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Fig 1. A CLA region is a column of cells. A column has a receptive field 

over the input. It aggregates the input activity in its receptive field and 
competes with the neighboring columns to decide whether to become 

active.  
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Abstract— Hierarchical Temporal Memory (HTM) is a model 

with hierarchically connected modules doing spatial and 

temporal pattern recognition, as described by Jeff Hawkins in his 

book entitled On Intelligence. Cortical Learning Algorithms 

(CLAs) comprise the second implementation of HTM. CLAs are 

an attempt by Numenta Inc. to create a computational model of 

perceptual analysis and learning inspired by the neocortex in the 

brain. In its current state only an implementation of one isolated 

region has been completed. The goal of this paper is to test if 

adding a second higher level region implementing CLAs to a 

system with just one region of CLAs, helps in improving the 

prediction accuracy of the system. The LIDA model (Learning 

Intelligent Distribution Agent - LIDA is a cognitive architecture) 

can use such a hierarchical implementation of CLAs for its 

Perceptual Associative Memory. 

Keywords— Cortical Learning Algorithms, predictive coding, 

LIDA, feedback message, pattern recognition 

I. INTRODUCTION 

Cortical Learning Algorithms (CLAs) constitute an attempt 
by Numenta Inc. to create a computational model of perceptual 
analysis and learning inspired by the neocortex in brains [1]. 
CLAs are used in the second implementation of a general 
framework for perceptual learning called Hierarchical 
Temporal Memory (HTM) [1-5]. The CLAs are a set of 
algorithms operating on a data structure. The data structure and 
algorithms, together, achieve some degree of spatial and 
temporal pattern recognition. The data structure used is a 
collection of columns of cells, called a region. A cell in a 
column is a neuron like entity, which makes connections to 
other cells, and aggregates their activity to determine its state 
of activation. Fig. 1 illustrates the structure of a region. 

The Hierarchical Predictive Coding Model (HPCM) [6] is a 
technique for message passing between levels of a hierarchy 
doing perceptual analysis, where predictions about the next 
incoming input are sent down and prediction errors are 
transmitted up in the hierarchy. In this technique, each level of 
the hierarchy has a generative model. The generative model in 
each of these levels builds a model of its input domain in the 
terms of hypothetical causes of its inputs, and tries to predict 
the next input. These levels are stacked to form a Hierarchical 
Generative Model [6].  

The CLAs, as described in the white paper [1], do the same 
thing with its input domain that a generative models does in the 
Hierarchical Predictive Coding Model described above. It tries 
to build a model of its input domain based on the statistics of 
the input and tries to predict it.   

The idea of using predictive coding in HPCM was inspired 
by the work of Karl Friston et al. [7-9] in formalizing the brain 
as a system trying to minimize a quantity called ‘free-energy’. 
‘Free-energy’ of a system is a quantity dependent on the error 
the system has in predicting its environment.  The CLAs try to 
predict their environment, and also do error-minimization. 
Thus, they can be broadly classified as a flavor of 
implementations based on the Free-Energy Principle [8] like 
the HPCM.  

When the inferences made by a system are conditioned 
upon the statistics of the input it receives, then the system may 
be performing Bayesian inference. There has been growing 
evidence that brains have systems that can be thought of as 
doing Bayesian inference [16-20]. It is important for a system 
like CLAs to be able to perform Bayesian Inference because it 
gives this system the ability to operate in situations of 
uncertainty. Bayesian Inference improves the performance in 
the situations of uncertainty by providing a top-down influence 
that is based on the knowledge of a relatively abstract 
information gathering process. A one region system, as 
described in the CLAs white paper, does not have the tools to 
do Bayesian Inference. A two region CLAs could provide a 
possible implementation of a Bayesian inference system 
modeled after those in the brain. The higher region in a two 
region CLA will look at the activity of the cells in the lower 
region (input to higher region) and learn the temporal statistics 
of its activity pattern. The higher region then provides 
predictive inferences to the lower region about cell activity of 
the lower region. Lower region can use these inferences to 
improve its predictions of input activity. This type of message 
passing mechanism (like Hierarchical Predictive Coding Model 
[6]) is a possible implementation of Bayesian inference in 
brains. 
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The white paper on CLAs proposes an implementation of 
only one CLA region. In this paper, we explore a two region 
hierarchy of CLA regions. We hypothesize that a two region 
hierarchy will improve the prediction accuracy of the system in 
comparison to only one region as described in the CLA white 
paper [1]. It was the thrust of our work to first come up with a 
mechanism of message passing between the proposed two 
regions of the desired two region system. One major constraint, 
making this task non-trivial, was to make this message passing 
mechanism general enough to be scalable to a multi-level 
hierarchy with multiple regions feeding into one region. 

