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Abstract
Vector LIDA was proposed in 2014 as major overhaul to the representation system in the LIDA
model. It replaced the nodes and links representation system used earlier with Modular Composite
Representation (Modular Composite Representation) vectors for representing knowledge in LIDA.
Although, it was mostly trivial to swap out nodes and links with these vectors, as described in the
Vector LIDA paper, it was not trivial to obtain these vectors from sensors so that symbol grounding
is maintained. In this paper, we propose a sensory memory system and a method for obtaining Mod-
ular Composite Representation vectors from it in a way that enables symbol grounding. We propose
to build sensory memory out of Hierarchical Temporal Memory’s Cortical Learning Algorithm’s
regions, an online learning algorithm, which produce sparse distributed representations of spatio-
temporal patterns recognized from its stimulus from the environment. These sparse distributed
representations can then be translated into Modular Composite Representation vectors in a way
that preserves the semantic meaning encoded in these sparse representations, and thus enable the
LIDA’s vector representations to be grounded by the sensors in the environment. One of the main
commitments of the LIDA model is that “all learning happens via consciousness”. To allow Corti-
cal Learning Algorithms to learn and adapt to the environment and still honor this commitment, we
need to translate the contents of the conscious broadcast to sparse distributed representations, so
that Cortical Learning Algorithms can learn based on consciousness. To summarize, we propose a
Cortical Learning Algorithms based Sensory Memory for the Vector LIDA and produce a method
of translating back and forth between the representations used by Cortical Learning Algorithms,
i.e. sparse distributed representations, and the representations used by Vector LIDA, i.e. Modular
Composite Representation vectors. This will allow agents based on Vector LIDA to have grounded
symbols for representation.

1. Introduction

“Once a problem is described using an appropriate representation, the problem is almost solved”
(Winston, 1992). Many authors have stressed the importance of well-chosen representations in
trying to solve a problem or perform a task. For a cognitive architecture the task of choosing the right

Draft: Do not distribute.



P. AGRAWAL, S. FRANKLIN, AND J. SNAIDER

representation system becomes crucial, because its agents may be expected to represent a variety
of complex forms of information and to perform an equally varied set of tasks. The importance of
representation for symbolic and connectionist cognitive architectures has been discussed in more
detail in Franklin (1997). Sun (1999) talks about the need to integrate the two most popular forms
of representations, symbolic and connectionist, to reap the benefits of both.

Many cognitive architectures choose to use a symbolic representation system because that pro-
vides a robust way to manipulate the knowledge represented by an agent and to think and talk about
it for people observing the agent or interacting with it. We believe that these symbolic represen-
tations need to be grounded in the environment of the agents that are built using these cognitive
architectures. If we want an agent to be able to perform well in a highly complex and dynamic
environment, it is important to have symbol grounding in order to capture the dynamism of the en-
vironment. Symbol grounding is achieved by the sensory memory of a cognitive architecture. If the
representations that come out of the sensory memory faithfully deliver the required complexity and
dynamism from the environment to the rest of the system, we can say that the representation system
of the cognitive architecture is grounded in the environment.

But it is not enough to just produce grounded representations that faithfully represent the envi-
ronment. A cognitive architecture also needs to make sure that the processes and memory systems
it employs are able to exploit all the needed nuances that are captured by these representations. For
example, the recognition memory system must be able to recognize learned objects/concepts from
representations of what the agent has sensed in the environment. Sensory memory and the recog-
nition memory should be able to communicate seamlessly and with high fidelity so as to provide
symbols in the recognition memory the expressive power of the representation to be used by other
parts of the system.

Here we provide a solution to the two problems of trying to create a sort of hybrid representa-
tional system that has the benefits of both symbolic and connectionist representations and building a
sensory memory that produces grounded representations that can be communicated seamlessly and
with high fidelity to the rest of the cognitive architecture. We solve these problems in the context
of a systems-level cognitive architecture called LIDA (Franklin et al., 2016), short for Learning
Intelligent Decision Agent.

