimes, as they include the most suspicious behavior before
the theft occurs. However, the proposed method is widely applicable to a series of video-
based anomaly detection problems where the pattern of movement of some objects is what
constitutes an anomaly. For example, the proposed approach would also work to detect
anomalies such as loitering, traffic rule violations, and stampedes.

In particular, the UCF dataset contains videos of people shopping in different shops.
Normal class videos are people who are browsing items in different shops. Abnormal class
videos contain videos of people who are stealing from each shop. After we had selected the
shoplifting instances described above, the dataset contained 267 normal class videos and
50 abnormal class videos. While there was a class imbalance in the data, the bounding box
data extracted from the videos were large enough to eliminate any significant classification
bias during model training.

4.2. Dataset Preprocessing

The first stage of the proposed method employs object detection and video tracking
algorithm YOLOv5 with Deep Sort to track multiple people across each video. This
allows for the extraction of bounding box features across multiple time steps to create a
tabular dataset.

Upon extracting the bounding box features, the resulting dataset (Figure 1) contained
more rows than the original frames did because a frame could have multiple identified
people, which caused the number of rows in each frame to increase.

To manage the computational load, each video that contained over 15,000 rows in the
tabular dataset was split into multiple clips, with each clip having at most 15,000 rows.
We lastly obtained 544 clips from the 317 original videos. The updated distribution of the
class labels is presented in Table 1. The percentage of abnormal instances in the dataset
was 14.92%.

Table 1. Class distribution after splitting videos into clips.

Dataset Class No. of Instances

Abnormal 81
Normal 462
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In our experiment, we split the data into training and test subsets using a stratified
split as shown in Table 2. We maintained the overall percentage of abnormal instances after
the split to 14.93%.

Table 2. Stratified training and test split of the data.

No. of Instances Dataset Class Dataset

12 Abnormal Testing
69 Normal Testing
69 Abnormal Training

393 Normal Training

5. Experimental Setup
5.1. Time-Series Deep-Learning Classification Models

We began by running YOLOv5 with Deep Sort on the UCF Crime dataset, and convert-
ing the videos into the format described in Figure 1. Once the dataset had been constructed,
we explored popular models from the TSAI library to perform time-series classification on
the tabular dataset. The dataset was split as described in Table 2.

The following TSAI models are considered in our study: InceptionTime [28], Xcep-
tionTime [29], Explainable Convolutional Network (XCM) [30], and MiniRocket [31]. In-
ceptionTime and XceptionTime are time-series classification models that were adapted
from popular convolutional neural network models Inception and Xception, respectively,
which are often used for image classification. On the other hand, XCM and MiniRocket
are more recent time-series classification models. Each model was trained on the tabular
data generated by YOLOv5 with Deep Sort for 15 epochs; afterwards, the model was saved
and tested.

5.1.1. InceptionTime

The InceptionTime architecture was inspired by the inception convolutional neural
network, where an inception network is built from inception modules for multivariate time-
series classification. Each inception module has a bottleneck layer that simply performs the
operation of sliding a convolutional filter with length 1 and stride 1 along the time series to
reduce its dimensionality. This helps in converting a multivariate time series into a time
series with fewer independent variables, and improving model complexity, which helps
in avoiding overfitting for small datasets. The use of the bottleneck layer allows for the
inception module to have longer filters while maintaining the same number of parameters
as that of ResNet, allowing for it to capture a larger range of data from which to learn.

Another key feature of the inception module is that it convolves multiple filters of
varying sizes (sizes 10, 20, and 40, as shown in Figure 5) in parallel to the output of the
bottleneck layer. In addition, the model performs max pooling on the input time series
over a fixed window size by simply taking the maximal value of the time series within that
window to ensure that the module is robust and not affected by noise. Lastly, the module
concatenates the results of the varying-size convolutions with the max pooling bottleneck
to construct the output time series of this module.

Figure 5. Inception module proposed in [28].
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An inception network, as shown in Figure 6, is built using inception modules in
2 residual blocks of 3 modules each. Each residual block’s input comes directly from
a linear connection from the previous block’s output, while there are also convolutions
between successive inception modules to ensure that it is able to capture trends from within
the time series. This use of residual connections to bypass convolutions is to ensure that the
model does not suffer from vanishing gradients. The output of the final block of modules
is then passed through global average pooling over the entire time dimension of the input,
feeding the pooled time series into a fully connected neural network with dense layers and
softmax activation for the final classification.

Figure 6. Inception network proposed in [28].

