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Abstract 

The addition of emotions may be the key to producing 
rational behavior in autonomous agents.  For situated 
agents, a different perspective on learning is proposed 
which relies on the agent’s ability to react in an emotional 
way to its dynamically changing environment.  Here an 
architecture of mind is presented with the ability to 
display adaptive emotional states of varying types and 
intensities, and an implementation, “Conscious” Mattie 
(CMattie), of this architecture is discussed.  Using this 
architecture, CMattie will be able to interact with her 
environment in a way that includes emotional content at a 
basic level.  In addition she will learn more complex 
emotions which will enable her to react to her situation in 
a more complex manner.  A general description is given 
of the emotional mechanisms of the architecture and its 
effects on learning are explained. 

Introduction 

We have reached a point in the evolution of computing 
where the previously neglected phenomenon of emotion 
must be studied and utilized (Picard 1997).  Emotions give 
us the ability to make an almost immediate assessment of 
situations.  They allow us to determine whether a given 
state of the world is beneficial or detrimental without 
dependence on some external evaluation. For humans, 
emotions are the result of millions of years of evolution; a 
random, trial and error process that has given us default 
qualia and, often, default responses to common 
experiences.  Unlike a reflexive action alone, however, 
emotions temper our responses to the situation at hand.  
Simple though that response may be it is this very ability to 
adapt to a new situation in a quick and non-
computationally intensive way that has eluded previous 
computational agents.  Our lives as humans are filled, 
moment-to-moment with the complex interplay of 
emotional stimuli both from the external world and from 
our internal selves (Damasio 1994).  Here we’ll describe a 
software agent architecture with the ability to display a full 
range of emotions and to learn complex emotions and 
emotional responses. In addition, the importance of 
emotions for learning in an environmentally situated agent 
is discussed. The learning of complex emotions is 
dependent on Pandemonium Theory, which will be 
described first.   

Pandemonium Theory  

This architecture is based on a psychological theory called 
Pandemonium Theory (Selfridge 1959) who applied it only 
to perception. Later, John Jackson presented it to the 
computer science community in an extended and more 
concrete form (1987; Franklin 1995 ) that makes it useful 
for control of autonomous agents.   

In Jackson’s version of Pandemonium Theory, the 
analogy of an arena is used.  The arena consists of stands, a 
playing field, and a sub-arena.  It is also populated by a 
multitude of “codelets,” each a simple agent1.  Some of the 
codelets will be on the playing field doing whatever it is 
they are designed to do; these codelets are considered 
“active.”  The rest of the codelets are in the stands 
watching the playing field and waiting for something to 
happen that excites them.  Of course, what is exciting may 
be different for each codelet.  The more exciting the action 
on the field is to any particular codelet, the louder that 
codelet yells.  If a codelet yells loudly enough, it gets to go 
down to the playing field and become active.  At this point, 
it can perform its function.  Its act may excite other 
codelets, who may become active and excite yet other 
codelets, etc.   

Which codelets excite which other codelets is not a 
random matter; each codelet has associations with other 
codelets that act much like weighted links in a neural 
network.  The activation level of a codelet (a measure of 
how loudly it is yelling) spreads down the codelet’s 
association links and, therefore, contributes to the 
activation level of the receiving codelet.  In addition, these 
associations are not static.  Whenever a codelet enters the 
playing field, the sub-arena creates associations (if they do 
not already exist) between the incoming codelet and any 
codelets already on the field.  A strong output association 
and a weaker input association are created between the 
codelets currently on the playing field and the arriving 
codelet.  The actual strength of the associations depends on 

 
1 Jackson uses the term “demon” where we use “codelet,” a 

term borrowed from the Copycat architecture (Hofstadter 

and Mitchell 1994). We do this since not all of Jackson’s 

demons may be so in the customary sense of the word as 

used in computer science.  



