
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

CCRG Papers Cognitive Computing Research Group

2000

Learning in "Conscious" Software Agents Learning in "Conscious" Software Agents

S. Franklin

Follow this and additional works at: https://digitalcommons.memphis.edu/ccrg_papers

Recommended Citation Recommended Citation
Franklin, S. (2000). Learning in "Conscious" Software Agents. Retrieved from
https://digitalcommons.memphis.edu/ccrg_papers/140

This Document is brought to you for free and open access by the Cognitive Computing Research Group at
University of Memphis Digital Commons. It has been accepted for inclusion in CCRG Papers by an authorized
administrator of University of Memphis Digital Commons. For more information, please contact
khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/ccrg_papers
https://digitalcommons.memphis.edu/ccrg
https://digitalcommons.memphis.edu/ccrg_papers?utm_source=digitalcommons.memphis.edu%2Fccrg_papers%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/ccrg_papers/140?utm_source=digitalcommons.memphis.edu%2Fccrg_papers%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

Learning in “Conscious” Software Agents

Stan Franklin1, 2

Institute for Intelligent Systems and

Department of Mathematical Sciences
The University of Memphis

stan.franklin@memphis.edu
www.msci.memphis.edu/~franklin

1Supported in part by NSF grant SBR-9720314 and by ONR grant N00014-98-1-0332
2With essential contributions from the Conscious Software Research Group including Art Graesser, Satish Ambati, Ashraf

Anwar, Myles Bogner, Derek Harter, Arpad Kelemen, Irina Makkaveeva, Lee McCauley, Aregahegn Negatu, Fergus Nolan,

Hongjun Song, Uma Ramamurthy, Zhaohua Zhang

Abstract

Here we describe mechanisms for a half-dozen or so
different types of learning to be implemented in
“conscious” software agents, and speculate briefly on
their implications for human learning and
development. In particular, we’re concerned with the
role of attention, that is, bringing specific content to
consciousness, in learning. We offer computational
mechanisms for such learning. We believe that the
“conscious” software agent technology described
below, when it matures, will allow the automation of
all sorts of human information and decision making
agents.

Autonomous Agents

Artificial intelligence pursues the twin goals of
understanding human intelligence and of producing
intelligent software and/or artifacts. Designing,
implementing and experimenting with autonomous
agents furthers both these goals in a synergistic way.
An autonomous agent (Franklin & Graesser 1997) is
a system situated in, and part of, an environment,
which senses that environment, and acts on it, over
time, in pursuit of its own agenda. In biological

agents, this agenda arises from evolved in drives and
their associated goals; in artificial agents from drives
and goals built in by its creator. Such drives, which
act as motive generators (Sloman 1987), must be
present, whether explicitly represented, or expressed
causally. The agent also acts in such a way as to
possibly influence what it senses at a later time. In
other words, it is structurally coupled to its
environment (Maturana 1975, Maturana et al. 1980).
Biological examples of autonomous agents include
humans and most animals. Non-biological examples
include some mobile robots, and various
computational agents, including artificial life agents,
software agents and many computer viruses. We’ll be
concerned with autonomous software agents,
designed for specific tasks, and ‘living’ in real world
computing systems such as operating systems,
databases, or networks.

Global Workspace Theory

The material in this section is from Baars’ two books
(1988, 1997) (1988, 1997) and superficially describes
his global workspace theory of consciousness.

In his global workspace theory, Baars, along with

many others (e.g. (Minsky 1985, Ornstein 1986, Edelman

1987)) , postulates that human cognition is implemented

by a multitude of relatively small, special purpose

processes, almost always unconscious. (It's a multiagent

system.) Communication between them is rare and over a

narrow bandwidth. Coalitions of such processes find their

way into a global workspace (and into consciousness).

This limited capacity workspace serves to broadcast the

message of the coalition to all the unconscious processors,

in order to recruit other processors to join in handling the

current novel situation, or in solving the current problem.

Thus consciousness in this theory allows us to deal with

novelty or problematic situations that can’t be dealt with

efficiently, or at all, by habituated unconscious processes.

In particular, it provides access to appropriately useful

resources, thereby solving the relevance problem.

 All this takes place under the auspices of
contexts: goal contexts, perceptual contexts,
conceptual contexts, and/or cultural contexts. Baars
uses goal hierarchies, dominant goal contexts, a
dominant goal hierarchy, dominant context
hierarchies, and lower level context hierarchies. Each
context is, itself a coalition of processes. Though
contexts are typically unconscious, they strongly
influence conscious processes.

Baars postulates that learning results simply from
conscious attention, that is, that consciousness is
sufficient for learning. There's much more to the
theory, including attention, action selection, emotion,
voluntary action, metacognition and a sense of self. I
think of it as a high level theory of cognition.