The InceptionTime classifier is based on an ensemble of five inception networks with
multiple branches of convolutions and varying dilation rates, which allows for the model
to capture both long- and short-term trends in the data. Ensembling is conducted using the
following function:

ŷi,c =
1
n

n

∑
j=1

σc(xi, θj), ∀c ∈ [1, C], (1)

where ŷi,c denote the ensemble’s output probability of having input time series xi belonging
to class c, which is equal to the logistic output σc averaged over n randomly initialized
models. Stacking inception networks and using backpropagation allow for the model to
learn the latent hierarchical features of multiple resolutions through the time series.

5.1.2. XceptionTime

The novel XceptionTime architecture was inspired by Inception and AlexNet, pro-
posed in [29]. The authors developed the XceptionTime module shown in Figure 7. This
model passes the input data through two routes, one with three depthwise separable
convolutions, and another through max pooling and a singleton convolution. These Xcep-
tionTime modules are used to build the final time-series classifier, as shown in Figure 8,
which contains two pairs of XceptionTime modules with residual connections, followed by
adaptive average pooling and singleton convolutions.

A single XceptionTime module, as shown in Figure 7, consists of a bottleneck layer that
uses a single convolutional filter with stride 1 and kernel size 1 to reduce the dimensionality
of the input time series and potential issues with overfitting. Moreover, it uses the idea of
simultaneously passing multiple filters with varying kernel sizes over the output of the bot-
tleneck layer. However, unlike InceptionTime modules, depthwise separable convolutions
are used here. Depthwise separable convolutions are split into two types: depthwise and
pointwise. Depthwise convolutions perform each convolution separately for each input
channel and then stacked together. Subsequently, the output from depthwise convolution
is passed into the pointwise convolutions of 1 × 1 convolutions to transform the data into
having smaller channel depth. This helps in reducing the number of parameters to train
the model, and improves training time. The output of multiple simultaneous depthwise
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separable convolutions and the output of a max pooling with a 1 × 1 convolution are
concatenated along their channels to produce the final output time series.

Figure 7. XceptionTime module proposed in [29].

These XceptionTime modules are used in the overall architecture of the XceptionTime
classifier by stacking two pairs of modules together with different filter sizes, as shown in
Figure 8. Moreover, XceptionTime consists of residual connections around each block of
the XceptionTime modules to ensure that there are no vanishing gradients during training.
The output of the last XceptionTime module is then fed into an adaptive average pooling
layer, followed by a set of convolutional layers to match the input and output dimensions,
and then batch normalization to reduce the internal covariate shift effect.

Figure 8. Overall XceptionTime architecture proposed in [29].

5.1.3. MiniRocket

MINImally RandOm Convolutional KErnel Transform (MiniRocket) is an improve-
ment on ROCKET to eliminate randomness and render it almost deterministic, and speed
up the transformation processes, which is part of the original ROCKET model. The heart of
the ROCKET and miniRocket classifiers is a transform to the input data that provides new
features and is fed into a linear classifier such as logistic regression.

Moreover, the model is rendered more deterministic by fixing the kernel length to 9
for all applications. Furthermore, it restricts the weight values to a combination of two
parameters: α, which is set to −1, and β, which is set to 2. The kernel is a permutation of α
and β of length 9. However, there is a restriction: the overall sum of the weights should be
zero. Additionally, biases are determined on the basis of the convolutional output. These
biases are picked from quantiles of the convolutional output from a randomly chosen data
point. This random choice of a training instance is the only nondeterministic process in
the model. Lastly, the dilation of the convolutional kernels was fixed for each input and
was chosen from the set D = {b20c, . . . , b2maxc}, where the exponents were uniformly
distributed between 0 and max = log2((linput − 1)/(lkernel − 1)). Here, lkernel is the length
of kernel (9), and linput is the length of the input time series. This range was chosen such
that the maximal effective length of a kernel with dilation was equal to the length of the
input time series. To avoid having dilations that are too large and reduce the number of
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extracted features, the dilation size was capped at 32. The improvement in speed comes
from parallelization, reusing precomputed convolutions, avoiding certain multiplications,
and computing multiple kernels at once.

The model computes the positive predictive value (PPV) for kernel W and mathemati-
cally transforms it to obtain its negation, −W. This requires the model to only compute a
single kernel for the update rather than two matrices, almost doubling the speed. Moreover,
the model performs a convolution on a single kernel (with fixed dilation) and reuses the
output to compute multiple features by varying the bias values. This further reduces the
number of operations to be performed. Additionally, the kernel weights being restricted to
only two values (α and β) allows for us to mathematically take the multiplication term out
as a common factor during computation of the convolution. This leads to the convolutional
operation being only an addition with a single multiplication at the end. This speeds up
the process, since matrix multiplication is an expensive operation. Lastly, since the kernel
weights are restricted to two values, we could compute all the kernels in fewer operations
(one for each value of the kernel weight). The kernel is computed on the basis of the values
of α and β, and then adjusted on the basis of the used dilation value. This is the last step in
optimizing the transform performed by ROCKET.

