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Abstract 
 

Here we describe mechanisms for a half-dozen or so 
different types of learning to be implemented in 
“conscious” software agents, and speculate briefly on 
their implications for human learning and 
development. In particular, we’re concerned with the 
role of attention, that is, bringing specific content to 
consciousness, in learning. We offer computational 
mechanisms for such learning. We believe that the 
“conscious” software agent technology described 
below, when it matures, will allow the automation of 
all sorts of human information and decision making 
agents. 
 
 

Autonomous Agents 

 
Artificial intelligence pursues the twin goals of 
understanding human intelligence and of producing 
intelligent software and/or artifacts. Designing, 
implementing and experimenting with autonomous 
agents furthers both these goals in a synergistic way. 
An autonomous agent (Franklin & Graesser 1997) is 
a system situated in, and part of, an environment, 
which senses that environment, and acts on it, over 
time, in pursuit of its own agenda. In biological 

agents, this agenda arises from evolved in drives and 
their associated goals; in artificial agents from drives 
and goals built in by its creator. Such drives, which 
act as motive generators (Sloman 1987),  must be 
present, whether explicitly represented, or expressed 
causally. The agent also acts in such a way as to 
possibly influence what it senses at a later time. In 
other words, it is structurally coupled to its 
environment (Maturana 1975, Maturana et al. 1980). 
Biological examples of autonomous agents include 
humans and most animals. Non-biological examples 
include some mobile robots, and various 
computational agents, including artificial life agents, 
software agents and many computer viruses. We’ll be 
concerned with autonomous software agents, 
designed for specific tasks, and ‘living’ in real world 
computing systems such as operating systems, 
databases, or networks. 

 
 

Global Workspace Theory 

 
The material in this section is from Baars’ two books 
(1988, 1997)  (1988, 1997) and superficially describes 
his global workspace theory of consciousness. 

In his global workspace theory, Baars, along with 

many others (e.g. (Minsky 1985, Ornstein 1986, Edelman 



1987)) , postulates that human cognition is implemented 

by a multitude of relatively small, special purpose 

processes, almost always unconscious. (It's a multiagent 

system.) Communication between them is rare and over a 

narrow bandwidth. Coalitions of such processes find their 

way into a global workspace (and into consciousness). 

This limited capacity workspace serves to broadcast the 

message of the coalition to all the unconscious processors, 

in order to recruit other processors to join in handling the 

current novel situation, or in solving the current problem. 

Thus consciousness in this theory allows us to deal with 

novelty or problematic situations that can’t be dealt with 

efficiently, or at all, by habituated unconscious processes.  

In particular, it provides access to appropriately useful 

resources, thereby solving the relevance problem. 

 All this takes place under the auspices of 
contexts: goal contexts, perceptual contexts, 
conceptual contexts, and/or cultural contexts. Baars 
uses goal hierarchies, dominant goal contexts, a 
dominant goal hierarchy, dominant context 
hierarchies, and lower level context hierarchies. Each 
context is, itself a coalition of processes. Though 
contexts are typically unconscious, they strongly 
influence conscious processes. 

Baars postulates that learning results simply from 
conscious attention, that is, that consciousness is 
sufficient for learning. There's much more to the 
theory, including attention, action selection, emotion, 
voluntary action, metacognition and a sense of self. I 
think of it as a high level theory of cognition. 
 
 

“Conscious” Software Agents 

 
A “conscious” software agent is defined to be an 
autonomous software agent that implements global 
workspace theory. (No claim of sentience is being 
made.) I believe that conscious software agents have 
the potential to play a synergistic role in both 
cognitive theory and intelligent software.   Minds can 
be viewed as control structures for autonomous 
agents (Franklin 1995). A theory of mind constrains 
the design of a “conscious” agent that implements 
that theory. While a theory is typically abstract and 
only broadly sketches an architecture, an 
implemented computational design provides a fully 
articulated architecture and a complete set of 
mechanisms.  This architecture and set of 
mechanisms provides a richer, more concrete, and 

more decisive theory.  Moreover, every design 
decision taken during an implementation furnishes a 
hypothesis about how human minds work.  These 
hypotheses may motivate experiments with humans 
and other forms of empirical tests.  Conversely, the 
results of such experiments motivate corresponding 
modifications of the architecture and mechanisms of 
the cognitive agent. In this way, the concepts and 
methodologies of cognitive science and of computer 
science will work synergistically to enhance our 
understanding of mechanisms of mind (Franklin 
1997). 
 