“Conscious” Software Agents

A “conscious” software agent is defined to be an
autonomous software agent that implements global
workspace theory. (No claim of sentience is being
made.) I believe that conscious software agents have
the potential to play a synergistic role in both
cognitive theory and intelligent software. Minds can
be viewed as control structures for autonomous
agents (Franklin 1995). A theory of mind constrains
the design of a “conscious” agent that implements
that theory. While a theory is typically abstract and
only broadly sketches an architecture, an
implemented computational design provides a fully
articulated architecture and a complete set of
mechanisms. This architecture and set of
mechanisms provides a richer, more concrete, and

more decisive theory. Moreover, every design
decision taken during an implementation furnishes a
hypothesis about how human minds work. These
hypotheses may motivate experiments with humans
and other forms of empirical tests. Conversely, the
results of such experiments motivate corresponding
modifications of the architecture and mechanisms of
the cognitive agent. In this way, the concepts and
methodologies of cognitive science and of computer
science will work synergistically to enhance our
understanding of mechanisms of mind (Franklin
1997).

“Conscious” Mattie

“Conscious” Mattie (CMattie) is a “conscious” clerical
software agent (McCauley & Franklin 1998,
Ramamurthy et al. 1998, Zhang et al. 1998, Bogner et
al. in press). She composes and emails out weekly
seminar announcements, having communicated by
email with seminar organizers and announcement
recipients in natural language. She maintains her
mailing list, reminds organizers who are late with their
information, and warns of space and time conflicts.
There is no human involvement other than these
email messages. CMattie's cognitive modules include
perception, learning, action selection, associative
memory, "consciousness," emotion and
metacognition. Her emotions influence her action
selection. Her mechanisms include variants and/or
extensions of Maes' behavior nets (1990) , Hofstadter
and Mitchell's Copycat architecture (1994) , Jackson's
pandemonium theory (1987), Kanerva's sparse
distributed memory (1988) , and Holland's classifier
systems (Holland 1986) .

IDA

IDA (Intelligent Distribution Agent) is a “conscious”
software agent being developed for the US Navy
(Franklin et al. 1998) . At the end of each sailor's tour
of duty, he or she is assigned to a new billet. This
assignment process is called distribution. The Navy
employs some 200 people, called detailers, full time
to effect these new assignments. IDA's task is to

facilitate this process, by playing the role of detailer.
Designing IDA presents both communication
problems, and action selection problems involving
constraint satisfaction. She must communicate with
sailors via email and in natural language,
understanding the content and producing life-like
responses. Sometimes she will initiate conversations.
She must access a number of databases, again
understanding the content. She must see that the
Navy's needs are satisfied, for example, the required
number of sonar technicians on a destroyer with the
required types of training. In doing so she must
adhere to some ninety policies. She must hold down
moving costs. And, she must cater to the needs and
desires of the sailor as well as is possible. This
includes negotiating with the sailor via an email
correspondence in natural language. Finally, she
must write the orders and start them on the way to
the sailor. IDA's architecture and mechanisms are
largely modeled after those of CMattie, though more
complex. In particular, IDA will require improvised
language generation where for CMattie scripted
language generation sufficed. Also IDA will need
deliberative reasoning in the service of action
selection, where CMattie was able to do without. Her
emotions will be involved in both of these.

“Conscious” Software Architecture and Mechanisms

In both the CMattie and IDA architectures the
processors postulated by global workspace theory
are implemented by codelets, small pieces of code.
These are specialized for some simple task and often
play the role of demon waiting for appropriate
condition under which to act. The apparatus for
producing “consciousness” consists of a coalition
manager, a spotlight controller, a broadcast manager,
and a collection of attention codelets who recognize
novel or problematic situations (Bogner 1999, Bogner
et al. in press). Each attention codelet keeps a
watchful eye out for some particular situation to occur
that might call for “conscious” intervention. Upon
encountering such a situation, the appropriate
attention codelet will be associated with the small
number of codelets that carry the information
describing the situation. This association should lead

to the collection of this small number of codelets,
together with the attention codelet that collected
them, becoming a coalition. Codelets also have
activations. The attention codelet increases its
activation in order that the coalition might compete for
“consciousness” if one is formed.

In CMattie and IDA the coalition manager is
responsible for forming and tracking coalitions of
codelets. Such coalitions are initiated on the basis of
the mutual associations between the member
codelets. At any given time, one of these coalitions
finds it way to “consciousness,” chosen by the
spotlight controller, who picks the coalition with the
highest average activation among its member
codelets. Global workspace theory calls for the
contents of “consciousness” to be broadcast to each
of the codelets. The broadcast manager
accomplishes this.