5.1.4. Explainable Convolutional Network (XCM)

The Explainable Convolutional Network (XCM) is a novel architecture proposed for
multivariate time-series classification. The main purpose of the architecture is to provide a
certain level of explainability if required using explainable AI method GradCAM [32] by
directly extracting related information to the observed variables and time from the input
data by simultaneously applying 1D and 2D convolutions to the input data. Moreover, it
passes the outputs of the parallel convolutions through a 1D global average pooling layer
before passing it to a softmax layer for final classification. This reduces the number of
parameters and improves the ability of the model to generalize while providing robustness
to the spatial translations of the input. Lastly, the convolutional layers are fully padded,
which allows for methods such as gradient-weighted class activation mapping (GradCAM)
to be reliably used on the model. We were more interested in the ability of our application
to outperform the SOTA methods in multivariate time-series classification methods.

The proposed architecture can be seen in Figure 9. The architecture begins by using
2D convolutional filters to extract information about each of the observed variables, and
using 1D convolution filters to extract temporal information. The use of both 1D and
2D convolutions leads to the extraction of more discriminative features by incorporating
all the relevant information (both spatial and temporal) as compared to similar methods
that use only 2D convolutions and fail to accurately capture temporal information. The
window size for these filters can change as a hyperparameter to the model. The output from
each convolutional block is passed through a ReLU layer to increase the generalization
of the model, and through a 1 × 1 convolutional filter to project the feature maps onto
channelwise pooling. The outputs of these two sections are concatenated and passed
through a 1D convolutional layer and global average pooling layer that operate along the
time axis to better capture interfeature interaction. Lastly, the output of the global average
pooling layer is passed through dense layers with softmax activation for classification.
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Figure 9. XCM architecture proposed in [30].

5.2. Baseline Comparison: Robust Temporal Feature Magnitude (RTFM)

We compared the proposed approach with the state-of-the-art robust temporal feature
magnitude (RTFM) model [33], which is commonly applied to anomaly detection in videos
using the same dataset. Therefore, it is a relevant and directly comparable benchmark to
our method.

The RTFM model is based on defining a novel loss function that is dependent on the
joint optimization of an end-to-end multiscale temporal feature learning and feature mag-
nitude learning and an RTFM-enabled MIL classifier. The proposed function is as follows:

min
θ,φ

|D|

∑
i,j=1

łs(sθ(Fi), sθ(Fj), yi, yj) + ł f ( fφ(sθ(Fi)), yi), (2)

where sθ : F → χ is the temporal feature extractor (with χ ⊂ RTxD), fφ : χ → [0, 1]T is
the snippet classifier, ls denotes a loss function that maximizes the separability between
the top-k snippet features from normal and abnormal videos, and l f is a loss function
to train snippet classifier fφ by also using the top-k snippet features from normal and
abnormal videos.

Here, ł f is inspired by binary cross entropy and is defined as follows:

ł f ( fφ(sθ(F)), y) = ∑
x∈Ωk(X)

−(y log( fφ(X))) + (1− y) log(1− fφ(X)) (3)

where x = sθ( f ). Moreover, to accurately model sθ , we must first define a few optimization
functions. Initially, an optimization based on the mean feature magnitude of the top k
snippets from a video:

gθ,k(X) = max
Ωk(X)⊆{xt}T

t=1

1/k ∑
xt∈Ωk(X)

||xt||2 (4)

where gΩ,k(.) is parameterized by θ, which allows for it to produce xt. Ωk(X) contains a
subset of k snippets from xt

T
t=1 and |Ωk(X)| = k. Next, the separability between normal

and abnormal videos is denoted by the following:

dθ,k(X+, X−) = gθ,k(X+)− gθ,k(X−) (5)

where X+ and X− represent the positive and negative class instances, respectively.
Using the above two equations, we define a loss function to model function sθ(F)

so that it minimizes the top k largest snippet feature magnitudes of normal videos and
maximizes the same for abnormal videos.

łs(sθ(Fi), sθ(Fj), yi, yj) =

{
max(0, m− dθ,k(Xi, Xj)) if yi = 1, yj = 0
0 otherwise

(6)
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where m is a predefined margin, Xi = sθ(Fi) is the abnormal video feature, Xj is the
normal video feature, and dθ,k and gθ,k are defined as above. The proposed model was
trained on the basis of the above loss function, which ensured the usage of inherent feature
magnitude learning.

In addition, RTFM uses a preprocessing technique for video known as I3D features that
involves passing each frame through ResNet50 and saving the encoded vectors obtained
after passing it through all the convolutional layers. Hence, each video was converted into
its corresponding I3D encoding before providing it as input to RTFM.