Recent advancements to the representation system in LIDA model, by the virtue of using Mod-
ular Composite Representations (Modular Composite Representations) as a part of Vector LIDA
project (Snaider & Franklin, 2014b), makes LIDA a solid contender among cognitive architectures.
The value of using the new representation system for LIDA was argued for in Snaider & Franklin
(2014b). This new representational system makes it much more powerful by preserving all the
benefits of its earlier symbolic representations in the form of nodes and links and adding a lot of
processing capabilities that were not possible with nodes and link. In addition, this system makes
the representations very noise robust. We feel that the earlier sensory memory system does not
do justice to the augmented capabilities of LIDA model with this new representation system. The
earlier sensory memory still uses nodes and links, which are not expressive enough for information-
rich dynamic environments that Vector LIDA is capable of representing with the help of Modular
Composite Representation vectors.
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SENSORY MEMORY FOR GROUNDED REPRESENTATIONS

In this paper, we propose a new Sensory Memory System for LIDA that compliments the new
vector-based representational system of Vector LIDA by delivering richer representations than nodes
and links. Sensory representations now will be in the form of high dimensional sparse distributed
representations, which have greater expressive power and thus enables stronger symbol grounding.
This creates a need for translation between the two types of representations, viz. Modular Compos-
ite Representation and sparse distributed representation, for the sensory memory and recognition
memory to be able to communicate. In this paper, we also describe a method of doing high fi-
delity translation between sparse distributed representation and Modular Composite Representation
vectors that preserves the richness of information during translation.

We describe the two major contributions mentioned above in the Sections 3 (HTM as Sensory
Memory) and 4 (Translation Problem) respectively. Section 2 will give the reader some background
about the concepts that we talk about in the rest of the paper. Section 5 describes the experiments
done to validate the claim of high fidelity seamless translation between Modular Composite Repre-
sentation and sparse distributed representation vectors. Section 6 will conclude with a discussion of
the results and contributions of this paper.

2. Background

Cognition is said to be made up perception-action cycles by neuroscientists and psychologists (Cut-
suridis et al., 2011; Dijkstra et al., 1994; Freeman, 2002; Fuster, 2004, 2002; Neisser, 1976). An
agent (natural or artificial) samples its environment, internal or external, to initiate the process of
perception; with the rest of the system employing other cognitive processes it completes the cycle
by performing an action. This is what a cognitive cycle is. One important cognitive process in this
cycle is attention. Attention filters for the most salient aspects of the current situation for the agent,
and broadcasts them to the whole cognitive system to use as conscious content in accordance with
Global Workspace Theory (Baars, 1993).

2.1 LIDA Model and Global Workspace Theory

The LIDA model (Figure 1) is built out of these cognitive atoms, or cognitive cycles, running in
parallel in an agent. Various processes of cognition, like planning, imagining and reasoning, happen
over multiple cognitive cycles. These processes are enabled by various modules working together.
They work by manipulating and restructuring data during a cognitive cycle working towards the
fulfillment of the agenda of the agent. For example, attention codelets produce coalitions, including
salient content from aspects of the current situation, that compete for consciousness. Similarly,
structure building codelets build new structures from the contents of the current situation. Each
cognitive cycle is marked by the event of conscious content broadcast, which initiates learning in
possibly all the various memories of the LIDA model. This will be relevant later in this paper
because this is one of the main conceptual commitments of LIDA model to which we must adhere
in the process of building a Sensory Memory. The commitment comes from the Conscious Learning
Hypothesis (Franklin et al., 2013), and states that significant learning takes place via the interaction
of consciousness with the various memory systems. This hypothesis has been argued for in detail
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Figure 1. The Learning Intelligent Decision Agent cognitive architecture.

in Franklin et al. (2013). Consciousness refers to functional consciousness here, as opposed to
phenomenal consciousness. Consciousness acts like an attention filter in LIDA.

Further details about the LIDA model are beyond the scope of this paper and can be found in the
LIDA Model Tutorial (Franklin et al., 2016). In the next two sections, we discuss the two important
memories in LIDA Model that are relevant for discussions in this paper.