Both CMattie and IDA depend on a behavior net
(Maes 1990) for high-level action selection in the
service of built-in drives. Each has several distinct
drives operating in parallel. These drives vary in
urgency as time passes and the environment
changes. Behaviors are typically mid-level actions,
many depending on several codelets for their
execution. A behavior net is composed of behaviors
and their various links. A behavior looks very much
like a production rule, having preconditions as well as
additions and deletions. A behavior is distinguished
from a production rule by the presence of an
activation, a number indicating some kind of strength
level. Each behavior occupies a node in a digraph
(directed graph). The three types of links of the
digraph are completely determined by the behaviors.
If a behavior X will add a proposition b, which is on
behavior Y's precondition list, then put a successor
link from X to Y. There may be several such
propositions resulting in several links between the
same nodes. Next, whenever you put in a successor
going one way, put a predecessor link going the
other. Finally, suppose you have a proposition m on
behavior Y's delete list that is also a precondition for
behavior X. In such a case, draw a conflictor link from
X to Y, which is to be inhibitory rather than excitatory.

As in connectionist models, this digraph spreads
activation. The activation comes from activation
stored in the behaviors themselves, from the
environment, from drives, and from internal states.

The environment awards activation to a behavior for
each of its true preconditions. The more relevant it is
to the current situation, the more activation it's going
to receive from the environment. This source of
activation tends to make the system opportunistic.
Each drive awards activation to every behavior that,
by being active, will satisfy that drive. This source of
activation tends to make the system goal directed.
Certain internal states of the agent can also send
activation to the behavior net. This activation, for
example, might come from a coalition of codelets
responding to a “conscious” broadcast. Finally,
activation spreads from behavior to behavior along
links. Along successor links, one behavior
strengthens those behaviors whose preconditions it
can help fulfill by sending them activation. Along
predecessor links, one behavior strengthens any
other behavior whose add list fulfills one of its own
preconditions. A behavior sends inhibition along a
conflictor link to any other behavior that can delete
one of its true preconditions, thereby weakening it.
Every conflictor link is inhibitory. Call a behavior
executable if all of its preconditions are satisfied. To
be acted upon a behavior must be executable, must
have activation over threshold, and must have the
highest such activation. Behavior nets produce
flexible, tunable action selection for these agents.

Action selection via behavior net suffices for
CMattie due to her relatively constrained domain.
IDA’s domain is much more complex, and requires
deliberation in the sense of creating possible
scenarios, partial plans of actions, and choosing
between them. For example, suppose IDA is
considering a sailor and several possible jobs, all
seemingly suitable. She must construct a scenario for
each of these possible billets. In each scenario the
sailor leaves his or her current position during a
certain time interval, spends a specified length of
time on leave, possibly reports to a training facility on
a certain date, and arrives at the new billet with in a
given time frame. Such scenarios are valued on how
well they fit the temporal constraints and on moving
and training costs.

Scenarios are composed of scenes. IDA’s scenes

are organized around events. Each scene may require

objects, actors, concepts, relations, and schema represented

by frames. They are constructed in a computational

workspace corresponding to working memory in humans.

We use Barsalou’s perceptual symbol systems as a guide

(1999) . The perceptual/conceptual knowledge base of this

agent takes the form of a semantic net with activation

called the slipnet. The name is taken from the Copycat

architecture that employs a similar construct (Hofstadter et

al. 1994). Nodes of the slipnet constitute the agent’s
perceptual symbols. Pieces of the slipnet containing
nodes and links, together with codelets whose task it
is to copy the piece to working memory constitute
Barsalou’s perceptual symbol simulators. These
perceptual symbols are used to construct scenes in
working memory. The scenes are strung together to
form scenarios. The work is done by deliberation
codelets. Evaluation of scenarios is also done by
codelets.

Deliberation, as in humans, is mediated by the
“consciousness” mechanism. Imagine IDA in the
context of a behavior stream whose goal is to find a
billet for a particular sailor. Perhaps a behavior
executes to read appropriate items from the sailor’s
personnel database record. Then, possibly, comes a
behavior to locate the currently available billets. Next
might be a behavior that runs each billet and that
sailor through IDA’s constraint satisfaction module,
producing a small number of candidate billets. Finally
a deliberation behavior may be executed that sends
deliberation codelets to working memory together with
codelets carrying billet information. A particular billet’s
codelets wins its way into “consciousness.” Scenario
building codelets respond to the broadcast and begin
creating scenes. This scenario building process,
again as in humans, has both it’s “unconscious” and
its “conscious” activities. Eventually scenarios are
created and evaluated for each candidate billet and
one of them is chosen. Thus we have behavior
control via deliberation.