The split dataset used to train and test RTFM is shown in Table 3. Once again, to ensure
our results were still comparable, we ensured that the percentage of abnormal instances
was close to the original 14.9%; in this case, it was 15%. RTFM was trained with the default
settings over 15,000 epochs, monitoring the metrics every 100 epochs.

Table 3. RTFM dataset Split.

No. of Instances Dataset Class Dataset

10 Abnormal Testing
40 Normal Testing
40 Abnormal Training

228 Normal Training

Since none of the clips was inherently longer than 15,000 frames, no cropping was
necessary. The proposed method had more instances in its dataset because any videos
with over 15,000 rows were split into multiple videos. However, the methods remained
comparable, since the overall percentage of abnormal instances remained the same—≈15%.
Moreover, the original dataset used here was the same as that used for RTFM, and our
proposed method allowed for us to maintain a level of comparability between approaches.

5.3. Evaluation Metrics

We track five primary metrics across this paper: accuracy, precision, recall, F1 score,
and AUC. To convert the obtained probabilities by the model into the two classes, we used
a threshold of 0.5 (i.e., the instance was classified as Class 1 (anomaly) if the probability for
the class was ≥0.5; otherwise, it was Class 0 (normal)).

The used metrics were particularly useful, since the dataset was imbalanced. The first
four metrics were derived on the basis of the confusion matrix using true-positive (TP),
true-negative (TN), false-positive (FP), and false-negative (FN) values as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
, (7)

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 =
2 ∗ Recall ∗ Precision

Recall + Precision
, (10)

The area under receiver operating characteristic curve (AUC) was calculated by plot-
ting the true positive rate (TPR) and false positive rate (FPR) models. This is a probability
curve, while the area under that curve represents the degree of the separability of the two
classes. This tells us how capable the model is in distinguishing between classes.
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6. Results and Discussion

We computed precision, recall, F1 score, and AUC for each time-series model trained
for 15 and 25 epochs. The models achieved optimal performance at 15 epochs, which we
chose as the standard training time for our models. The results of our experiments with
15 epochs are presented in Table 4. A high precision, recall, F1 score, and AUC (close to 1)
are desired, as they together indicate a well-fitted model.

Table 4. The performance of the proposed model using different time-series models. Each model was
trained for 15 epochs.

Name Precision Recall F1 Score AUC

Inception Time 0.64 0.77 0.56 0.77
Xception Time 0.99 0.96 0.97 0.96

XCM 0.99 0.96 0.97 0.96
MiniRocket 0.43 0.5 0.46 0.50

As shown in Table 4, the Xception and XCM models achieved the best performance. In
particular, Xception and XCM achieved an AUC of 0.96 and F1 score of 0.97. This indicates
that the proposed approach based on either Xception or XCM could identify abnormal
videos with a high degree of accuracy. Inception achieved average performance with an
AUC of 0.77 and F1 score of 0.56, while MiniRocket performed poorly with an AUC of 0.50
and F1 score of 0.46. The results in Table 4 show that the proposed approach based on the
combination of feature extraction using bounding boxes, together with time-series models
(Xception or XCM), was capable of accurately identifying abnormal videos.

The confusion matrix for the best models is presented in Figure 10. Neither model
misclassified a normal instance as abnormal, and only 1 out of 12 abnormal instances was
classified as normal. In other words, the models mistook only 1 instance of shoplifting as
regular shopping while accurately identifying the remaining 11 instances of shoplifting.

Figure 10. Confusion matrix for the best models.

We further investigate the above misclassification in Figure 10, which was is in Shoplift-
ing Video 34 in the UCF Crime dataset. In particular, this video had over 20,000 rows in
the tabular dataset, which were cut down to 15,000. This was particularly odd because
the video itself had only 3 people in the entire clip. Furthermore, YOLOv5 with Deep
Sort identified about 225 bounding boxes in the video. This was likely what confused the
models, since all the other values in the dataset did not have as many people. Hence, this is
an issue with the application of YOLOv5 with Deep Sort and the main reason behind the
misclassification.

To better compare the tested models, we performed 10-fold cross validation on the
dataset. In the context of shoplifting crime prevention, false positives can be costly, as
they may lead to unnecessary interventions or the detainment of innocent individuals.
Therefore, in this specific application, even a small false-positive rate may render the model
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totally infeasible in real life. This suggests that precision is more important than recall in
this context, as it is crucial to minimize the number of false positives.