 

“Conscious” Mattie 

 
“Conscious” Mattie (CMattie) is a “conscious” clerical 
software agent (McCauley & Franklin 1998, 
Ramamurthy et al. 1998, Zhang et al. 1998, Bogner et 
al. in press). She composes and emails out weekly 
seminar announcements, having communicated by 
email with seminar organizers and announcement 
recipients in natural language. She maintains her 
mailing list, reminds organizers who are late with their 
information, and warns of space and time conflicts. 
There is no human involvement other than these 
email messages. CMattie's cognitive modules include 
perception, learning, action selection, associative 
memory, "consciousness," emotion and 
metacognition. Her emotions influence her action 
selection. Her mechanisms include variants and/or 
extensions of Maes' behavior nets (1990) , Hofstadter 
and Mitchell's Copycat architecture (1994) , Jackson's 
pandemonium theory (1987), Kanerva's sparse 
distributed memory (1988) , and Holland's classifier 
systems (Holland 1986) .  

 

 
IDA 

 
IDA (Intelligent Distribution Agent) is a “conscious” 
software agent being developed for the US Navy 
(Franklin et al. 1998) . At the end of each sailor's tour 
of duty, he or she is assigned to a new billet. This 
assignment process is called distribution. The Navy 
employs some 200 people, called detailers, full time 
to effect these new assignments. IDA's task is to 



facilitate this process, by playing the role of detailer. 
Designing IDA presents both communication 
problems, and action selection problems involving 
constraint satisfaction. She must communicate with 
sailors via email and in natural language, 
understanding the content and producing life-like 
responses. Sometimes she will initiate conversations. 
She must access a number of databases, again 
understanding the content. She must see that the 
Navy's needs are satisfied, for example, the required 
number of sonar technicians on a destroyer with the 
required types of training. In doing so she must 
adhere to some ninety policies. She must hold down 
moving costs. And, she must cater to the needs and 
desires of the sailor as well as is possible. This 
includes negotiating with the sailor via an email 
correspondence in natural language. Finally, she 
must write the orders and start them on the way to 
the sailor. IDA's architecture and mechanisms are 
largely modeled after those of CMattie, though more 
complex. In particular, IDA will require improvised 
language generation where for CMattie scripted 
language generation sufficed. Also IDA will need 
deliberative reasoning in the service of action 
selection, where CMattie was able to do without. Her 
emotions will be involved in both of these. 
 
 
“Conscious” Software Architecture and Mechanisms 

 
In both the CMattie and IDA architectures the 
processors postulated by global workspace theory 
are implemented by codelets, small pieces of code. 
These are specialized for some simple task and often 
play the role of demon waiting for appropriate 
condition under which to act. The apparatus for 
producing “consciousness” consists of a coalition 
manager, a spotlight controller, a broadcast manager, 
and a collection of attention codelets who recognize 
novel or problematic situations (Bogner 1999, Bogner 
et al. in press). Each attention codelet keeps a 
watchful eye out for some particular situation to occur 
that might call for “conscious” intervention. Upon 
encountering such a situation, the appropriate 
attention codelet will be associated with the small 
number of codelets that carry the information 
describing the situation. This association should lead 

to the collection of this small number of codelets, 
together with the attention codelet that collected 
them, becoming a coalition. Codelets also have 
activations. The attention codelet increases its 
activation in order that the coalition might compete for 
“consciousness” if one is formed. 

In CMattie and IDA the coalition manager is 
responsible for forming and tracking coalitions of 
codelets. Such coalitions are initiated on the basis of 
the mutual associations between the member 
codelets. At any given time, one of these coalitions 
finds it way to “consciousness,” chosen by the 
spotlight controller, who picks the coalition with the 
highest average activation among its member 
codelets. Global workspace theory calls for the 
contents of “consciousness” to be broadcast to each 
of the codelets. The broadcast manager 
accomplishes this. 