The fundamental data structure described in the CLA white 
paper is based on the structure of the cortical region. There is a 
wide consensus among neuroscientists about the hierarchical 
organization of the brain [10] and cortical regions in it [11-14]. 
The benefit of a hierarchy—as described in On Intelligence 
[15]—is that the higher levels of the hierarchy can extract more 
abstract knowledge about the environment. This is because the 
lower layers do some spatio-temporal grouping of the input 
that reduces the workload at the higher levels. The higher 
levels can then use these patterns from lower layers to do their 
own spatio-temporal grouping. Thus, more abstract patterns 
can be learned to make inferences or predictions about the 
lower levels and eventually the input at the lowest level. Such 
predictions would be otherwise impossible to achieve at a level 
of abstraction of knowledge that the lower levels can work on. 
These ideas are in support of our hypothesis. 

 

II. TWO REGION CORTICAL LEARNING ALGORITHMS 

In this paper, we explore CLA systems with two regions. 

Such a system is a three level hierarchy, consisting of an input 

level and two CLA regions, each region being a level in the 

hierarchy. We build the interconnections between the levels 

by taking hints from the literature [1, 6] as described above. 

They include a feedback message-passing method of the 

predictive coding technique to implement the top-down 

connections between the levels of this three level hierarchy.  

 

A. Model of the System 

The system consists of a three level arrangement. The first 

level is an input level. The two levels above the input level are 

structured after the description of a region in the Cortical 

Learning Algorithms’ paper [1].  

 

The input to the system at one time instant is a Boolean 

vector from the input level, called the input vector, as shown 

in Figure 2. This input vector is generated by reading the state 

of sensors of the immediate environment. The state of the 

entities of the system, viz. columns and cells, constitute the 

internal representation of the stimuli. The output is a Boolean 

vector. It is the prediction of the next input stimulus made by 

the system, given the current input. This output is stored in a 

buffer called prediction vector. Fig. 2 depicts the stacking of 

the cortical regions, and a comparison of the system in the 

CLA paper and the system described in this section. 

 

1) The input level. 

 

The input level has a Boolean vector, called the input 

vector. The sensors get activated from the environment, and 

populate the input vector. The input level also contains a 

Boolean vector of the same dimension as the input vector 

called the prediction vector, to store the predictions about the 

input vector. The prediction vector is set by the next higher 

level. The process, by which this prediction vector is set, is 

described in the next sub-section, ‘The higher levels’. For 

examples of input that this system can receive, see Figure 4. 

 

2) The higher levels. 

 

The higher levels consist of CLA regions. We have kept 

most of the workings of the original CLAs region intact, 

except for some essential modifications so that it can 

incorporate predictions from a higher level. The level 

immediately below a higher level acts as a source of input for 

the higher level. The vector containing the state of all the cells 

of a lower level acts as the input vector for the higher region. 

Both the lower region and the higher region work as described 

in the next paragraph. 

 

A CLA region processes in two phases – a spatial pooling 

phase and a temporal pooling phase. The spatial pooling phase 

is for recognizing simultaneous patterns. These are the 

patterns in the input vector, which occur simultaneously (at 

one time instant). The spatial pooling phase uses a Boolean 

vector for building an internal sparse distributed 

representation of the input. This is done by looking at the 

input activity, and turning approximately 2% of the bits to an 

‘on’ state in this Boolean vector, based on the spatial pooling 

algorithm described in the CLA paper [1]. Fig. 3 illustrates a 

couple of input representations after spatial pooling. The 

temporal pooling phase then uses such internal representations 

to recognize patterns of input activity over time, using the 

temporal pooler algorithm described in the CLA paper [1]. We 

Input vector 

(a) (b) 

Fig 2. (a) shows the architecture of the system in the CLA paper. The 

region looks at the input vector to form spatio-temporal patterns. (b) shows 

the architecture of the system in this paper. Each level looks at the activity 
of the level below it to form spatio-temporal patterns, and sends a 

prediction about the lower level activity as feedback message. 