  

a gain value that the sub-arena calculates.  In addition to 
creating these new associations, existing association 
strengths between codelets on the playing field increase (or 
decrease) at each time step based on the gain value.  Also, 
multiple codelets that have strong associations with each 
other can be grouped together, to create a single new 
codelet called a concept codelet.  From the moment of their 
creation onward, these concept codelets act almost like any 
other codelet in the system.  They differ in that the decay 
rate of their associations is less, and the amount of time 
that they spend on the playing field at any one calling is 
increased. 

The sub-arena performs the actual input and output 
functions of the system as well as most of the automatic 
maintenance functions.  It calculates the gain, a single 
variable intended to convey how well the agent is 
performing.  Jackson did not specify a mechanism for such 
an assessment. Surely the assessment must be both domain 
dependent and goal dependent.  Since the gain determines 
how to strengthen or weaken associations between 
codelets, how this judgment is arrived at, and how the goal 
hierarchy is laid out is of considerable importance.  The 
agent accomplishes goal directed behavior only by an 
accurate assessment of its moment to moment status.  For 
humans there is a complex system of sensory labeling and 
emotional responses, tuned through evolution, which 
allows us to determine our performance, based on currently 
active goal contexts.   

The current goal context of this system changes 
dynamically.  It can be thought of as emerging from the 
codelets active at a given time. (How this happens will be 
described below.) Some high-level concept codelets can 
remain on the playing field for quite a long time and, 
therefore, influence the actions of the whole agent for that 
time.  An example of such a high level codelet might be 
one that tends to send activation to those codelets involved 
in getting some lunch.  Multiple goal contexts can be 
competing or cooperating to accomplish their tasks.  

Emotions 

One of the key components of Jackson’s system is the gain.  
It is the gain that determines how link strengths are 
updated and, consequently, how well the agent pursues its 
intended goals.  Therefore, it is of great importance to 
understand how the value of the gain is calculated at any 
given time, and how that value is used. One might view 
gain as a one-dimensional “temperature” as in the Copycat 
Architecture (Hofstadter and Mitchell 1994). The 
introduction of emotions into an agent architecture allows 
for a more sophisticated assessment of the desirability of 
the current situation. 

A major issue in the design of connectionist models has 
been how systems can learn over time without constant 
supervision by either a human or some other external 
system.  Ackley and Littman solve this problem for their 
artificial life agents by having those agents inherit an 
evaluation network that provides reinforcement so that its 

action selection network can learn (1992). In humans, 
emotions seem to play the role of the evaluation network. 
As well as affecting our choice of actions, they evaluate the 
results of these actions so that we may learn. Including 
emotions in an agent architecture could serve this same 
purpose. 

 This dilemma is solved in our architecture by the 
addition of emotion codelets whose resulting action is the 
updating of the gain value.  The gain is not a single value; 
instead it is a vector of four real numbers that can be 
thought of as analogous to the four basic emotions, anger, 
sadness, happiness, and fear.  It is possible that two more 
elements could be added representing disgust and surprise 
(Ekman 1992; Izard 1993).  However, for our current 
purposes the four emotions mentioned should suffice.  The 
agent's emotional state at any one time is, therefore, 
considered to be the combination of the four emotions.  A 
particular emotion may have an extremely high value as 
compared to the other emotions, and, consequently, 
dominate the agent's overall emotional state, for example, 
anger.  In such a case the agent can be said to be angry.  It 
is important to note, however, that the agent will always 
have some emotional state whether it be an easily definable 
one such as anger or a less definable aggregation of 
emotions.  No combination of emotions are 
preprogrammed; therefore, any recognizable complex 
emotions that occur will be emergent. 