Both CMattie and IDA depend on a behavior net 
(Maes 1990) for high-level action selection in the 
service of built-in drives. Each has several distinct 
drives operating in parallel. These drives vary in 
urgency as time passes and the environment 
changes. Behaviors are typically mid-level actions, 
many depending on several codelets for their 
execution. A behavior net is composed of behaviors 
and their various links. A behavior looks very much 
like a production rule, having preconditions as well as 
additions and deletions.  A behavior is distinguished 
from a production rule by the presence of an 
activation, a number indicating some kind of strength 
level. Each behavior occupies a node in a digraph 
(directed graph). The three types of links of the 
digraph are completely determined by the behaviors. 
If a behavior X will add a proposition b, which is on 
behavior Y's precondition list, then put a successor 
link from X to Y. There may be several such 
propositions resulting in several links between the 
same nodes.  Next, whenever you put in a successor 
going one way, put a predecessor link going the 
other. Finally, suppose you have a proposition m on 
behavior Y's delete list that is also a precondition for 
behavior X. In such a case, draw a conflictor link from 
X to Y, which is to be inhibitory rather than excitatory. 

As in connectionist models, this digraph spreads 
activation. The activation comes from activation 
stored in the behaviors themselves, from the 
environment, from drives, and from internal states. 



The environment awards activation to a behavior for 
each of its true preconditions.  The more relevant it is 
to the current situation, the more activation it's going 
to receive from the environment. This source of 
activation tends to make the system opportunistic. 
Each drive awards activation to every behavior that, 
by being active, will satisfy that drive. This source of 
activation tends to make the system goal directed. 
Certain internal states of the agent can also send 
activation to the behavior net. This activation, for 
example, might come from a coalition of codelets 
responding to a “conscious” broadcast. Finally, 
activation spreads from behavior to behavior along 
links.  Along successor links, one behavior 
strengthens those behaviors whose preconditions it 
can help fulfill by sending them activation. Along 
predecessor links, one behavior strengthens any 
other behavior whose add list fulfills one of its own 
preconditions. A behavior sends inhibition along a 
conflictor link to any other behavior that can delete 
one of its true preconditions, thereby weakening it. 
Every conflictor link is inhibitory. Call a behavior 
executable if all of its preconditions are satisfied. To 
be acted upon a behavior must be executable, must 
have activation over threshold, and must have the 
highest such activation. Behavior nets produce 
flexible, tunable action selection for these agents. 

Action selection via behavior net suffices for 
CMattie due to her relatively constrained domain. 
IDA’s domain is much more complex, and requires 
deliberation in the sense of creating possible 
scenarios, partial plans of actions, and choosing 
between them. For example, suppose IDA is 
considering a sailor and several possible jobs, all 
seemingly suitable. She must construct a scenario for 
each of these possible billets. In each scenario the 
sailor leaves his or her current position during a 
certain time interval, spends a specified length of 
time on leave, possibly reports to a training facility on 
a certain date, and arrives at the new billet with in a 
given time frame. Such scenarios are valued on how 
well they fit the temporal constraints and on moving 
and training costs. 

Scenarios are composed of scenes. IDA’s scenes 

are organized around events. Each scene may require 

objects, actors, concepts, relations, and schema represented 

by frames. They are constructed in a computational 

workspace corresponding to working memory in humans. 

We use Barsalou’s perceptual symbol systems as a guide 

(1999) . The perceptual/conceptual knowledge base of this 

agent takes the form of a semantic net with activation 

called the slipnet. The name is taken from the Copycat 

architecture that employs a similar construct (Hofstadter et 

al. 1994).  Nodes of the slipnet constitute the agent’s 
perceptual symbols. Pieces of the slipnet containing 
nodes and links, together with codelets whose task it 
is to copy the piece to working memory constitute 
Barsalou’s perceptual symbol simulators. These 
perceptual symbols are used to construct scenes in 
working memory. The scenes are strung together to 
form scenarios. The work is done by deliberation 
codelets. Evaluation of scenarios is also done by 
codelets. 