 

Input vector Prediction vector 
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added to the original CLA where the knowledge of the 

temporal pooler is used to generate a prediction about the next 

input stimulus. 

 

The higher level region generates a prediction about the 

lower level region activity. This prediction is used to set the 

state of the cells in the lower level region. The lower level 

region uses this prediction to improve its knowledge. The 

lower level region then generates its prediction of its next 

input stimulus. This prediction is stored in a buffer called the 

prediction vector of the whole system, as described in the 

beginning of this section.  

 

The prediction vector, thus generated, and the input vector 

are used to determine the prediction accuracy of the system. 

Prediction accuracy measures how well the prediction vector 

matches the input vector in the next input. It is calculated as 

the normalized Hamming Distance (cardinality of XOR) of the 

prediction vector and the input vector at the next time step. 

This distance is normalized by the number of pixels in the 

input vector (or the prediction vector) to obtain a percentage, 

called the ErrorIndex.  

B. Hypothesis 

 

We hypothesize that, after training, a system with two 

regions, called System 2 (S2)—as described in the section 

above—is more accurate at making predictions about the next 

input stimulus as compared to a system with just one region, 

called System 1 (S1). The ErrorIndex will serve as the random 

variable under consideration to formalize our hypothesis. 

Therefore, we state the null and the alternate hypotheses for 

the population means of ErrorIndex over all possible six 

image sequences of 16x16 1-Boolean pixel images, obtained 

after training, for S1 (m
S1

) and for S2 (m
S2

), as follows:  

 

· H0 (null hypothesis): m
S1

 ≤ m
S2

 

 

· H1 (alternate hypothesis): m
S1

 > m
S2

 

 

To test this hypothesis we sample the common input space of 

S1 and S2. Based on the law of large numbers, we will take 

100 independent measurements of the random variable 

ErrorIndex to get 100 data values from each sample. Since our 

sample size is large enough, the Central Limit Theorem will 

be applicable. Thus, we will be able to perform an 

independent samples one-tailed Student’s t-test to compare the 

means of these samples, based on our research hypothesis. We 

will use α=0.05 significance level for the t-test. 

C. Experiment 

 

The experimental setup that was used to test our 

hypothesis is described in this section. It involves a 

comparison of the two systems, S1 and S2. System 1 (S1) has 

an input level and a CLA region. System 2 (S2) has one input 

level and two CLA regions, as described in the 

aforementioned sub-section ‘Model of the System’. We will 

be using 16x16 1-Boolean pixel images as input vectors for 

the experiment. Fig. 4 shows a couple of example images that 

were fed to the systems, S1 and S2, during the experiment.  

Before running the experiments, we determined the 

number of cycles required for training the system as follows. 

For that, we trained the system on several 16x16 1-Boolean 

pixel image sequences. Each sequence had six images in it. 

We recorded the number of cycles it took for ErrorIndex to 

settle down within a threshold range when a sequence was 

presented in a loop. The mean recorded number of cycles was 

1406. The standard deviation of the recorded number of cycles 

was 92. So we decided the training period should be of 1500 

cycles (mean plus the standard deviation of recorded number 

of cycles). We rounded off the upper bound on the mean of 

the number of cycles to the higher value, to ensure completion 

of training.  

 

The procedure for doing the experiment will be described 

now. We generate the control dataset and the test dataset as 

follows: 

 

Control Dataset (D1): We create a sequence of 1500 

randomly generated 16x16 1-Boolean pixel images as input to 

the system for training the systems once. The number of 

images in a sequence is the same as the number of cycles 

required for training, to minimize any temporal information 

that might occur due to repetition. We trained the systems 

independently a 100 times; therefore we created a set of 100 

such sequences to form D1.  