Table 4 shows that the highest precision value of 0.99 was achieved by the Xception
Time and XCM models, indicating that they are very good at correctly identifying positive
samples. This indicates that, out of all the positive predictions by these models, 99% were
correct. The precision value for the inception time model was relatively lower, at 0.64,
indicating that it had more false positives than the other models did. Considering that
even a small false positive rate may render the model totally infeasible in real life, it is
clear that the Xception Time and XCM models may be the most appropriate choices for
shoplifting crime prevention application, as they achieved the highest precision values. The
MiniRocket model, on the other hand, achieved the lowest precision value of 0.43, which
may be considered unacceptable in this context.

While recall is also an important metric, the fact that false positives may render the
model totally infeasible suggests that precision should be prioritized over recall in this
specific application. However, precision and recall are both important metrics, and a
balance between the two should be sought in the context of the specific problem. Therefore,
the average F1 scores across the 10 folds with the standard deviations and median F1 score
for each model are shown in Table 5. Clearly, XceptionTime and MiniRocket performed the
best during cross validation, with the highest average F1 scores of 0.87 and 0.89, respectively,
and a median F1 score of 0.92. Moreover, XCM actually performed the worst during cross
validation, with a mean F1 score of only 0.6 and large variance. The distribution of the F1
scores for each model is better illustrated in the box plot in Figure 11.

Moreover, Xception Time model still achieved the highest precision value with a mean
of 0.96 ± 0.04, indicating that it was able to correctly identify positive samples with a high
degree of accuracy. The MiniRocket model had the second-highest precision value with a
mean of 0.91 ± 0.08, followed by the InceptionTime model, with a mean of 0.86 ± 0.17. The
XCM model had the lowest precision value with a mean of 0.63 ± 0.24, indicating that it
was less effective at correctly identifying positive samples.

Since a high number of false positives may render the model totally infeasible in real
life, the Xception Time model may still be the most appropriate choice for shoplifting crime
prevention application, as it achieved the highest precision value in both tables of results.
However, the MiniRocket and InceptionTime models also achieved high precision values
and may be worth considering.

In terms of recall, the Xception Time model had the highest mean recall value of
0.92 ± 0.06, indicating that it was able to correctly identify a high proportion of positive
samples. The InceptionTime and MiniRocket models had slightly lower recall values,
with means of 0.85 ± 0.14 and 0.88 ± 0.09, respectively. The XCM model had the lowest
recall value with a mean of 0.63 ± 0.19, indicating that it was less effective at identifying
positive samples.

Table 5. Precision, recall, and F1 scores across 10-fold cross validation. Provided values are mean ±
standard deviation.

Model Name Precision Recall F1 Score Median F1 Score

InceptionTime 0.86 ± 0.17 0.85 ± 0.14 0.84 ± 0.09 0.85
XceptionTime 0.96 ± 0.04 0.92 ± 0.06 0.87 ± 0.13 0.92

MiniRocket 0.91 ± 0.08 0.88 ± 0.09 0.89 ± 0.09 0.92
XCM 0.63 ± 0.24 0.63 ± 0.19 0.6 ± 0.2 0.46
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Figure 11. F1 score distributions across 10-fold cross validation for each model.

The figure shows that MiniRocket was actually the most stable algorithm since its
F1 score had the lowest interquartile range, while XCM performed the poorest, with an
extremely large interquartile range of about 27%.

Using the nonparametric Kruskal–Wallis test to test for significant differences among
the median F1 scores, we obtained a statistic of 11.015 and a p-value of 0.012, which led
us to reject the null hypothesis (at 5% significance level) that the distributions of all the
models had the same median value. Hence, there was at least one model with a statistically
significant different median F1 score.

We could use the nonparametric Tukey test to identify whether the median of each
distribution of the F1 scores was statistically different, and identify exactly which models
had a statistically different F1 score distribution. Table 6 shows the results of the test.

Table 6. Results of Tukey’s test.

Group 1 Group 2 Mean Difference p-Value Lower Upper Reject

InceptionTime MiniRocket 0.0446 0.8783 −0.1167 0.2059 False
InceptionTime XCM −0.2413 0.0015 −0.4026 −0.08 True
InceptionTime XceptionTime 0.0259 0.9725 −0.1354 0.1872 False

MiniRocket XCM −0.2859 0.0002 −0.4472 −0.1246 True
MiniRocket XceptionTime −0.0187 0.9892 −0.18 0.1426 False

XCM XceptionTime 0.2672 0.0004 0.1059 0.4284 True

Here, we can clearly see that we were able to reject the null hypothesis (at 5% level
of significance) when comparing any model to XCM, but not otherwise. This indicates
that XCM had a statistically different distribution to that of the other models, while In-
ceptionTime, XceptionTime, and MiniRocket were comparable. Hence, XCM performed
statistically worse than all the other models.
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On the basis of the overall distribution of the F1 scores across the 10-fold cross valida-
tion, we can conclude that MiniRocket was the best model with a median F1 score of 92%
since it had the highest median F1 score and low variance, which rendered it more stable.