Deliberation, as in humans, is mediated by the 
“consciousness” mechanism. Imagine IDA in the 
context of a behavior stream whose goal is to find a 
billet for a particular sailor. Perhaps a behavior 
executes to read appropriate items from the sailor’s 
personnel database record. Then, possibly, comes a 
behavior to locate the currently available billets. Next 
might be a behavior that runs each billet and that 
sailor through IDA’s constraint satisfaction module, 
producing a small number of candidate billets. Finally 
a deliberation behavior may be executed that sends 
deliberation codelets to working memory together with 
codelets carrying billet information. A particular billet’s 
codelets wins its way into “consciousness.” Scenario 
building codelets respond to the broadcast and begin 
creating scenes. This scenario building process, 
again as in humans, has both it’s “unconscious” and 
its “conscious” activities. Eventually scenarios are 
created and evaluated for each candidate billet and 
one of them is chosen. Thus we have behavior 
control via deliberation. 

The mediation by the “consciousness” 
mechanism, as described in the previous paragraph 
is characteristic of IDA. The principle is that she 
should use “consciousness” whenever a human 
detailer would be conscious in the same situation. For 
example, IDA could readily recover all the needed 
items from a sailor’s personnel record unconsciously 
with a single behavior stream. But, a human detailer 
would be conscious of each item individually. Hence, 
according to our principle, so must IDA be 
“conscious” of each retrieved personnel data item.  

 



 
Learning into Associative Memory 

 
Both CMattie and IDA employ sparse distributed 
memory (SDM) as their major associative memories 
(Kanerva 1988).  SDM is a content addressable 
memory that, in many ways, is an ideal computational 
mechanism for use as a long-term associative 
memory. Being content addressable means that 
items in memory can be retrieved by using part of 
their contents as a cue, rather than having to know 
the item’s address in memory.  

The inner workings of SDM rely on large binary 
spaces, that is, spaces of vectors containing only 
zeros and ones, called bits. These binary vectors, 
called words, serve as both the addresses and the 
contents of the memory. The dimension of the space 
determines the richness of each word. These spaces 
are typically far too large to implement in an 
conceivable computer. Approximating the space 
uniformly with a possible number of actually 
implemented, hard locations surmounts this difficulty. 
The number of such hard locations determines the 
carrying capacity of the memory. Features are 
represented as one or more bits. Groups of features 
are concatenated to form a word. When writing a 
word to memory, a copy of the word is placed in all 
close enough hard locations. When reading a word, a 
close enough cue would reach all close enough hard 
locations and get some sort of aggregate or average 
out of them. As mentioned above, reading is not 
always successful. Depending on the cue and the 
previously written information, among other factors, 
convergence or divergence during a reading 
operation may occur. If convergence occurs, the 
pooled word will be the closest match (with 
abstraction) of the input reading cue. On the other 
hand, when divergence occurs, there is no relation -in 
general- between the input cue and what is retrieved 
from memory. 

SDM is much like human long-term memory. A 
human often knows what he or she does or doesn't 
know. If asked for a telephone number I've once 
known, I may search for it. When asked for one I've 
never known, an immediate "I don't know" response 
ensues. SDM makes such decisions based on the 
speed of initial convergence. The reading of memory 

in SDM is an iterative process. The cue is used as an 
address. The content at that address is read as a 
second address, and so on until convergence, that is, 
until subsequent contents look alike. If it doesn’t 
quickly converge, an “I don't know” is the response. 
The "on the tip of my tongue phenomenon" 
corresponds to the cue having content just at the 
threshold of convergence. Yet another similarity is the 
power of rehearsal during which an item would be 
written many times and, at each of these to a 
thousand locations That’s the “distributed” pare of 
sparse distributed memory. A well-rehearsed item can 
be retrieved with smaller cues. Another similarity is 
forgetting, which would tend to increase over time as 
a result of other similar writes to memory. 

