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Abstract 
In this paper, we present LIDA, a working model of, and 
theoretical foundation for, machine consciousness. LIDA’s 
architecture and mechanisms were inspired by a variety of 
computational paradigms and LIDA implements the Global 
Workspace Theory of consciousness. The LIDA 
architecture’s cognitive modules include perceptual 
associative memory, episodic memory, functional 
consciousness, procedural memory and action-selection.  
Cognitive robots and software agents controlled by the 
LIDA architecture will be capable of multiple learning 
mechanisms. With artificial feelings and emotions as 
primary motivators and learning facilitators, such systems 
will ‘live’ through a developmental period during which 
they will learn in multiple, human-like ways to act 
effectively in their environments.  We also provide a 
comparison of the LIDA model with other models of 
consciousness. 

Introduction 
Here we describe the LIDA (Learning IDA) model of 
consciousness and cognition. LIDA implements Global 
Workspace Theory (GWT) (Baars 1988; 1997), which has 
become the most widely accepted psychological and 
neurobiological theory of consciousness (Baars 2002; 
Dehaene & Naccache 2001; Kanwisher  2001). In the 
process of implementing GWT, the LIDA model also 
implements imagination in the form of deliberation as a 
means of action selection (Franklin 2000a; Sloman 1999), 
as well as volition à la ideomotor theory (Franklin 2000a; 
James 1890). Comprising a complete control structure for 
software agents (Franklin & Graesser 1997) and, 
potentially for autonomous robots (Franklin & McCauley 
2003), the computational LIDA can be thought of as a 
virtual machine (Sloman & Chrisley 2003), built on top of 
a series of other virtual machines: a Java development 
environment, an operating system, microcode, etc. The 
LIDA model employs feelings and emotions throughout, 
both as motivators (Sloman 1987) and as modulators of 
learning. With its emphasis on several forms of learning, a 
LIDA controlled software agent or autonomous robot 
would be expected to go through a developmental period 
(Franklin 2000b) as would a human infant. During this 
period the agent/robot would develop its own ontology. 
Falling clearly within the purview of embodied or enactive 
approaches to cognition (Varela, Thompson, & Rosch 

1991), the LIDA model is quite consistent with a number 
of other psychological theories (Baddeley 1993; Barsalou 
1999; Conway 2002; Ericsson & Kintsch 1995; Glenberg 
1997).  

In what follows, we’ll review GWT, describe the 
LIDA architecture and the cognitive cycle by which it 
operates, and discuss how various multi-cyclic cognitive 
processes are implemented in the model. We’ll then 
compare the LIDA model with several other computational 
and conceptual models of consciousness, and conclude 
with some final thoughts and intentions for future work. 

LIDA as a model of GWT 
Global Workspace Theory (GWT) attempts to integrate a 
large body of evidence into a single conceptual framework 
focused on the role of consciousness in human cognition 
(Baars 1988, 1997, 2002; Baars & Franklin 2003). Like 
other theories, GWT postulates that human cognition is 
implemented by a multitude of relatively small, special 
purpose processors, almost always unconscious (Edelman 
1987; Jackson 1987; Minsky 1985; Ornstein 1986). 
Processors are comparatively simple, and communication 
between them is relatively rare, occurring over a narrow 
signal bandwidth. A coalition of such processors is a 
collection that works together to perform a specific task. 
Coalitions normally perform routine actions, in pursuit of 
sensory, motor, or other problem-solving tasks.  GWT 
suggests that the brain supports a global workspace 
capacity which allows for the integration and distribution 
of separate processors (for neuroscience evidence, see 
Baars 2002; Schneider & Chein 2003). A coalition of 
processors that gains access to the global workspace can 
broadcast a message to all the unconscious processors, in 
order to recruit new components to join in interpreting a 
novel situation, or in solving the current problem.  

In GWT, consciousness allows the brain to deal with 
novel or problematic situations that can’t be dealt with 
efficiently, or at all, by habituated unconscious processes. 
GWT also suggests an answer to the paradox of cognitive 
limited capacity associated with conscious experience, 
immediate memory, and immediate goals. GWT suggests 
that the compensating advantage is the ability to mobilize 
many unconscious resources in a non-routine way to 
address novel challenges. 