Fig 3. These images are examples of input representations (size 32x32) of 

a pattern after spatial pooling by the first region. Each blue square is an 

active column and the inactive columns are in gray. 

Fig 4. These are examples of images that were shown to the systems. Each 

image is a 16x16 1-Boolean pixel image. 
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Test Dataset (D2): We created a sequence of six 

randomly generated 16x16 1-Boolean pixel images looping 

through 1500 cycles. We trained the systems independently a 

100 times; therefore we created a set of 100 such sequences to 

form D2. The repetition of a sequence causes an item in this 

set to deliver the required temporal information for the 

systems to learn. 

 

To perform the control experiment we choose one 

sequence from D1. We input this sequence of images, one 

image at a time, to both the systems, until the desired number 

of training cycles complete (1500 cycles). We stop the training 

and we input an image from that sequence. Then we use the 

prediction vector, thus generated, and the next input in the 

sequence to take a measurement of the ErrorIndex from both 

the systems. We record this as one data point of the sample of 

ErrorIndexes for each of the systems. We iterate over this 

process a 100 times, choosing a different sequence from D1 

and reinitializing both the systems each time. After this 

process we get 100 independently obtained data points for 

each sample of ErrorIndex, from S1 and S2, called ES1 and 

ES2 respectively. 

 

We follow the same procedure to obtain the samples ES1 

and ES2 for test dataset D2. 

III. ANALYSIS AND RESULTS 

Comparing the means of the two samples of ErrorIndex 

obtained from S1 and S2 will tell us if there is a significant 

difference between the two samples. An independent samples 

one-tailed t-test is a suitable candidate to test the difference in 

means of the two samples thus obtained. The Shapiro-Wilk 

Normality test can be used as the applicability test to check if 

the sample data meet the assumptions of t-test, i.e. the samples 

are normally distributed. The samples passed the Shapiro-

Wilk Normality test. Then we conducted the t-test to compare 

the samples ES1 and ES2 from the control dataset D1 and the 

test dataset D2. Results for both of these tests are mentioned in 

the following sub sections. The usual meaning of the symbols 

for a t-test and Shapiro-Wilk Normality test apply i.e. t is the 

test statistic for t-test, W is the test statistic for normality test, 

df refers to the degrees of freedom, p means the probability of 

obtaining the test statistic within the confidence interval, m 

means the population mean, m ˉ means the sample mean and σ 

means the sample standard deviation. 

A. Analysis of samples from D1 

 

Shapiro-Wilk Normality test gave a p-value of 0.7764 for 

W = 0.9913 for ES1 and p-value of 0.2068 for W = 0.9825 for 

ES2. P-value > 0.05 for both ES1 and ES2 allowed us to 

conduct t-test. An independent-samples t-test was conducted 

to compare ES1 and ES2 from D1. There was a significant 

difference in the scores for ES1 (m ˉ 
ES1

= 0.4817407, σ
ES1

= 

0.01275459) and ES2 (m ˉ 
ES1

= 0.46482, σ
ES2

= 0.02149648); 

t(df= 161.32)= 6.7606, p = 1.194e-10. This shows that 

ErrorIndex from S1 was greater than from S2. The difference 

between the means of the two samples was m ˉ 
ES1

- m ˉ 
ES2

= 

0.017. The two samples tested here are shown in the Fig. 5.  

 

The proposed system S2 showed a reduction in the 

prediction error by just 0.017. This reduction in error can be 

attributed some random patterns present in the sequence of 

1500 images which the system was able to exploit to improve 

its predictions. 

B. Analysis of samples from D2 

 

Shapiro-Wilk Normality test gave a p-value of 0.1657 for W = 

0.9812 for ES1 and p-value of 0.1701 for W = 0.9814 for ES2. 