How do the agents use this associative memory? 
As one example, let’s suppose an email message for 
CMattie arrives, is transferred into the perceptual 
workspace (working memory), and is descended 
upon by perceptual codelets looking for words or 
phrases they recognize. When such are found, nodes 
in the slipnet (a semantic net type mechanism with 
activation passing that acts as a perceptual and 
conceptual knowledge structure) are activated, a 
message type is selected, and the appropriate 
template filled. The information thus created from the 
incoming message is then written to the perception 
registers in the focus, making it available to the rest of 
the system. 

The contents of the focus are then used as an 
address to query associative memory. The results of 
this query, that is, whatever CMattie associates with 
this incoming information, are written into their own 
registers in the focus. This may include some emotion 
and some previous action. Attention codelets then 
attempt to take this information to “consciousness,” 
along with any discrepancies they may find, such as 
missing information, conflicting seminar times, etc. 
Information about the current emotion and the 
currently executing behavior are written to the focus 
by appropriate codelets. The current percept, 
consisting of the incoming information as modified by 
associations and the current emotion and behavior, 
are then written to associative memory. Those 
percepts carry strong emotions are written repeatedly 
yielding stronger associations. IDA handles 
perception in much the same way. 

Thus one type of associative learning takes place, 



learning into associative memory. For a quite unusual 
percept, this learning may be only memorization. For 
more common percepts some sort of generalization 
takes place as a result of the mechanism of SDM. 
For example, CMattie learns the usual times of a 
particular seminar, and will send an inquiry to the 
organizer should a different time be specified. Due to 
her much more complex domain, we expect IDA to 
learn into associative memory in much more 
sophisticated ways. For example, she may well 
associate a certain class of sailors, identified by pay 
grade, job skills, length of obligatory service 
remaining, etc., to prefer certain types of billets. Thus 
we’ve seen one way in which these agents can learn. 

 
 

Temporal proximity learning 

 
Learning into associative memory as described in the 
preceding section can be considered a type of 
declarative learning. We’ll now turn to a more 
procedural learning. Codelets in CMattie (and IDA) 
participate in a pandemonium theory style 
organization (Jackson 1987).  We’ll use Jackson's 
metaphor. Picture a collection codelets occupying a 
sports stadium. In the stands are the inactive 
codelets. This must not be taken too literally. Each of 
these codelets is alert to conditions that would cause 
it to become active and join the playing field or, in the 
case of generator codelets, to instantiate a copy of 
itself, with variables bound, into the playing field. In 
the sidelines we find such instantiated codelets who, 
having responded to a conscious broadcast, now 
await the activation of their behavior, that is, for their 
goal context to become dominant. On the playing 
field we find the active codelets, the codelets that are 
actively carrying out their functions. Some of these 
are joined in coalitions. One such coalition should lie 
in the spotlight of “consciousness”. One can think of 
the playing field as the agent’s working memory or, 
better yet, as the union of her several working 
memories.  

The agent’s coalition manager is responsible for 
forming and tracking coalitions of codelets on the 
playing field. Such coalitions are initiated on the basis 
of the mutual associations between the member 
codelets. Since association can both increase and 

diminish the forming and tracking of coalitions is a 
dynamic process.  

While the existence of a coalition depends on the 
strengths of the associations between its members, 
its chance of becoming “conscious” depends on their 
average activation. The agent’s spotlight controller is 
responsible for selecting the coalition with the highest 
such average to shine upon. Since activations change 
even more rapidly than associations, the spotlight of 
“consciousness” can be expected to frequently shift 
from one coalition to another. The activation of a 
codelet can be influenced by a higher level concept 
(slipnet node, behavior), by the current emotion and, 
in the case of an attention codelet, by its own action. 
A codelet's activation goes to zero when its task is 
finished. 

 
 
Those codelets who share time in the spotlight of 

“consciousness” have associations between them 
formed or strengthened, or perhaps diminished if 
things are going badly. Those codelets sharing time in 
the playing field also change associations, but at a 
much lesser rate. Coalitions of highly associated 
codelets may merge to form higher-level concept 
codelets. The concept codelet, when active, performs 
the same actions as do its member codelets 
combined. This is comparable to chunking in SOAR 
(Laird et al. 1987).  