   

GWT offers an explanation for consciousness being 
serial in nature rather than parallel as is common in the rest 
of the nervous system. Messages broadcast in parallel 
would tend to overwrite one another making understanding 
difficult. It similarly explains the limited capacity of 
consciousness as opposed to the huge capacity typical of 
long-term memory and other parts of the nervous system. 

LIDA is a proof of concept model for GWT.  Almost 
all the tasks in this model are accomplished by codelets 
(Hofstadter & Mitchell 1994) representing the processors 
in GWT. Codelets are small pieces of code, each running 
independently. A class of codelets called attention codelets 
- each looks out for situations of interest to them, and 
attempt to bring them to ‘consciousness’ spotlight. A 
broadcast then occurs to all the processors in the system to 
recruit resources to handle the current situation. The LIDA 
model also implements the seriality of consciousness in 
GWT with the cognitive cycle described later in this paper.  
Further the LIDA model addresses a vast expanse of 
cognitive processes including perception, various memory 
systems, action selection, developmental learning 
mechanisms, feelings and emotions, deliberation, voluntary 
action, non-routine problem solving and automatization.  

The LIDA Architecture 
The LIDA architecture is partly symbolic and partly 
connectionist with all symbols being grounded in the 
physical world in the sense of Brooks (1986). The 
mechanisms used in implementing the several modules 
have been inspired by a number of different ‘new AI’ 
techniques (Brooks 1986; Drescher 1991; Hofstadter & 
Mitchell 1994; Jackson 1987; Kanerva 1988; Maes 1989). 
We now describe LIDA’s primary mechanisms.  

Perceptual Associative Memory 
LIDA perceives both exogenously and endogenously with 
Barsalou’s perceptual symbol systems serving as a guide 
(1999). The perceptual knowledge-base of this agent, 
called perceptual associative memory, takes the form of a 
semantic net with activation called the slipnet, a la 
Hofstadter and Mitchell’s Copycat architecture (1994). 
Nodes of the slipnet constitute the agent’s perceptual 
symbols, representing individuals, categories, relations, 
etc. It should be noted that any node can be traced back to 
its primitive feature detectors that are grounded in reality 
and change according to the sensors of the agent in 
question. Pieces of the slipnet containing nodes and links, 
together with perceptual codelets with the task of copying 
what is being currently perceived to working memory, 
constitute Barsalou’s perceptual symbol simulators (1999). 
Together they constitute an integrated perceptual system 
for LIDA, allowing the system to recognize, categorize and 
understand. 

Workspace 
LIDA’s workspace is analogous to the preconscious 
buffers of human working memory. Perceptual codelets 
write to the workspace as do other, more internal codelets. 
Attention codelets watch what is written in the workspace 
in order to react to it. Items in the workspace decay over 
time, and may be overwritten.  

Another pivotal role of the workspace is the building 
of temporary structures over multiple cognitive cycles (see 

below). Perceptual symbols from the slipnet are 
assimilated into existing relational and situational 
templates while preserving spatial and temporal relations 
between the symbols. The structures in the workspace also 
decay rapidly.  

Episodic Memory 
Episodic memory in the LIDA architecture is composed of 
a declarative memory for the long term storage of 
autobiographical and semantic information as well as a 
short term transient episodic memory similar to Conway’s 
(2001) sensory-perceptual episodic memory with a 
retention rate measured in hours. LIDA employs variants 
of sparse distributed memory to computationally model 
declarative and transient episodic memory (Kanerva 1988; 
Ramamurthy, D’Mello, & Franklin 2004). Sparse 
distributed memory is a content addressable, associative 
memory that shares several functional similarities to 
human long term memory (Kanerva 1988). 

Functional Consciousness 
LIDA’s ‘consciousness’ module implements Global 
Workspace theory’s (Baars 1988) processes by codelets. 
These are specialized for some simple task and often play 
the role of a daemon watching for an appropriate condition 
under which to act.  The apparatus for functional 
‘consciousness’ consists of a coalition manager, a spotlight 
controller, a broadcast manager, and attention codelets that 
recognize novel or problematic situations. Please see the 
discussion above, and the description of the cognitive cycle 
below for more details. 