2.1.1 Sensory Memory

Sensory Memory in LIDA uses feature detectors. Feature detectors are daemons which are con-
stantly looking for incidences of their interest in the environment. One feature detector is tasked
with looking at one particular feature in the entire perceptual scene. When it detects that feature it
puts a node in Sensory Memory that lasts for a few milliseconds. This node represents the feature
and tells the agent that that particular feature was recently present in the environment. Since the
nodes in the Sensory Memory last only a few milliseconds, it is a short-term memory.

Sensory Memory plays an important role in fulfilling the Embodied Cognition commitments
of the LIDA model (Franklin et al., 2013). Embodied Cognition claims that the body as well as
the brain (if it has one) of an agent is situated in an environment, and the relationship between the
environment, the body, and the mind affects all cognitive processing (de Vega et al., 2012). The
LIDA model adheres to Embodied Cognition by using only perceptual symbols (Barsalou, 1999).
Sensory memory is directly involved in creating these perceptual symbols that faithfully represent
the environment of the agent.
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Figure 2. A node and links structure in PAM representing an event.

2.1.2 Perceptual Associative Memory

PAM is the recognition memory of LIDA. It uses nodes and links to represent information. Nodes
represent features, objects, feelings, actions, events, categories etc. Links represent relations be-
tween these nodes, like feature-of, causation, category membership etc (see Figure 2). These are the
things an agent has learned to recognize in its environment, and their relevant relationships to one
another. Structures in PAM can be accessed by cues from the Current Situational Model (see Figure
1). They are activated from other PAM nodes or from Sensory Memory. This allows the agent to
form percepts from the sensory stimulus that are then sent back to Current Situational Model to
enable the agent to have a better understanding of the current situation that it is in with regard to its
internal and external environment.

2.2 Vector LIDA

Vector LIDA was presented as a major overhaul of the representation system of the LIDA model.
It uses high dimensional Modular Composite Representation (Modular Composite Representation)
vectors, instead of nodes and links as previously described. These Modular Composite Represen-
tation vectors are stored in Integer Sparse Distributed Memory (Snaider et al., 2013), which is a
modified version of Kanerva’s (1988) Sparse Distributed Memory, for storing integer vectors in-
stead of binary vectors. There are several advantages to using Modular Composite Representation
vectors for representation, and ISDM for memory. It enhances the learning mechanisms, improves
scalability and provides better integration with episodic memory and sensory memory. For more de-
tails on that and other benefits please refer to the Vector LIDA paper (Snaider & Franklin, 2014b).

Since Vector LIDA is based on representing information using Modular Composite Represen-
tation vectors and processing these vectors, we briefly describe Modular Composite Representation
vectors in the following section.

2.3 Modular Composite Representation Vectors

Modular Composite Representation (Snaider & Franklin, 2014a) vectors are long integer vectors.
They are similar to Spatter Code (Kanerva, 1994) in its properties, where Spatter Code uses bi-
nary vectors. Modular Composite Representation is a reduced description model. This means that
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complex representations can be compressed/reduced into one vector, and can be reconstructed out
of this vector when needed. The interesting thing to note here is that each of the components of
the complex representation is itself a long vector of the same dimension as the compressed vec-
tor. The following paragraphs provide a little more technical description of Modular Composite
Representation vectors.

A system using Modular Composite Representation vectors defines the size of the vectors it is
going to use, which remains constant for that system’s lifetime. Every Modular Composite Repre-
sentation vector has that many dimensions, where each dimension can take a value from a defined
range of integer values, for example, (0, 1, ..., 15) (Aggleton & Pearce, 2001). More formally, a
Modular Composite Representation vector is a vector in a multidimensional space, v ∈ Zn

r , where
n is the number of dimensions of the space and r denotes the range of integer values for each
dimension.

Two basic operations defined on these vectors are Binding and Grouping. These are important
concepts to understand for getting a grasp on the translation between sparse distributed representa-
tion and Modular Composite Representation vectors.