Thus we’ve described two different types of 
temporal proximity, or Hebbian, style learning. As 
codelets become more or less associated likelihood 
of their coming to “consciousness” changes, and with 



it the likelihood of their together helping to initiate 
some behavior. These changes in likelihood 
constitute a kind of procedural learning. When the 
same coalition of codelets, acting in parallel or in 
sequence, often produce a useful result, this coalition 
can be expected to merge into a concept codelet. 
This merging constitutes a second form of temporal 
proximity learning. 

 
 

Learning of emotional influence 
 
 In both CMattie and IDA we include mechanisms for 
emotions (McCauley & Franklin 1998) . CMattie, for 
example may “experience” such emotions as guilt at 
not getting an announcement out on time, frustration 
at not understanding a message, and anxiety at not 
knowing the speaker and title of an impending 
seminar. Action selection will be influenced by 
emotions via their effect on drives, modeling recent 
work on human action selection (Damasio 1994). 

CMattie can “experience” four basic emotions, 
anger, fear, happiness and sadness. These emotions 
can vary in intensity as indicated by their activation 
levels. For example, anger can vary from mild 
annoyance to rage as its activation rises. A four 
vector containing the current activations of these four 
basic emotions represents CMattie’s current 
emotional state. Like humans, there’s always some 
emotional state however slight. Also like humans, her 
current emotional state is often some complex 
combination of basic emotions or results from some 
particular changes in them. The effect of emotions on 
codelets, drives, etc. varies with their intensity. Fear 
brought on by an imminent shutdown message might 
be expected to strengthen CMattie’s self-preservation 
drive resulting in additional activation going from it 
into the behavior net. 

CMattie’s emotional codelets serve to change her 
emotional state. When its preconditions are satisfied, 
an emotional codelet will enhance or diminish one of 
the four basic emotions. An emotion can build till 
saturation occurs. Repeated emotional stimuli result 
in habituation. Emotion codelets can also combine to 
implement more complex secondary emotions that 
act by affecting more than one basic emotion at once. 
Emotion codelets also serve to enhance or diminish 
the activation of other codelets. They also act to 

increase or decrease the strength of drives, thereby 
influencing CMattie’s choice of behaviors. 

IDA’s emotional system will need to be a good bit 
more robust than CMattie’s.  In addition, IDA’s 
emotions will be more tightly integrated with her 
“consciousness” mechanisms.  The first step in this 
direction will be to meld portions of the emotion and 
“consciousness” mechanisms by adding to some of 
the attention codelets the ability to change the 
emotion vector, and by linking their activation to the 
amount of emotional change produced by that 
codelet. The next step provides massive 
interconnectedness between the emotional 
mechanisms and the other cognitive areas of the 
system.  A network is built up by connecting the 
attention/emotion codelets to key behaviors, goals, 
drives, perception codelets, etc. The links of this 
network are to have weights and carry activation. 
Weights will decay with disuse. Each use tends to 
decrease the decay rate. Weights will increase 
according to a sigmoidal function of any activation 
carried over the link, allowing for Hebbian style 
learning. The product of weight and carried activation 
is added to the activation already present at the head 
of the link. Spreading activation then becomes the 
common currency that integrates the separate 
modules that use these constructs.  

Thus one of the agents, IDA, will be able to learn 
use emotions to affect various cognitive functions as 
we humans do. 

 
 

Metacognitive learning 

 
Metacognition should include knowledge of one’s own 
cognitive processes, and the ability to actively monitor 
and consciously regulate them. This would require 
self-monitoring, self-evaluation, and self-regulation. 
Following Minsky, we’ll think of CMattie’s “brain” as 
consisting of two parts, the A-brain and the B-brain 
(Minsky 1985). The A-brain consists of all the other 
modules of the agent’s architecture. It performs all of 
her cognitive activities except metacognition. Its 
environment is the outside world, a dynamic, but 
limited, real world environment. The B-brain, sitting on 
top of the A-brain, monitors and regulates it. The B-
brain’s environment is the A-brain, or more 



specifically, the A-brain’s activities.  
One can look at a metacognitive module as an 

autonomous agent in its own right. It senses the A-
brain’s activity and acts upon it over time in pursuit of 
its own agenda. It’s also structurally coupled to its 
quite restricted environment. Its agenda derives from 
built in metacognitive drives. One such drive is to 
interrupt oscillatory behavior. Another such might be 
to keep the agent more on task, that is, to make it 
more likely that a behavior stream would carry out to 
completion. Yet another would push toward efficient 
allocation of resources. 