Procedural Memory 
Procedural memory in LIDA is a modified and simplified 
form of Drescher’s schema mechanism (1991), the scheme 
net. Like the slipnet of perceptual associative memory, the 
scheme net is a directed graph whose nodes are (action) 
schemes and whose links represent the ‘derived from’ 
relation. Built-in primitive (empty) schemes directly 
controlling effectors are analogous to motor cell 
assemblies controlling muscle groups in humans. A 
scheme consists of an action, together with its context and 
its result. At the periphery of the scheme net lie empty 
schemes (schemes with a simple action, but no context or 
results), while more complex schemes consisting of actions 
and action sequences are discovered as one moves inwards. 
In order for a scheme to act, it first needs to be instantiated 
and then selected for execution in accordance with the 
action selection mechanism described next. 

Action Selection 
The LIDA architecture employs an enhancement of Maes’ 
behavior net (1989) for high-level action selection in the 
service of feelings and emotions. Several distinct feelings 
and emotions operate in parallel, perhaps varying in 
urgency as time passes and the environment changes. The 
behavior net is a digraph (directed graph) composed of 
behaviors (instantiated action schemes) and their various 
links. As in connectionist models, this digraph spreads 
activation. The activation comes from four sources: from 
pre-existing activation stored in the behaviors, from the 
environment, from feelings and emotions, and from 
internal states. To be acted upon, a behavior must be 



   

executable, must have activation over threshold, and must 
have the highest such activation. 

The LIDA Cognitive Cycle 
Be it human, animal, software agent or robot, every 
autonomous agent within a complex, dynamic environment 
must frequently and cyclically sample (sense) its 
environment and act on it, iteratively, in what we call a 
cognitive cycle (Franklin et al., 2005). Cognitive cycles are 
flexible, serial but overlapping cycles of activity usually 
beginning in perception and ending in an action. We 
suspect that cognitive cycles occur five to ten times a 
second in humans, cascading so that some of the steps in 
adjacent cycles occur in parallel (Baars & Franklin 2003). 
Seriality is preserved in the conscious broadcasts. We now 
describe the cognitive cycle dividing it into nine steps.  
1) Perception. Sensory stimuli, external or internal, are 
received and interpreted by perception producing the 
beginnings of meaning.  
2) Percept to preconscious buffer. The percept, including 
some of the data plus the meaning, as well as possible 
relational structures, is stored in the preconscious buffers 
of LIDA’s working memory (workspace). Temporary 
structures are built. 
3) Local associations. Using the incoming percept and the 
residual contents of working memory, including emotional 
content, as cues, local associations are automatically 
retrieved from transient episodic memory and from 
declarative memory, and stored in long-term working 
memory.  
4) Competition for consciousness. Attention codelets 
view long-term working memory, and bring novel, 
relevant, urgent, or insistent events to consciousness.  
5) Conscious broadcast. A coalition of codelets, typically 
an attention codelet and its covey of related information 
codelets carrying content, gains access to the global 
workspace and has its contents broadcast.  In humans, this 
broadcast is hypothesized to correspond to phenomenal 
consciousness.  
6) Recruitment of resources. Relevant schemes respond 
to the conscious broadcast. These are typically schemes 
whose context is relevant to information in the conscious 
broadcast. Thus consciousness solves the relevancy 
problem in recruiting resources.  
7) Setting goal context hierarchy. The recruited schemes 
use the contents of consciousness, including 
feelings/emotions, to instantiate new goal context 
hierarchies (copies of themselves) into the behavior net, 
bind their variables, and increase their activation. Other, 
environmental, conditions determine which of the earlier 
goal contexts also receive variable binding and/or 
additional activation. 
8) Action chosen. The behavior net chooses a single 
behavior (scheme, goal context), from a just instantiated 
behavior stream or possibly from a previously active 
stream. Each selection of a behavior includes the 
generation of an expectation codelet (see the next step). 
9) Action taken. The execution of a behavior (goal 
context) results in the behavior codelets performing their 
specialized tasks, having external or internal consequences, 
or both. LIDA is taking an action. The acting codelets also 
include at least one expectation codelet whose task it is to 

monitor the action, bringing to consciousness any failure in 
the expected results. 

Multi-cyclic Processes in LIDA 
Higher order cognitive processes such as reasoning, 
problem solving, imagination, etc., in LIDA, occur over 
multiple cognitive cycles. We now describe deliberation, 
voluntary action, non-routine problem solving, and 
automatization as some of the multi-cyclic processes that 
are accommodated by the LIDA system. The mechanisms 
that realize these processes are typically implemented as 
behavior streams in procedural memory.  