The mediation by the “consciousness”
mechanism, as described in the previous paragraph
is characteristic of IDA. The principle is that she
should use “consciousness” whenever a human
detailer would be conscious in the same situation. For
example, IDA could readily recover all the needed
items from a sailor’s personnel record unconsciously
with a single behavior stream. But, a human detailer
would be conscious of each item individually. Hence,
according to our principle, so must IDA be
“conscious” of each retrieved personnel data item.

Learning into Associative Memory

Both CMattie and IDA employ sparse distributed
memory (SDM) as their major associative memories
(Kanerva 1988). SDM is a content addressable
memory that, in many ways, is an ideal computational
mechanism for use as a long-term associative
memory. Being content addressable means that
items in memory can be retrieved by using part of
their contents as a cue, rather than having to know
the item’s address in memory.

The inner workings of SDM rely on large binary
spaces, that is, spaces of vectors containing only
zeros and ones, called bits. These binary vectors,
called words, serve as both the addresses and the
contents of the memory. The dimension of the space
determines the richness of each word. These spaces
are typically far too large to implement in an
conceivable computer. Approximating the space
uniformly with a possible number of actually
implemented, hard locations surmounts this difficulty.
The number of such hard locations determines the
carrying capacity of the memory. Features are
represented as one or more bits. Groups of features
are concatenated to form a word. When writing a
word to memory, a copy of the word is placed in all
close enough hard locations. When reading a word, a
close enough cue would reach all close enough hard
locations and get some sort of aggregate or average
out of them. As mentioned above, reading is not
always successful. Depending on the cue and the
previously written information, among other factors,
convergence or divergence during a reading
operation may occur. If convergence occurs, the
pooled word will be the closest match (with
abstraction) of the input reading cue. On the other
hand, when divergence occurs, there is no relation -in
general- between the input cue and what is retrieved
from memory.

SDM is much like human long-term memory. A
human often knows what he or she does or doesn't
know. If asked for a telephone number I've once
known, I may search for it. When asked for one I've
never known, an immediate "I don't know" response
ensues. SDM makes such decisions based on the
speed of initial convergence. The reading of memory

in SDM is an iterative process. The cue is used as an
address. The content at that address is read as a
second address, and so on until convergence, that is,
until subsequent contents look alike. If it doesn’t
quickly converge, an “I don't know” is the response.
The "on the tip of my tongue phenomenon"
corresponds to the cue having content just at the
threshold of convergence. Yet another similarity is the
power of rehearsal during which an item would be
written many times and, at each of these to a
thousand locations That’s the “distributed” pare of
sparse distributed memory. A well-rehearsed item can
be retrieved with smaller cues. Another similarity is
forgetting, which would tend to increase over time as
a result of other similar writes to memory.

How do the agents use this associative memory?
As one example, let’s suppose an email message for
CMattie arrives, is transferred into the perceptual
workspace (working memory), and is descended
upon by perceptual codelets looking for words or
phrases they recognize. When such are found, nodes
in the slipnet (a semantic net type mechanism with
activation passing that acts as a perceptual and
conceptual knowledge structure) are activated, a
message type is selected, and the appropriate
template filled. The information thus created from the
incoming message is then written to the perception
registers in the focus, making it available to the rest of
the system.

The contents of the focus are then used as an
address to query associative memory. The results of
this query, that is, whatever CMattie associates with
this incoming information, are written into their own
registers in the focus. This may include some emotion
and some previous action. Attention codelets then
attempt to take this information to “consciousness,”
along with any discrepancies they may find, such as
missing information, conflicting seminar times, etc.
Information about the current emotion and the
currently executing behavior are written to the focus
by appropriate codelets. The current percept,
consisting of the incoming information as modified by
associations and the current emotion and behavior,
are then written to associative memory. Those
percepts carry strong emotions are written repeatedly
yielding stronger associations. IDA handles
perception in much the same way.

Thus one type of associative learning takes place,

learning into associative memory. For a quite unusual
percept, this learning may be only memorization. For
more common percepts some sort of generalization
takes place as a result of the mechanism of SDM.
For example, CMattie learns the usual times of a
particular seminar, and will send an inquiry to the
organizer should a different time be specified. Due to
her much more complex domain, we expect IDA to
learn into associative memory in much more
sophisticated ways. For example, she may well
associate a certain class of sailors, identified by pay
grade, job skills, length of obligatory service
remaining, etc., to prefer certain types of billets. Thus
we’ve seen one way in which these agents can learn.