Unlike the situation in her A-Brain where drives 
are explicitly represented as part of the behavior net, 
the agent’s metacognitive drives are embodied in 
fuzzy classifiers (Zhang et al. 1998). The 
preconditions of such classifiers typically include 
some specification of an emotional state. Another 
type of precondition may involve the number of email 
messages in the incoming queue, or the number of 
instantiated behavior streams, or the amount of 
memory space they are using. 

How does the metacognition module influence 
the agent’s behavior? In all cases it relies on its inner 
percepts of the A-brain. Oscillatory behavior might 
occur as the perceptual mechanism goes back and 
forth between two message types unable to decide 
on either. Metacognition might then send additional 
activation to one message type node in the slipnet, 
effectively forcing a decision, even a wrong one. The 
metacognition module can also affect the agent’s 
behavior by tuning global parameters, for example in 
the behavior net. This kind of tuning could serve to 
keep her more on task, by increasing the parameter 
that controls the amount of activation a drive pumps 
into its behavior streams. Or, it could make her more 
thoughtful by increasing the threshold for executing 
behaviors. Finally, metacognition may be concerned 
with high-level allocation of resources. For example, 
memory might be shifted from, say, a workspace 
(part of working memory) to the behavior net to 
accommodate a shortage of space there. 

Metacognition in CMattie is implemented as a 

classifier system in order that it may learn. Learning 

actions always requires feedback on the results of prior 

actions. The Evaluator submodule is implemented by a 

reinforcement learning algorithm (Barto et al. 1981) that 

assigns reward or punishment to classifiers based on the 

next inner percept. It also uses a reinforcement distribution 

algorithm (Bonarini 1997) to distribute credit among the 

classifiers. The more common bucket brigade algorithm 

(Holland et al. 1978) is not used since sequences of actions 

are not typically required of metacognition in these agents. 

When things are not going too well over a period of time, 

learning occurs via a genetic algorithm (Holland 1975) 

acting to produce new classifiers. Thus we have yet another 

form of learning in “conscious” software agents. 

 

 

Learning by being told 

 

Our “conscious” software agents will learn concepts into 

their perceptual mechanisms, that is, they’ll learns new 

slipnet nodes and links, and new perceptual codelets 

(Ramamurthy et al. 1998, Bogner et al. in press). This 

learning takes place by modifying what’s known, existing 

nodes, links and codelets, using case based reasoning 

(Kolodner 1993).  In CMattie the impetus for such learning 

comes from messages from a seminar organizer informing 

her that she has mishandled a previous message. An 

interchange of email messages between CMattie and the 

organizer may eventually lead to her learning a new 

concept. We’ll trace a hypothetical scenario for such 

learning. 

Suppose CMattie receives an announcement of a 
dissertation defense to be held at a certain place and 
time with a certain speaker and title. She would most 
likely treat this as a speaker-topic message for a new 
seminar.  This misunderstanding is disseminated 
through “consciousness”, leading to an 
acknowledgement to the sender stating that she is 
initializing a new seminar called ``Dissertation 
Defense Seminar'' with the sender as its organizer.  
This acknowledgement may well elicit a negative 
response from the sender. CMattie has slipnet nodes, 
including a message type, codelets and behaviors to 
help deal with such a situation. Such a negative 
response may start a ”conversation'' between CMattie 
and the sender. During this interchange, CMattie 
learns that a dissertation defense is similar to a 
seminar, but with slightly different features.  In this 
case, the periodicity feature has a different value.  
The email conversation, stripped of headers and 
pleasantries might go something like this: 
 

Sender: It’s not a dissertation defense seminar, just a 
dissertation defense. 
CMattie: What’s a dissertation defense? 
Sender: It’s like a seminar but only happens 



irregularly. 
 