Deliberation 
When we humans are faced with a problem to solve, we 
often create in our mind different strategies or possible 
solutions. We imagine the effects of executing each 
strategy or trial solution without actually doing so. This is 
similar to a kind of internal virtual reality. Eventually, we 
decide upon one strategy or trial solution, and try solving 
the problem using it. This process is called deliberation 
(Sloman 1999). During the deliberation process several, 
possibly conflicting ideas compete to be selected as the 
strategy or solution of the problem. One such is chosen 
voluntarily. Deliberation in LIDA is implemented by 
utilizing conscious information to create scenarios and 
evaluate their utilities (Franklin 2000b). 

Voluntary Action 
Voluntary actions involve a conscious deliberation on the 
decision to take an action. William James proposed the 
ideomotor theory of voluntary action (1890). James 
suggests that any idea (internal proposal) for an action that 
comes to mind (to consciousness) is acted upon unless it 
provokes some opposing idea or some counter proposal. 
GWT adopts James’ ideomotor theory “as is” (Baars 1988) 
and provides a functional architecture for it. The LIDA 
model furnishes an underlying mechanism that implements 
the ideomotor theory of volition (Franklin 2000b). 

The players in this decision making process include 
proposing and objecting attention codelets and a 
timekeeper codelet. A proposing attention codelet’s task is 
to propose a certain action on the basis of its particular 
pattern of preferences. The proposing attention codelet 
brings information about itself and the proposed action to 
“consciousness” so that if no other objecting attention 
codelet objects (by bringing itself to “consciousness” with 
an objecting message), and if no other proposing attention 
codelet makes a different proposal within a given span of 
time, the timekeeper codelet will decide on the proposed 
action. If an objection or a new proposal is made in a 
timely fashion, the timekeeper codelet stops timing or 
resets the timing for the new proposal. 

Non-Routine Problem Solving 
With the help of its consciousness mechanism, LIDA has 
the ability to deal with novel instances of routine 
situations. However, in order to efficiently handle novel, 
problematic, and unexpected situations, the model needs 
some form of non-routine problem solving.  In general 
non-routine problem solving refers to the ability to devise 
solutions to novel problematic situations. This type of 
solution is generally referred to as meshing, where humans 



   

utilize chunks of prior knowledge towards obtaining 
solutions to novel problems (Glenberg 1997). Non-routine 
problem solving is quite similar to planning in classical AI. 
However, while planning in classical AI assumes that all 
the individual operators are continually available for 
consideration, we make no such assumption due to its 
cognitive implausibility. Instead our approach relies on 
consciousness to recruit unconscious pieces of knowledge 
that are potentially relevant to the solution. Non-routine 
problem solving in the LIDA architecture is best viewed as 
a unique behavior stream operating over multiple cycles, 
with the shaping of partial plans of action at each cycle. 

Automatization 
Automatization refers to the human (and animal) ability to 
learn a procedural task to an extent that the task can be 
accomplished without conscious intervention. Since 
consciousness is a limited resource, automatized tasks free 
up this resource for more pressing cognitive activities such 
as deliberation, problem solving, reasoning, etc.  

In the LIDA architecture partial plans of actions are 
represented by behavior streams (goal context hierarchies 
consisting of behaviors operating roughly in a sequence). 
For a non-automatized task, consciousness is required to 
recruit for execution the next behavior in an instantiated 
stream. Automatization is implemented in LIDA by means 
of behaviors in a stream automatically building 
associations with one another, thereby eliminating the need 
for conscious intervention. Once a task is automatized, the 
execution of individual behaviors is monitored by 
expectation codelets. When a failed execution is noted and 
this information is brought to consciousness, the de-
automatization process is recruited to temporarily suspend 
the automatization thereby restoring conscious intervention 
(Negatu, McCauley, & Franklin, in review). 

Developmental Learning in LIDA 
The LIDA model realizes three fundamental learning 
mechanisms that underlie much of human learning: 1) 
perceptual learning, the learning of new objects, 
categories, relations, etc., 2) episodic learning of events, 
the what, where, and when, 3) procedural learning, the 
learning of new actions and action sequences with which to 
accomplish new tasks.  Although, the type of knowledge 
retained due to these three learning mechanisms differ, the 
mechanisms are founded on two basic premises. The first 
premise states that conscious awareness is sufficient for 
learning. Although subliminal acquisition of information 
appears to occur, the effect sizes are quite small compared 
to conscious learning. In a classic study, Standing (1973) 
showed that 10,000 distinct pictures could be learned with 
96% recognition accuracy, after only 5 seconds of 
conscious exposure to each picture. No intention to learn 
was needed. Consciously learned educational material has 
been recalled after 50 years (Bahrick 1984). Conscious 
access greatly facilitates most types of learning. The 
second premise that is shared among the various learning 
mechanisms is that the learning is modulated by feelings 
and emotions, i.e. the learning rate varies with arousal 
(Yerkes & Dodson 1908). 