Temporal proximity learning

Learning into associative memory as described in the
preceding section can be considered a type of
declarative learning. We’ll now turn to a more
procedural learning. Codelets in CMattie (and IDA)
participate in a pandemonium theory style
organization (Jackson 1987). We’ll use Jackson's
metaphor. Picture a collection codelets occupying a
sports stadium. In the stands are the inactive
codelets. This must not be taken too literally. Each of
these codelets is alert to conditions that would cause
it to become active and join the playing field or, in the
case of generator codelets, to instantiate a copy of
itself, with variables bound, into the playing field. In
the sidelines we find such instantiated codelets who,
having responded to a conscious broadcast, now
await the activation of their behavior, that is, for their
goal context to become dominant. On the playing
field we find the active codelets, the codelets that are
actively carrying out their functions. Some of these
are joined in coalitions. One such coalition should lie
in the spotlight of “consciousness”. One can think of
the playing field as the agent’s working memory or,
better yet, as the union of her several working
memories.

The agent’s coalition manager is responsible for
forming and tracking coalitions of codelets on the
playing field. Such coalitions are initiated on the basis
of the mutual associations between the member
codelets. Since association can both increase and

diminish the forming and tracking of coalitions is a
dynamic process.

While the existence of a coalition depends on the
strengths of the associations between its members,
its chance of becoming “conscious” depends on their
average activation. The agent’s spotlight controller is
responsible for selecting the coalition with the highest
such average to shine upon. Since activations change
even more rapidly than associations, the spotlight of
“consciousness” can be expected to frequently shift
from one coalition to another. The activation of a
codelet can be influenced by a higher level concept
(slipnet node, behavior), by the current emotion and,
in the case of an attention codelet, by its own action.
A codelet's activation goes to zero when its task is
finished.

Those codelets who share time in the spotlight of

“consciousness” have associations between them
formed or strengthened, or perhaps diminished if
things are going badly. Those codelets sharing time in
the playing field also change associations, but at a
much lesser rate. Coalitions of highly associated
codelets may merge to form higher-level concept
codelets. The concept codelet, when active, performs
the same actions as do its member codelets
combined. This is comparable to chunking in SOAR
(Laird et al. 1987).

Thus we’ve described two different types of
temporal proximity, or Hebbian, style learning. As
codelets become more or less associated likelihood
of their coming to “consciousness” changes, and with

it the likelihood of their together helping to initiate
some behavior. These changes in likelihood
constitute a kind of procedural learning. When the
same coalition of codelets, acting in parallel or in
sequence, often produce a useful result, this coalition
can be expected to merge into a concept codelet.
This merging constitutes a second form of temporal
proximity learning.

Learning of emotional influence

 In both CMattie and IDA we include mechanisms for
emotions (McCauley & Franklin 1998) . CMattie, for
example may “experience” such emotions as guilt at
not getting an announcement out on time, frustration
at not understanding a message, and anxiety at not
knowing the speaker and title of an impending
seminar. Action selection will be influenced by
emotions via their effect on drives, modeling recent
work on human action selection (Damasio 1994).

CMattie can “experience” four basic emotions,
anger, fear, happiness and sadness. These emotions
can vary in intensity as indicated by their activation
levels. For example, anger can vary from mild
annoyance to rage as its activation rises. A four
vector containing the current activations of these four
basic emotions represents CMattie’s current
emotional state. Like humans, there’s always some
emotional state however slight. Also like humans, her
current emotional state is often some complex
combination of basic emotions or results from some
particular changes in them. The effect of emotions on
codelets, drives, etc. varies with their intensity. Fear
brought on by an imminent shutdown message might
be expected to strengthen CMattie’s self-preservation
drive resulting in additional activation going from it
into the behavior net.

CMattie’s emotional codelets serve to change her
emotional state. When its preconditions are satisfied,
an emotional codelet will enhance or diminish one of
the four basic emotions. An emotion can build till
saturation occurs. Repeated emotional stimuli result
in habituation. Emotion codelets can also combine to
implement more complex secondary emotions that
act by affecting more than one basic emotion at once.
Emotion codelets also serve to enhance or diminish
the activation of other codelets. They also act to

increase or decrease the strength of drives, thereby
influencing CMattie’s choice of behaviors.