P-value > 0.05 for both ES1 and ES2 allowed us to conduct t-

E
rr

o
rI

n
d

ex
 

Mean 

Standard Deviation 

One region (ES1) 

Two regions (ES2) 

Sample 

Fig 5. The prediction accuracy is not any better for two regions (red) as compared to one region (blue) since the mean lines (solid lines) are not 

significantly far apart and the standard deviation lines (dotted lines) for the two systems cross each other. 
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test. An independent-samples t-test was conducted to compare 

ES1 and ES2 from D2. There was a significant difference in 

the scores for ES1 (m ˉ 
ES1

= 0.219485, σ
ES1

= 0.02209806) and 

ES2 ( m ˉ 
ES2

= 0.1225183, σ
ES2

= 0.01597893); t(df=180.3)= 

35.5581, p < 2.2e-16. This shows that ErrorIndex from S1 was 

significantly greater than from S2. The difference between the 

means of the two samples was m ˉ 
ES1

- m ˉ 
ES2

= 0.111778348. 

The two samples tested here are shown in the Fig. 6.  

 

The proposed system S2 showed a reduction in the 

prediction error by 0.1117. The reduction for the test dataset 

was much more than the control dataset. This shows that the 

characteristics of the test dataset, i.e temporal pattern,was 

exploited to improve the prediction. 

The results of the t-test for both the datasets are 

shown in Table 1. The data that we obtain provide strong 

evidence in favor of our alternate hypothesis, and against the 

null hypothesis. The p-value from the t-test is less 0.05, 

therefore we cannot reject our research hypothesis that the 

mean ErrorIndex obtained from System 1 is higher than the 

mean ErrorIndex obtained from System 2. Since we are 

measuring the error in prediction, we say that System 1 has 

higher error in prediction than System 2. Thus, we can say that 

System 2 predicts better than System 1. The addition of the 

second layer does improve the prediction accuracy of the 

system as measured by the ErrorIndex. 

  

IV. CONCLUSION 

The tests described in this paper suggest that a two region 

hierarchy of CLAs can be built by adding feedback 

connections based on the predictive coding scheme. Based on 

the t-test performed, we concluded that the prediction 

accuracy of the proposed system with two regions is better 

than just one region as described in the CLAs paper [1].  

 

Since the addition of a second region in the hierarchy is 

able to improve the performance, we can expect that by 

adding more regions in a hierarchy, the hierarchy will be able 

to extract more abstract patterns. This will enable a more 

sophisticated Bayesian Inference, hopefully improving the 

performance of this system in uncertain situations that might 

arise in the process of making predictions. This has also given 

us hope of being able to fuse representations from two 

different lower level regions into one higher level region. 

Since the two lower level regions can take input from two 

different sensory systems/modalities, we may be able to 

generate rich representations of the environment. This might 

help in improving the perceptual system of the LIDA 

architecture [21-23]. Such a kind of hierarchical representation 

Fig 6. The prediction accuracy is better for two regions (red) as compared to one region (blue) since the mean lines (solid lines) are significantly far apart and 

the standard deviation lines (dotted lines) for the two systems do not cross. A one-sided t-test confirmed that the mean of the sample ES2 of the two region 

model S2 is indeed significantly lower. 
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Mean 

Standard Deviation 

One region (ES1) 

Two regions (ES2) 

Sample 

TABLE I.  RESULTS OF T-TEST 

Dataset Sample 
Mean 

(m ˉ ) 

S. Dev. 

(σ) 
t df p-value 

D1 

ES1 0.48174 0.01275 

6.7606 161.32 
1.194e-

10 
ES2 0.46482 0.02149 

D2 

ES1 0.2194 0.02209 

35.5581 180.3 
< 2.2e-

16 

ES2 0.1225 0.01597 
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may allow us to make Perceptual Associative Memory (PAM) 

[24, 25] more efficient because the hierarchical temporal 

patterns might allow more extensive event representations 

[25] to be learned. This can also help in carving out the design 

for a sparse coding based vector representation for the LIDA 

system.  

 
This topic still needs further exploration in many directions. 

It will be interesting to see the improvements that a higher 
region can deliver in recognition of spatial patterns. Also, we 
still need to determine the limit of additional levels that will 
continue to improve the performance of the system or if there 
exists any such limit at all. This system is not currently 
equipped to handle real-world data, but running this system on 
a real-world dataset will provide useful insights about the 
performance of this system in real-world applications.  In fact, 
creating a multi-level hierarchy is the first step towards making 
this system better equipped for real-world data. 
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