Developmental learning in LIDA occurs during the 
conscious broadcast (step 5 of the cognitive cycle). The 
conscious broadcast contains the entire content of 

consciousness including the affective portions. The 
contents of perceptual associative memory are updated in 
light of the current contents of consciousness, including 
feelings/emotions, as well as objects, categories and 
relations (perceptual learning). Up to a point, the stronger 
the affect, the stronger the encoding in memory. Transient 
episodic memory is also updated with the current contents 
of consciousness, including feelings/emotions, as events 
(episodic learning). Up to a point, the stronger the affect is, 
the stronger the encoding in memory. Procedural memory 
(recent actions) is updated (reinforced) with the strength of 
the reinforcement influenced by the strength of the affect 
(procedural learning). 

Comparison with other models 
As described above, the LIDA model includes several 
cognitive mechanisms resulting in a working model of 
consciousness. In this section, we will compare the LIDA 
model with other models of consciousness. 

CLARION vs. LIDA 
First we consider the Connectionist Learning with 
Adaptive Rule Induction ON-line, CLARION (Sun 2003) 
architecture. This architecture takes the two-systems view 
of consciousness, i.e., conscious processes (top-level 
knowledge) are directly accessible while unconscious 
processes (bottom-level knowledge) are not. In contrast, 
the LIDA model takes the unitary-system view of the 
conscious and the unconscious.  LIDA implements GWT’s 
view that the primary function of consciousness is to solve 
the relevance problem, namely, finding the resources 
needed to handle the current situation. 

 While the CLARION architecture supports several 
memory systems including working memory, semantic 
memory and episodic memory, the LIDA model has a 
distinct transient episodic memory (TEM) based on the 
hypothesis that only conscious contents are stored in TEM 
to be consolidated at a later time into declarative memory.  
Both the models support various types of learning 
mechanisms, while the capability of developmental 
learning exists in the LIDA model.  The LIDA model also 
supports multi-cyclic processes like deliberation, voluntary 
action, non-routine problem solving and automatization 
providing this model with a depth and vastness in 
modeling several aspects of cognition. 

Schacter’s model vs. LIDA 
Schacter’s model (1990) has strong neuropsychological 
motivations with respect to dissociation of various types of 
knowledge in the system. The different knowledge 
modules in this system perform specialized and 
unconscious tasks and send the output to the “conscious 
awareness system”.  The LIDA model’s approach to 
conscious awareness is clearly different from this. In 
LIDA, the action to be taken is chosen after the conscious 
broadcast (refer to LIDA’s cognitive cycle above).  
Further, there is no clear computational distinction between 
conscious and unconscious processes in Schacter’s model.   

Damasio’s model vs. LIDA 
Damasio’s model (1990) is neuro-anatomically motivated, 
with several “sensory convergence zones” integrating 
information from sensory modalities through forward and 



   

backward synaptic connections. The activation passes 
through the entire system, with the resulting “broadcast” 
making the information stored about an entity available. 
This is described as “accessibility of consciousness”. The 
model has no central information store. In contrast, the 
LIDA model has a ‘consciousness’ module to implement 
functional consciousness. Compared to the LIDA model, 
Damasio’s model is much more narrow in scope with 
respect to the cognitive mechanisms addressed. However, 
an advantage to Damasio’s model is that it addresses multi-
modal sensory convergence which has not yet been 
explicitly addressed in the LIDA model’s perception 
module. 

Cotterill’s model vs. LIDA 
The “master-module” model of consciousness by Cotterill 
(1997) postulates that consciousness arises from the 
planning of movements. The master-module in this system 
is the brain’s motor planner. Movement is the central 
aspect of this model. To that extent, this model is 
comparable to the LIDA model, where the cognitive cycle 
is continuously acting and sensing its environment.  The 
LIDA model has a much broader scope in modeling 
cognition compared to the master-module model. 