IDA’s emotional system will need to be a good bit
more robust than CMattie’s. In addition, IDA’s
emotions will be more tightly integrated with her
“consciousness” mechanisms. The first step in this
direction will be to meld portions of the emotion and
“consciousness” mechanisms by adding to some of
the attention codelets the ability to change the
emotion vector, and by linking their activation to the
amount of emotional change produced by that
codelet. The next step provides massive
interconnectedness between the emotional
mechanisms and the other cognitive areas of the
system. A network is built up by connecting the
attention/emotion codelets to key behaviors, goals,
drives, perception codelets, etc. The links of this
network are to have weights and carry activation.
Weights will decay with disuse. Each use tends to
decrease the decay rate. Weights will increase
according to a sigmoidal function of any activation
carried over the link, allowing for Hebbian style
learning. The product of weight and carried activation
is added to the activation already present at the head
of the link. Spreading activation then becomes the
common currency that integrates the separate
modules that use these constructs.

Thus one of the agents, IDA, will be able to learn
use emotions to affect various cognitive functions as
we humans do.

Metacognitive learning

Metacognition should include knowledge of one’s own
cognitive processes, and the ability to actively monitor
and consciously regulate them. This would require
self-monitoring, self-evaluation, and self-regulation.
Following Minsky, we’ll think of CMattie’s “brain” as
consisting of two parts, the A-brain and the B-brain
(Minsky 1985). The A-brain consists of all the other
modules of the agent’s architecture. It performs all of
her cognitive activities except metacognition. Its
environment is the outside world, a dynamic, but
limited, real world environment. The B-brain, sitting on
top of the A-brain, monitors and regulates it. The B-
brain’s environment is the A-brain, or more

specifically, the A-brain’s activities.
One can look at a metacognitive module as an

autonomous agent in its own right. It senses the A-
brain’s activity and acts upon it over time in pursuit of
its own agenda. It’s also structurally coupled to its
quite restricted environment. Its agenda derives from
built in metacognitive drives. One such drive is to
interrupt oscillatory behavior. Another such might be
to keep the agent more on task, that is, to make it
more likely that a behavior stream would carry out to
completion. Yet another would push toward efficient
allocation of resources.

Unlike the situation in her A-Brain where drives
are explicitly represented as part of the behavior net,
the agent’s metacognitive drives are embodied in
fuzzy classifiers (Zhang et al. 1998). The
preconditions of such classifiers typically include
some specification of an emotional state. Another
type of precondition may involve the number of email
messages in the incoming queue, or the number of
instantiated behavior streams, or the amount of
memory space they are using.

How does the metacognition module influence
the agent’s behavior? In all cases it relies on its inner
percepts of the A-brain. Oscillatory behavior might
occur as the perceptual mechanism goes back and
forth between two message types unable to decide
on either. Metacognition might then send additional
activation to one message type node in the slipnet,
effectively forcing a decision, even a wrong one. The
metacognition module can also affect the agent’s
behavior by tuning global parameters, for example in
the behavior net. This kind of tuning could serve to
keep her more on task, by increasing the parameter
that controls the amount of activation a drive pumps
into its behavior streams. Or, it could make her more
thoughtful by increasing the threshold for executing
behaviors. Finally, metacognition may be concerned
with high-level allocation of resources. For example,
memory might be shifted from, say, a workspace
(part of working memory) to the behavior net to
accommodate a shortage of space there.

Metacognition in CMattie is implemented as a

classifier system in order that it may learn. Learning

actions always requires feedback on the results of prior

actions. The Evaluator submodule is implemented by a

reinforcement learning algorithm (Barto et al. 1981) that

assigns reward or punishment to classifiers based on the

next inner percept. It also uses a reinforcement distribution

algorithm (Bonarini 1997) to distribute credit among the

classifiers. The more common bucket brigade algorithm

(Holland et al. 1978) is not used since sequences of actions

are not typically required of metacognition in these agents.

When things are not going too well over a period of time,

learning occurs via a genetic algorithm (Holland 1975)

acting to produce new classifiers. Thus we have yet another

form of learning in “conscious” software agents.

Learning by being told

Our “conscious” software agents will learn concepts into

their perceptual mechanisms, that is, they’ll learns new

slipnet nodes and links, and new perceptual codelets

(Ramamurthy et al. 1998, Bogner et al. in press). This

learning takes place by modifying what’s known, existing

nodes, links and codelets, using case based reasoning

(Kolodner 1993). In CMattie the impetus for such learning

comes from messages from a seminar organizer informing

her that she has mishandled a previous message. An

interchange of email messages between CMattie and the

organizer may eventually lead to her learning a new

concept. We’ll trace a hypothetical scenario for such

learning.