The value of an individual element (emotion) in the 
gain can be modified when an emotion codelet fires.  
Emotion codelets are a subset of dynamic codelets and, 
therefore, have preconditions based on the particular state 
or perception the codelet is designed to recognize.  When 
an emotion codelet’s preconditions are met it fires, 
modifying the value of a global variable representing the 
portion of the emotion vector associated with the codelet’s 
preconditions.  A two step process determines the actual 
value of an emotion at any one time.  First, the initial 
intensity of the emotion codelet is adjusted to include 
valence, saturation, and repetition via the formula 

 
where  

x  = the initial intensity of the emotion 
v  = the valence {1,-1} 
x0 = shifts the function to the left or right 
 

The x0 parameter will have its value increased when the 
same stimulus is received repeatedly within a short period 
of time.  The effect of x0 is the modeling of the short-term 
habituation of repeated emotional stimuli.   

 The second step in the process is that each 
emotion codelet that has fired creates an instantiation of 
itself with the current value for adjusted intensity and a 
time stamp.  This new instantiated emotion codelet is like a 



  

static codelet in that it does not have preconditions and will 
only be active if other codelets activate it in the normal 
way.  However, this new codelet is special because it will 
add its adjusted intensity value (not to be confused with 
activation) to the global variable representing its particular 
emotion based on the formula (modified from Picard 1997) 

 
where 
         a  = adjusted intensity at creation time 
         b  = decay rate of the emotion 
         t   = current time 
         t0  = time at creation of the codelet 
 
When y approaches zero the codelet will stop effecting 

the emotion vector.  Even though the emotion codelet has 
reverted to acting like a static codelet it can still affect the 
emotional state of the agent if it becomes conscious.  In 
such a circumstance the codelet will affect the emotional 
state of the agent using the previous formula adjusted for 
the new time of activation and with a degraded initial 
intensity. In this way, remembered emotions can re-effect 
the emotional state of the system. 

 There can be multiple emotion codelets, each with its 
own pattern that can cause it to fire.  The system is not 
limited to the firing of only one emotion codelet at any one 
time.  The resulting emotional state of the agent, 
represented by the gain vector, is, therefore, a combination 
of the recent firings of various emotion codelets.  Also, 
multiple emotion codelets can be included in concept 
codelets, thereby learning complex emotions that are 
associated with a higher level concept. 

Learning via Emotions 

It is also important to note how this emotional 
mechanism changes the way that learning takes place in the 
system.  In most connectionist systems there is a desired 
output for every input vector.  For our architecture, 
however, there is only desired input.  An agent based on 
this architecture must be situated within an environment 
and, by its actions, be able to change its environment in a 
way that it can sense the change (Franklin and Graesser 
1997).  What this means for learning is that such an agent 
should be choosing its actions in such a way as to 
manipulate its environment so that the agent receives the 
greatest pleasure or avoids displeasure.  This is different 
from the classic reinforcement scheme (Watkins 1989) 
where a simple positive or negative valence is returned to 
the system by the environment after an output is produced.  
Our system, which we call Unsupervised Internal 
Reinforcement, uses the set of internal emotion codelets to 
recognize pleasurable and non-pleasurable states of the 
environment. 

Why is this method an advantage over standard 
reinforcement?  For one, the judgement as to whether an 

output/action is correct is not dependent on some external 
judge.  From the agent’s point of view reinforcement, by 
its definition, can never be unsupervised because the agent 
is always dependent on this external evaluation.  Secondly, 
in a reinforcement scheme a given output b for a given 
input a will always elicit the same reinforcement value.  
This method only allows the agent to react to its input 
while our method encourages the agent to manipulate its 
environment over time to maximize positive valence – 
pleasure.  This allows for multiple positive environmental 
states as well as multiple paths possible to reach and 
maintain those states. 

The real question for learning has, therefore, become 
one of how best to maximize pleasure at any one moment 
as opposed to minimizing the error.  It seems fairly obvious 
that a minimization of error scheme is only useful for 
omniscient agents whose environment can be completely 
known either by the agent or by some external evaluation 
system.  For situated agents in a more complex and 
dynamic environment, however, emotions serve as a 
heuristic that allows the agent to react to its changing 
situation in a quick and rational manner. 