ICARUS vs. LIDA 
Similar to the LIDA model, the ICARUS architecture 
(Langley, P., in press) has comparative breadth in 
modeling cognition.  ICARUS is based on Newell’s view 
(1990) that agent architectures should incorporate strong 
theoretical assumptions about the nature of the mind. This 
is also true of the LIDA model as it attempts to integrate 
what we know about cognition from neuroscience, 
cognitive science and AI.  

ICARUS has several memory systems, both long-term 
and short-term, similar to LIDA.  It has a separate memory 
module for “skills or procedures” similar to LIDA’s 
procedural memory.  Similar to the CLARION model, 
there is no transient episodic memory system (which plays 
a unique role in the LIDA model) in ICARUS, though 
there are perceptual and motor buffers in the short-term 
memories of this model. Similar to LIDA, the ICARUS 
architecture has a strong correspondence amongst the 
contents of its short-term and long-term memories. 

  ICARUS has separate performance modules for 
conceptual inference, skill execution and problem solving.  
These modules are very inter-related with respect to 
building on each others’ output and operating on the same 
subsystems/structures of the architecture, including the 
long-term memories. This is directly compatible with 
LIDA’s cognitive cycle. 

The ICARUS architecture has a learning module 
which generates a new skill whenever a goal is achieved 
with problem-solving and execution. In contrast to the 
LIDA architecture, there are no multiple learning 
mechanisms. While the learning in ICARUS is 
incremental, there is no developmental learning. The 
ICARUS architecture does not mention a ‘consciousness’ 
or awareness module. 

Conclusion 
Here we have presented the LIDA model as a case study of 
models of consciousness (MoC), and compared it with 

other such MoC. Though the various models often have, by 
necessity, many areas of similarity, the comparisons above 
suggest a number of possible lacunae in many of the 
models, many or most of which could perhaps be filled, to 
the improvement of the models. Here we will enumerate 
some of these suggested lacunae. 

In recent years, artificial intelligence and cognitive 
science have both been moving rapidly toward an 
embodied/enactive/situated view of intelligence and 
cognition (Barsalou 1999; Franklin 1997; Glenberg 1997; 
Varela Thompson, & Rosch 1991). (The neuroscientists 
have long adhered to that view.) The case study of the 
LIDA model presented here and its comparison with other 
MoC, suggests that designers of other models of 
consciousness might well adopt this same view. While the 
LIDA model begins with sensation and ends with action, 
many of the other models assume that sensation/perception 
is provided and go on to model higher-level processes 
only, thereby running the risk of avoiding some of the 
really significant problems associated with perception. 

Global Workspace Theory (GWT) has become the 
currently dominant bio-psychological theory of 
consciousness. Our case study model, LIDA, implements a 
major portion of GWT. The theories of Dehaene (Dehaene 
& Naccache 2001) and of Shanahan (2006) are the only 
other MoC to avail themselves of the insights of GWT, 
particularly of its solution to the relevance problem, a 
major function of consciousness. 

Learning and development is becoming an ever more 
significant part of cognitive modeling, both computational 
and conceptual, and the several varieties of learning form 
an integral part of the LIDA (Learning IDA) model. Most 
of the other MoC discussed here provide some form of 
procedural learning, usually selectionist procedural 
learning via reinforcement, but some also include 
instructionist procedural learning. Episodic learning is 
included in a few of the other MoC, while perceptual 
learning is almost universally omitted, to the detriment of 
these models, at least in our view. 

Finally, the LIDA model implementation of the 
multicyclic processes of conscious volition and 
deliberation, a form of imagination, seem unique among 
the other MoC to which we compared our model. Our 
conclusion is that many of the MoC might well benefit by 
taking perception, including perceptual learning, more 
seriously, by availing themselves of the insights of GWT, 
including volition via ideomotor theory, by the use of 
feelings and emotions to facilitate learning and 
development. 

A final comparison of the LIDA model to humans, 
whom we model, reveals even more lacunae than those so 
belabored in the preceding paragraphs. For a start, LIDA is 
missing metacognition, perhaps a half-dozen senses of self, 
attentional learning, and a host of multi-cyclic cognitive 
processes, as well a clear account of how new skills are 
learned first with the active participation of consciousness, 
and later progress to becoming sensory-motor automatisms 
that operate completely unconsciously (Goodale and 
Milner 2004). There’s so much work to be done to take the 
beam from our own eye. 
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