Suppose CMattie receives an announcement of a
dissertation defense to be held at a certain place and
time with a certain speaker and title. She would most
likely treat this as a speaker-topic message for a new
seminar. This misunderstanding is disseminated
through “consciousness”, leading to an
acknowledgement to the sender stating that she is
initializing a new seminar called ``Dissertation
Defense Seminar'' with the sender as its organizer.
This acknowledgement may well elicit a negative
response from the sender. CMattie has slipnet nodes,
including a message type, codelets and behaviors to
help deal with such a situation. Such a negative
response may start a ”conversation'' between CMattie
and the sender. During this interchange, CMattie
learns that a dissertation defense is similar to a
seminar, but with slightly different features. In this
case, the periodicity feature has a different value.
The email conversation, stripped of headers and
pleasantries might go something like this:

Sender: It’s not a dissertation defense seminar, just a
dissertation defense.
CMattie: What’s a dissertation defense?
Sender: It’s like a seminar but only happens

irregularly.

CMattie can trace the thread of the conversation
via her episodic memory (case-based memory in
CMattie, perhaps SDM in IDA). CMattie has codelets
that recognize words associated with features. Thus
she should recognize “irregularly” as having a certain
meaning with regard to periodicity. At this point, case
based reasoning comes into play, allowing the
creation of a new slipnet node for dissertation
defense with features the same as those of the
seminar node except that periodicity is now fixed at
“irregular.” Links are also put in place with
destinations similar to those of the seminar node. A
new message type node is also created, along with
its links. Finally the needed new codelets are created,
modeled after the old codelets associated with the
seminar node. Case based reasoning has solved the
problem by first identifying the solution to the most
similar prior problem, and then modifying it to solve
the new one. (In order for this to work, initial cases
have to be included in case based memory at
startup.) A new concept has been learned to the
extent that CMattie needs to learn it. She learned it
by being told.

Behavioral learning occurs quite similarly.
CMattie’s behavioral learning mechanism, again case
based, takes note of the changes wrought in the
slipnet and deduces needed changes in behavior.
This leads to new behavior streams and new
codelets to support them. If CMattie initially gets
things wrong, another interchange with the
appropriate seminar organizer may ensue.
Eventually, CMattie will learn an acceptable behavior
for a dissertation defense. Note that we’ve described
what is essentially a one-shot learning. Though we
might consider this reinforcement learning, it would
be a stretch. This global learning is quite different
from the local learning common in new AI systems,
such as in neural net or reinforcement learning.
Again, it is learning by being told.

Learning by imitation

Thought still in the speculation stage, it seems
possible that IDA will have to learn about a particular

community of sailors, say cooks, machinist mates, or
sonar technicians, by watching a human detail in
action dealing with them. Though there has been
some discussion of adding this type of learning to the
system, as yet no decision has been taken. In fact, no
mechanism for this kind of learning has been
seriously proposed. At this writing we are on the
verge of initiating a literature search. Learning by
imitation is quite common in humans, and may well
be needed in “conscious” software agents. This may
be a part on a necessary development on the part of
more sophisticated “conscious” software agents.

Implications for human learning

In the previous sections we’ve seen descriptions of
several quite distinct types of learning available to
“conscious” software agents. Declarative learning
occurs in SDM and episodic memory implemented as
case-based memory. Percepts from the focus being
stored in the main associative memory constitute
declarative learning. Not only is the content of the

percept learned, but relationships with other items of

memory and some generalization also. Each new case
stored constitutes declarative learning. Declarative
learning also results from the learning of new
concepts by being told by seminar organizers. We
suspect that human declarative learning also occurs
in each of these forms, each with a somewhat
different mechanism.

Procedural learning in these agents also occurs in
several forms. Gradual procedural learning takes place

when associations are strengthened between codelets that

are “conscious,” or even active, together. The chunking of

codelets is another form of procedural learning, as is the

learning of new behaviors through email interactions with

organizers. We suspect that humans are capable of each of

these modes of procedural learning and that they each

require a different mechanism. Of course, much important

human learning, of language for example, has both a

declarative and a procedural component.
A basic tenet of global workspace theory says

that consciousness is sufficient for learning. It
certainly is true in our agents. The contents of
“consciousness” are routinely written to associative
memory. Is consciousness also necessary for
learning? The learning of new associations between
codelets and adjustments to such associations

happens when their contents become “conscious.”
But it also occurs to a lesser extent when the
codelets are active together, but unconscious. Our
chunking mechanism also does not routinely come to
consciousness, though a newly learned chunk may
well have been “conscious.” This seems to suggest
that some procedural learning, some gradual
improvement of skills may occur unconsciously with
practice.

It also seems that our metacognitive learning
occurs unconsciously. This must be at least partly a
flaw in our model, since at least some metacognitive
learning in humans happens consciously. We also
suspect that some learning of weights in emotion
networks of these agents will occur unconsciously.
This seems quite possibly true of humans as well.

References

Baars, B. J. 1988. A Cognitive Theory of

Consciousness. Cambridge: Cambridge
University Press.