We now compare our best models during cross validation, MiniRocket and Xception-
Time, to the baseline RTFM [33]. Comparing the baseline model to our median F1 score
(92%), we were able to significantly vanquish the given baseline in Table 7.

Table 7. Baseline comparison.

Model Name Feature Type F1 Score

RTFM I3D RGB 0.89
Ours–XceptionTime Custom 0.92

Ours–MiniRocket Custom 0.92

The imbalance in the dataset classes was easily dealt with by Xception and MiniRocket
without requiring any particular preprocessing or data balancing methods such as over-
sampling. The ability of Xception and MiniRocket to handle imbalanced data without
additional preprocessing indicates the robustness of the methods.

A further attractive feature of MiniRocket is that it had a mean F1 score of 89%, which
was the same as that for RTFM. This shows that our proposed method was able to perform
just as well with a far more intuitive approach to the problem.

Additionally, as in Figure 12, we notice that RTFM correctly identifies all the normal
class instances, but is unable to distinguish between the abnormal instances, with 5 mis-
classifications and 5 correct classifications. Hence, the RTFM was able to easily learn how
normal instances looked like, but became easily confused with abnormal instances.

Figure 12. RTFM confusion matrix.

We could also visually compare the scenes that RTFM misclassified and our approach
was able to classify correctly. RTFM misclassified five of the shoplifting scenes (numbers 24
to 28) as normal, which was incorrect. These five incorrect misclassifications can be seen in
Figure 13.
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Figure 13. RTFM misclassifications that the proposed method classified correctly.

By analyzing the videos in Figure 13, one can understand why the RTFM model was
unable to detect the misclassifications. A particularly noticeable characteristic of each of
the clips that the RTFM failed to classify correctly was that, in all the clips, the subject
performing the theft was in the same place for almost the entire clip. Since the RTFM
focuses on identifying temporal features from I3D features, we hypothesize that clips with
a lack of subject movement lack temporal information for the RTFM to be able to flag them
as an anomaly. RTFM aims to capture temporal information between successive frames in
a video, but as observed, it is unable to capture anomalies with a lack of movement from
the subjects in the clip. The proposed bounding box representation of the videos helps in
capturing this temporal information more effectively, and allows for the machine-learning
model to better detect anomalies on the basis of the movement of these bounding boxes.

Additionally, the proposed approach outperformed the SOTA regarding inference
time. We examined the inference time of the RTFM model and our proposed approach
using MiniRocket on a 14 s shoplifting video at 30 frames per second. The prediction was
performed 10 times, and the times were averaged to account for any fluctuations in the
inference time. The results of the inference test, conducted using an RTX 2060, can be
found in Table 8, showing that the proposed approach with MiniRocket outperformed
RTFM in inference times by up to 8.45 times faster. The primary reason for this is that
RTFM utilizes large amounts of computation time to generate I3D features. On the other
hand, the proposed approach provides extremely fast object detection using YOLO with
Deep Sort, which leads to much faster preprocessing. Needless to say that the reduction in
preprocessing time provides a competitive advantage during inference.

Table 8. Inference times.

Model Name Preprocessing Time (s) Total Inference Time (s)

RTFM 13.7 13.9
Ours–MiniRocket 1.5 1.6

7. Conclusions

In this paper, we introduced a new approach to detecting suspicious behavior in videos
for crime prevention by utilizing object tracking methods to convert a video classification
problem into a time-series classification problem. This use of YOLOv5 with Deep Sort to
track people through a video and converting the video data into a tabular time-series format
allow for the use of time-series classification models such as Inception Time, Xception Time,
XCM, and MiniRocket.
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Time-series classification models successfully use the transformed dataset to identify
suspicious behavior in videos. The best models were XceptionTime and MiniRocket,
achieving the highest median F1 score of 92% during cross validation. These results
surpassed the current state-of-the-art model in the field, RTFM, by 3%. Moreover, this
method was able to correctly classify some of the clips that the RTFM was unable to classify
correctly, showing the robustness of this method. Furthermore, our results demonstrated
an impressive 8.45-fold increase in detection inference speed compared to that of the
state-of-the-art RTFM.

The success of the paper was in the introduction of a new, more intuitive approach to
suspicious behavior detection without the need for data augmentation or image feature
extraction. Regardless, the proposed method achieved results similar to or better than those
of the current state-of-the-art models in the field. Additionally, the proposed approach
is highly generalizable to other problems in anomaly detection in videos by using object
tracking. The application of the proposed method to other use cases is an intriguing future
research avenue.