There has been a great deal of research that indicates 
that, for humans, emotion is one of, if not the, key element 
that brings about "rational" behavior (Adolphs 1996; 
Cytowic 1998; Damasio 1994).  The definition of 
"rational" behavior is important for situated agents.  
Rational behavior is that behavior that avoids non-
pleasurable states and/or pursues pleasurable states.  As 
mentioned previously, emotions for humans have been 
adjusted and prewired over millions of years of evolution.  
Even so, many of the decisions that humans make in the 
course of our daily lives are based on our culture and on 
those complex learned emotions that are not prewired.  
How humans manage to learn these complex emotions and 
how these become coupled to actions is of paramount 
importance.  A promising model is described by Juan 
Velásquez that is similar to Minsky’s K-lines 
implementation (Velásques 1998; Minsky 1986).  
Velásquez's model involves associating an emotion to the 
particular sensory input that it evokes.  This association 
then acts much like an inhibitory or excitatory behavior 
increasing or decreasing the likelihood that a particular 
action is chosen.   

For our current implementation, the emotion codelets 
will effect the drives of the system which will, in turn, 
effect the behavior net (Franklin 1997).  However, future 
work will attempt to determine if complex behaviors can 
be emergent without the use of explicit drive and goal 
generation modules. 

Conscious Mattie 

A version of the architecture described above is being 
implemented in a system called Conscious Mattie 
(CMattie).  CMattie (Franklin 1997) is the next incarnation 
of Virtual Mattie (VMattie), an intelligent clerical agent 
(Franklin et al 1996; Zhang et al 1998; Song and Franklin 



  

forthcoming).  VMattie’s task is to prepare and distribute 
announcements for weekly seminars that occur throughout 
a semester in the Mathematical Sciences Department at the 
University of Memphis. She communicates with seminar 
organizers and announcement recipients via email in 
natural language, and maintains a list of email addresses 
for both.  VMattie is completely autonomous, actively 
requesting information that has not been forthcoming, and 
deciding when to send the announcements, reminders, and 
acknowledgements without human intervention. No format 
has been prescribed for any type of email message to her. 
CMattie will occupy this same domain but will have a 
number of additions.  For one, the underlying architecture 
for CMattie will be a version of the pandemonium 
architecture of Jackson, with modules for metacognition, 
learning, associative memory, and consciousness.  One 
possible drawback to this domain with respects to the 
emotion component is that it may not be rich enough to 
require the emergence of complex emotions.  

CMattie is designed to model the global workspace 
theory of consciousness (Baars 1988, 1997).  Baars’ 
processes correspond to codelets from pandemonium 
theory, and are also called codelets in CMattie. All actions 
are taken at the codelet level.  Baars postulates goal 
contexts that correspond to higher level behaviors in 
CMattie.  Some action selection is made at the behavior 
level, and then implemented by the appropriate lower-level 
codelets.  Emotion codelets influence not only other 
codelets but behaviors as well. 

CMattie also has an associative memory capability 
based on a sparse distributed memory mechanism (Kanerva 
1988).  A new perception associates with past experiences 
including actions and emotions.  These remembered 
emotions activate emotion codelets that, in turn, influence 
current action selection.  Thus, CMattie will produce 
actions, at least partially based on emotional content, and 
appropriate for the active goal contexts. This is quite in 
keeping with current research on human decision making 
using emotions (Cytowic 1998; Damasio 1994). 

What sorts of emotional reactions can be expected of 
CMattie? She may experience fear at an imminent 
shutdown message from the operating system. She may be 
annoyed at having reminded an organizer twice to send 
speaker-topic information with no reply. She may be 
pleased at having learned the new concept “colloquium.” 

What effects might these have? Fear may result in 
CMattie’s ignoring another message being processed in her 
perceptual workspace in favor of quickly saving files. 
Annoyance may result in a more sharply worded reminder. 
Pleasure may reinforce her learning activities. All of these 
influences will be brought about by increasing activation or 
association or both. 