Baars, B. J. 1997. In the Theater of Consciousness.
Oxford: Oxford University Press.

Barsalou, L. W. 1999. Perceptual symbol systems.
Behavioral and Brain Sciences 22:577–609.

Barto, A. G., R. S. Sutton, and P. S. Brouwer. 1981.
Associative Search Network: a Reinforcement
Learning Associative Memory. Biological
Cybernetics 40:201–211.

Bogner, M. 1999. Realizing "consciousness" in
software agents. Ph.D. Dissertation. University of
Memphis.

Bogner, M., U. Ramamurthy, and S. Franklin. in
press. Consciousness" and Conceptual Learning
in a Socially Situated Agent. In Human Cognition
and Social Agent Technology, ed.
K. Dautenhahn. Amsterdam: John Benjamins.

Bonarini, A. 1997. Anytime Learning and Adaptation
of Structured Fuzzy Behaviors. Adaptive
Behavior Volume 5. Cambridge MA: The MIT
Press.

Damasio, A. R. 1994. Descartes' Error. New York:
Gosset; Putnam Press.

Edelman, G. M. 1987. Neural Darwinism. New York:
Basic Books.

Franklin, S. 1995. Artificial Minds. Cambridge MA:
MIT Press.

Franklin, S. 1997. Autonomous Agents as Embodied
AI. Cybernetics and Systems 28:499–520.

Franklin, S., and A. C. Graesser. 1997. Is it an Agent,
or just a Program?: A Taxonomy for Autonomous
Agents. In Intelligent Agents III. Berlin: Springer
Verlag.

Franklin, S., A. Kelemen, and L. McCauley; 1998;
IDA: A Cognitive Agent Architecture. IEEE Conf
on Systems, Man and Cybernetics.

Hofstadter, R. D., and Mitchell M... 1994. The
Copycat Project: A model of mental fluidity and
analogy-making. In: Advances in connectionist
and neural computation theory, Vol. 2: Analogical
connections, eds. K. J. Holyoak & J. A. Barnden.
Norwood N.J.: Ablex.

Holland, J. H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor: University of
Michigan Press.

Holland, J. H. 1986. A Mathematical Framework for
Studying Learning in Classifier Systems. In
Evolution, Games and Learning: Models for
Adaption in Machine and Nature, vol. al,
Amsterdam, ed. D. Farmer. : North-Holland.

Holland, J. H., H. J., and Reitman J. S... 1978.
Cognitive Systems Based on Adaptive
Algorithms. In: Pattern Directed Inference
Systems (pp. 313 -329), eds. D. A. Waterman &
F. Hayey-Roth. New York: Academic Press.

Jackson, J. V. 1987. Idea for a Mind. Siggart
Newsletter, 181:23–26.

Kanerva, P. 1988. Sparse Distributed Memory.
Cambridge MA: The MIT Press.

Kolodner, J. 1993. Case-Based Reasoning. : Morgan
Kaufman.

Laird, E. J., Newell A., and Rosenbloom P. S...
1987. SOAR: An Architecture for General
Intelligence. Artificial Intelligence 33:1–64.

Maes, P. 1990. How to do the right thing. Connection
Science 1:3.

Maturana, R. H., and F. J. Varela. 1980. Autopoiesis
and Cognition: The Realization of the Living,
Dordrecht. Netherlands: Reidel.

Maturana, H. R. 1975. The Organization of the Living:
A Theory of the Living Organization. International
Journal of Man-Machine Studies 7:313–332.

McCauley, T. L., and S. Franklin; 1998. An
Architecture for Emotion. AAAI Fall Symposium
Emotional and Intelligent: The Tangled Knot of

Cognition"; AAAI; Orlando, FL.
Minsky, M. 1985. The Society of Mind. New York:

Simon and Schuster.
Ornstein, R. 1986. Multimind. Boston: Houghton

Mifflin.
Ramamurthy, U., S. Franklin, and A. Negatu. 1998.

Learning Concepts in Software Agents. In From
animals to animats 5: Proceedings of The Fifth
International Conference on Simulation of
Adaptive Behavior, ed. R. Pfeifer, B. Blumberg,
J.-A. Meyer , and S. W. Wilson.
Cambridge,Mass: MIT Press.

Sloman, A. 1987. Motives Mechanisms Emotions.
Cognition and Emotion 1:217–234.

Zhang, Z., D. Dasgupta, and S. Franklin. 1998.
Metacognition in Software Agents using Classifier
Systems. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence. Madison,
Wisconsin .

	Learning in "Conscious" Software Agents
	Recommended Citation

	tmp.1689350602.pdf.ermmF