Author Contributions: Conceptualization, A.N.; methodology, A.N.; software, A.N.; validation, R.M.;
formal analysis, R.M.; investigation, A.N.; resources, H.S.; data curation, R.M.; writing—original
draft preparation, A.N.; writing—review and editing, A.N., R.M., H.S. and F.K.; visualization, R.M.;
supervision, A.N., H.S. and F.K.; project administration, H.S.; funding acquisition, H.S. and A.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the American University of Sharjah and Zayed University,
United Arab Emirates.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are publicly available online [27].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kirichenko, L.; Radivilova, T.; Sydorenko, B.; Yakovlev, S. Detection of Shoplifting on Video Using a Hybrid Network. Computation

2022, 10, 199. [CrossRef]
2. Gandapur, M.Q. E2E-VSDL: End-to-end video surveillance-based deep learning model to detect and prevent criminal activities.

Image Vis. Comput. 2022, 123, 104467. [CrossRef]
3. Qin, Z.; Liu, H.; Song, B.; Alazab, M.; Kumar, P.M. Detecting and preventing criminal activities in shopping malls using massive

video surveillance based on deep learning models. Ann. Oper. Res. 2021, 1–8. [CrossRef]
4. Wu, Y. The impact of criminal psychology trend prediction based on deep learning algorithm and three-dimensional convolutional

neural network. J. Ambient. Intell. Humaniz. Comput. 2021, 1–2. [CrossRef]
5. Wu, P.; Liu, J.; Shi, Y.; Sun, Y.; Shao, F.; Wu, Z.; Yang, Z. Not only look, but also listen: Learning multimodal violence detection

under weak supervision. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
Springer: Cham, Switzerland, 2020; pp. 322–339.

6. Ullah, W.; Ullah, A.; Haq, I.U.; Muhammad, K.; Sajjad, M.; Baik, S.W. CNN features with bi-directional LSTM for real-time
anomaly detection in surveillance networks. Multimed. Tools Appl. 2021, 80, 16979–16995. [CrossRef]

7. Lin, W.; Liu, H.; Liu, S.; Li, Y.; Qian, R.; Wang, T.; Xu, N.; Xiong, H.; Qi, G.J.; Sebe, N. Human in events: A large-scale benchmark
for human-centric video analysis in complex events. arXiv 2020, arXiv:2005.04490.

8. Zhang, Y.; Zhou, D.; Chen, S.; Gao, S.; Ma, Y. Single-image crowd counting via multi-column convolutional neural network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016;
pp. 589–597.

9. Liu, W.; Luo, W.; Lian, D.; Gao, S. Future frame prediction for anomaly detection–A new baseline. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition 2018, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6536–6545.

10. Chen, C.; Xie, Y.; Lin, S.; Yao, A.; Jiang, G.; Zhang, W.; Qu, Y.; Qiao, R.; Ren, B.; Ma, L. Comprehensive Regularization in a
Bi-directional Predictive Network for Video Anomaly Detection. In Proceedings of the American Association for Artificial
Intelligence 2022, Osaka, Japan, 17–19 December 2022; pp. 1–9.

11. Yu, J.; Lee, Y.; Yow, K.C.; Jeon, M.; Pedrycz, W. Abnormal event detection and localization via adversarial event prediction. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 33, 3572–3586. [CrossRef] [PubMed]

http://doi.org/10.3390/computation10110199
http://dx.doi.org/10.1016/j.imavis.2022.104467
http://dx.doi.org/10.1007/s10479-021-04264-0
http://dx.doi.org/10.1007/s12652-021-03455-8
http://dx.doi.org/10.1007/s11042-020-09406-3
http://dx.doi.org/10.1109/TNNLS.2021.3053563
http://www.ncbi.nlm.nih.gov/pubmed/33534719


Sensors 2023, 23, 5811 19 of 19

12. Wang, X.; Che, Z.; Jiang, B.; Xiao, N.; Yang, K.; Tang, J.; Ye, J.; Wang, J.; Qi, Q. Robust unsupervised video anomaly detection by
multipath frame prediction. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 2301–2312. [CrossRef] [PubMed]

13. Liu, Z.; Nie, Y.; Long, C.; Zhang, Q.; Li, G. A hybrid video anomaly detection framework via memory-augmented flow
reconstruction and flow-guided frame prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision
2021, Montreal, BC, Canada, 11–17 October 2021; pp. 13588–13597.

14. Georgescu, M.I.; Barbalau, A.; Ionescu, R.T.; Khan, F.S.; Popescu, M.; Shah, M. Anomaly detection in video via self-supervised
and multi-task learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021, Virtual,
19–25 June 2021; pp. 12742–12752.

15. Cai, R.; Zhang, H.; Liu, W.; Gao, S.; Hao, Z. Appearance-motion memory consistency network for video anomaly detection. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 938–946.