Will CMattie be aware of her emotions? Yes and no. 
The yes answer results from past emotions appearing in 
one part of the focus, and of the present emotion in another 
part. Consciousness routinely shines its spotlight on the 
focus. Hence, CMattie “experiences” these emotions. The 
question could also be asked if CMattie would be aware of 

what emotion she was “experiencing”? Put another way, 
does the spotlight of consciousness ever shine on the 
emotion mechanism or on an emotion codelet? Here the 
answer is no, not because it would be difficult to make it 
happen, but because we’ve found no justification for doing 
so. 

Future Work 

Some have argued that emotions are the primary force 
behind rational, goal directed behavior in humans and 
likely in animals (Cytowic 1998; Damasio 1994; Picard 
1997).  Cytowic goes so far as to suggest that 
consciousness, itself is a form or result of emotion (1998).  
Even at a neurological level, emotion may have a strong 
influence on which drives are of greatest importance and 
on which goals we pursue (Cytowic 1998; Damasio 1994; 
Panksepp 1995).  It is our conjecture that emotions are not 
separate from drives and goals, but that drives and goals 
are the two ends of a continuum describing the pursuit or 
avoidance of particular states, which elicit emotional 
content.  What we normally consider drives would occupy 
the broad end of the continuum while goals are considered 
to be specific.  As an example, consider the general drive 
to satisfy hunger.  A particular goal that would serve that 
drive might be going to the Burger King™ to get a 
Whopper™.  While many computational systems have 
used explicit drive and goal modules to account for this 
behavior, it can also be explained using only remembered 
emotions influencing behaviors.  For this example there 
would be a remembered satisfaction of no longer being 
hungry and the enjoyment of the sandwich.  These 
particular emotions influencing the behaviors enact the 
pursuit of the specific goal.  The general group of emotions 
that come into play when the sensory input occurs that 
coincides with hunger causes what we consider to be a 
drive to satisfy hunger.  We are not discounting the 
difference between the terms "drive" and "goal" but the 
notion that they are separate modules. 

An experimental system is being planned that will use 
emotions to a much greater extent than CMattie.  This 
system will essentially be a connectionist architecture 
using Jackson’s Pandemonium Association Engine (1987).  
Emotions will serve as the motivations, the drives, and, 
ultimately, the goals of the system.  The purpose of such an 
experiment is to find out if complex actions can emerge 
from a system that has only a relatively small set of 
primary emotion elicitors and no explicit drives or goals. 

Related Work 

There has been a surge recently in the number of 
computational and theoretical models in which emotions 
play a central role (Breazeal 1998; Dahl and Teller 1998; 
Sloman 1987; Ushida, Hirayama, and Nakajima 1998; 
Velásques 1997, 1998).  These systems have a fair amount 
of overlap both with each other and with our model.  Most 
notable is the use of the six generally agreed upon primary 



  

emotions.  Also, these models, along with our own, 
presume that secondary or learned emotions will be some 
combination of the primary emotions.  The key difference 
between these approaches and ours lies in the connection 
of emotions to action selection.   

In addition, several systems have been developed that 
attempt to determine the emotional state of the human user 
via facial and gesture recognition among other things 
(Elliot 1992; Reilly 1996).  These systems do not internally 
model emotions.  Instead, they represent the emotional 
state of the user in such a way as to effect the actions of the 
agent. 

Conclusions 

The mechanism described here addresses several current 
issues with the modeling of emotion.  It describes a way 
that complex emotions can be built from basic innate 
emotions and how all these emotions, innate and basic, 
effect the constantly changing state of the agent.  In light of 
the fact that all autonomous agents must, ultimately, be 
situated within an environment, this mechanism proposes a 
paradigm of learning that should be considered for such 
systems.  CMattie is just such a system.  Although her 
domain may be limiting, she will “experience” emotional 
content and react to emotional stimuli.  CMattie will learn 
from her experiences and pursue goals reinforced by the 
emotional valence that the result of those goals elicit. 
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