CMattie can trace the thread of the conversation 
via her episodic memory (case-based memory in 
CMattie, perhaps SDM in IDA). CMattie has codelets 
that recognize words associated with features. Thus 
she should recognize “irregularly” as having a certain 
meaning with regard to periodicity. At this point, case 
based reasoning comes into play, allowing the 
creation of a new slipnet node for dissertation 
defense with features the same as those of the 
seminar node except that periodicity is now fixed at 
“irregular.” Links are also put in place with 
destinations similar to those of the seminar node. A 
new message type node is also created, along with 
its links. Finally the needed new codelets are created, 
modeled after the old codelets associated with the 
seminar node. Case based reasoning has solved the 
problem by first identifying the solution to the most 
similar prior problem, and then modifying it to solve 
the new one. (In order for this to work, initial cases 
have to be included in case based memory at 
startup.) A new concept has been learned to the 
extent that CMattie needs to learn it. She learned it 
by being told. 

Behavioral learning occurs quite similarly. 
CMattie’s behavioral learning mechanism, again case 
based, takes note of the changes wrought in the 
slipnet and deduces needed changes in behavior. 
This leads to new behavior streams and new 
codelets to support them. If CMattie initially gets 
things wrong, another interchange with the 
appropriate seminar organizer may ensue. 
Eventually, CMattie will learn an acceptable behavior 
for a dissertation defense. Note that we’ve described 
what is essentially a one-shot learning. Though we 
might consider this reinforcement learning, it would 
be a stretch. This global learning is quite different 
from the local learning common in new AI systems, 
such as in neural net or reinforcement learning. 
Again, it is learning by being told. 

 
 

Learning by imitation 

 
Thought still in the speculation stage, it seems 
possible that IDA will have to learn about a particular 

community of sailors, say cooks, machinist mates, or 
sonar technicians, by watching a human detail in 
action dealing with them. Though there has been 
some discussion of adding this type of learning to the 
system, as yet no decision has been taken. In fact, no 
mechanism for this kind of learning has been 
seriously proposed. At this writing we are on the 
verge of initiating a literature search. Learning by 
imitation is quite common in humans, and may well 
be needed in “conscious” software agents. This may 
be a part on a necessary development on the part of 
more sophisticated “conscious” software agents. 

 
 

Implications for human learning 

 
In the previous sections we’ve seen descriptions of 
several quite distinct types of learning available to 
“conscious” software agents. Declarative learning 
occurs in SDM and episodic memory implemented as 
case-based memory. Percepts from the focus being 
stored in the main associative memory constitute 
declarative learning. Not only is the content of the 

percept learned, but relationships with other items of 

memory and some generalization also. Each new case 
stored constitutes declarative learning. Declarative 
learning also results from the learning of new 
concepts by being told by seminar organizers. We 
suspect that human declarative learning also occurs 
in each of these forms, each with a somewhat 
different mechanism.  

Procedural learning in these agents also occurs in 
several forms. Gradual procedural learning takes place 

when associations are strengthened between codelets that 

are “conscious,” or even active, together. The chunking of 

codelets is another form of procedural learning, as is the 

learning of new behaviors through email interactions with 

organizers. We suspect that humans are capable of each of 

these modes of procedural learning and that they each 

require a different mechanism. Of course, much important 

human learning, of language for example, has both a 

declarative and a procedural component.  
A basic tenet of global workspace theory says 

that consciousness is sufficient for learning. It 
certainly is true in our agents. The contents of 
“consciousness” are routinely written to associative 
memory. Is consciousness also necessary for 
learning? The learning of new associations between 
codelets and adjustments to such associations 



happens when their contents become  “conscious.” 
But it also occurs to a lesser extent when the 
codelets are active together, but unconscious. Our 
chunking mechanism also does not routinely come to 
consciousness, though a newly learned chunk may 
well have been “conscious.” This seems to suggest 
that some procedural learning, some gradual 
improvement of skills may occur unconsciously with 
practice.  

It also seems that our metacognitive learning 
occurs unconsciously. This must be at least partly a 
flaw in our model, since at least some metacognitive 
learning in humans happens consciously. We also 
suspect that some learning of weights in emotion 
networks of these agents will occur unconsciously. 
This seems quite possibly true of humans as well. 
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