16. Liu, K.; Ma, H. Exploring background-bias for anomaly detection in surveillance videos. In Proceedings of the 27th ACM
International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1490–1499.

17. Landi, F.; Snoek, C.G.M.; Cucchiara, R. Anomaly locality in video surveillance. arXiv 2019, arXiv:1901.10364.
18. Lu, Y.; Yu, F.; Reddy, M.K.; Wang, Y. Few-shot scene-adaptive anomaly detection. In Proceedings of the European Conference on

Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 125–141.
19. Tian, Y.; Pang, G.; Chen, Y.; Singh, R.; Verjans, J.W.; Carneiro, G. Weakly-supervised video anomaly detection with contrastive

learning of long and short-range temporal features. arXiv 2021, arXiv:2101.10030.
20. Li, S.; Liu, F.; Jiao, L. Self-training multi-sequence learning with Transformer for weakly supervised video anomaly detection. In

Proceedings of the AAAI, Virtual, 6–10 November 2022.
21. Feng, J.C.; Hong, F.T.; Zheng, W.S. Mist: Multiple instance self-training framework for video anomaly detection. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021, Virtual, 19–25 June 2021; pp. 14009–14018.
22. Wu, J.; Zhang, W.; Li, G.; Wu, W.; Tan, X.; Li, Y.; Ding, E.; Lin, L. Weakly-supervised spatio-temporal anomaly detection in

surveillance video. arXiv 2021, arXiv:2108.03825.
23. Lv, H.; Zhou, C.; Cui, Z.; Xu, C.; Li, Y.; Yang, J. Localizing anomalies from weakly-labeled videos. IEEE Trans. Image Process. 2021,

30, 4505–4515. [CrossRef] [PubMed]
24. Wu, P.; Liu, J. Learning causal temporal relation and feature discrimination for anomaly detection. IEEE Trans. Image Process.

2021, 30, 3513–3527. [CrossRef] [PubMed]
25. Ansari, M.A.; Singh, D.K. ESAR, An Expert Shoplifting Activity Recognition System. Cybern. Inf. Technol. 2022, 22, 190–200.

[CrossRef]
26. Wang, Y.; Yang, H. Multi-target Pedestrian Tracking Based on YOLOv5 and DeepSORT. In Proceedings of the 2022 IEEE Asia-

Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2022; pp. 508–514.
[CrossRef]

27. Sultani, W.; Chen, C.; Shah, M. Real-world anomaly detection in surveillance videos. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

28. Fawaz, H.I.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.-A.; Petitjean, F.
InceptionTime: Finding alexnet for Time Series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [CrossRef]

29. Rahimian, E.; Zabihi, S.; Atashzar, S.F.; Asif, A.; Mohammadi, A. XceptionTime: Independent Time-window Xceptiontime
architecture for hand gesture classification. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020.

30. Fauvel, K.; Lin, T.; Masson, V.; Fromont, É.; Termier, A. XCM: An explainable convolutional neural network for multivariate time
series classification. Mathematics 2021, 9, 3137. [CrossRef]

31. Dempster, A.; Schmidt, D.F.; Webb, G.I. MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Clas-
sification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18
August 2021.

32. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via
gradient-based localization. Int. J. Comput. Vis. 2019, 128, 336–359. [CrossRef]

33. Tian, Y.; Pang, G.; Chen, Y.; Singh, R.; Verjans, J.W.; Carneiro, G. Weakly-supervised video anomaly detection with robust
temporal feature magnitude learning. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), Montreal, BC, Canada, 11–17 October 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2021.3083152
http://www.ncbi.nlm.nih.gov/pubmed/34086581
http://dx.doi.org/10.1109/TIP.2021.3072863
http://www.ncbi.nlm.nih.gov/pubmed/33872149
http://dx.doi.org/10.1109/TIP.2021.3062192
http://www.ncbi.nlm.nih.gov/pubmed/33656993
http://dx.doi.org/10.2478/cait-2022-0012
http://dx.doi.org/10.1109/IPEC54454.2022.9777554
http://dx.doi.org/10.1007/s10618-020-00710-y
http://dx.doi.org/10.3390/math9233137
http://dx.doi.org/10.1007/s11263-019-01228-7

	Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention
	Recommended Citation

	Introduction
	Related Work
	 Proposed Method
	Data
	Datasets
	Dataset Preprocessing

	Experimental Setup
	Time-Series Deep-Learning Classification Models
	InceptionTime
	XceptionTime
	MiniRocket
	Explainable Convolutional Network (XCM)

	Baseline Comparison: Robust Temporal Feature Magnitude (RTFM)
	Evaluation Metrics

	Results and Discussion
	Conclusions
	References