• Binding is like a multiplication operation, symbolized by ⊗. It is defined as the modular sum
in each dimension. It works like the bitwise XOR for binary vectors. For example, multiplying
vectors X,Y ∈ Zn

16 to get integer vector Z = X ⊗Y , if the dimension i in X and Y has values
11 and 14 respectively, then in the resulting dimension in Z, Zi will be 9. Formally,

Zi = mod16(Xi + Yi)

The unbinding operation can thus be defined as the modular subtraction in each dimension or
binding the first operand to the complement of the second operandX = Z⊗Y −1. The comple-
ment, or the inverse vector, in this model is such that each dimension in Y −1 is the complement
of that value in the same dimension. Continuing our previous example each dimension in Y −1

would be,
Y −1i = mod16(16− Yi) = 16− Yi

Two important properties of this operation are that
◦ It is associative, commutative and distributive over the sum or grouping operation.
◦ It produces a vector that is very different from the operands. Almost always orthogonal.

• The grouping operation is like finding a resultant vector of two vectors, symbolized by +.
To describe more formally, for each dimension we place the values of that dimension for each
operand as an equivalent vector on a circle as shown in Figure 3. For example, the equivalent
vector for the value 0 is (0,1), 4 is (1,0), 8 is (0,-1), 12 is (-1,0). The sum operation for each di-
mension will be the resultant vector of the equivalent vectors of all operands for that dimension
after normalization and rounding to the closest equivalent vector corresponding to an integer.
For example in Figure 3, the normalized result of equivalent vectors for 3 and 7 is 5. Another
example in Figure 3 demonstrates rounding. When we add the three equivalent vectors 0, 7 and
13 the result is 14 after rounding. The most important property of the grouping operation is that
the resulting vector is similar to each of its operand vectors.
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Figure 3. Finding the equivalent vector for a value of a dimension.

These properties of the binding and grouping operations allow Modular Composite Representa-
tion vectors to act as reduced descriptions. A reduced description can be created from a collection
of attributes and their names. For example, from two attributes shape and color, we can create a re-
duced description of a “red circle”. If we have vectors representing Shape, Color, red and circle,
this can be done by using binding and grouping operations as follows:

F = [circle⊗ Shape+ red⊗ Color]

This is a useful reduced description only if we can recover the components that created F . This can
be done if we use an Integer Sparse Distributed Memory to store these vectors. We will continue
this example to show how to recover vectors from a reduced description using an ISDM, after we
introduce ISDM in the next section.

2.3.1 Integer Sparse Distributed Memory

Integer Sparse Distributed Memory (ISDM) is like Kanerva’s Sparse Distributed Memory (SDM),
but it is used to store high dimensional integer vectors, for example, Modular Composite Repre-
sentation vectors. Like SDM it is an auto-associative memory. For details on the functioning of
ISDM, please refer to Snaider (2012). ISDM consists of a fixed number of hard-locations where
vectors can be stored. A hard location is a point in the multi-dimensional space representing an
integer vector, a point of the kind that this memory will eventually store. These hard locations are
distributed uniformly randomly over the vector space. A vector is written in all the hard-locations
that are within a critical distance from that vector. Since a vector is written in multiple locations it is
noise robust. Also, when we try to read a previously written vector from the memory we do not need
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the exact vector to effect the read. A noisy version of the vector can be given to ISDM, which works
like a cleanup memory. Since the noisy vector is like the vector we want to read, ISDM will look
in approximately the same vicinity as it used to store the non-noisy vector, to find hard-locations
to read this vector from. ISDM performs a kind of polling from all the hard locations that it finds
within the critical distance to produce the vector that was originally written. The resulting vector is
less noisy because of the polling. ISDM can then repeat this process until convergence to obtain the
cleaned up or non-noisy vector. This is how we can read the original vector using a noisy version of
that vector.

2.3.2 Reduced Descriptions

In Section 2.3, we created a reduced description of a “red circle” using red, circle, Shape and
Color vectors as:

F = [circle⊗ Shape+ red⊗ Color]

A reduced description has a role filler type structure, where Color and Shape are the roles and red
and circle are corresponding fillers. For F to be a useful reduced description of “red circle” we
need to be able to retrieve the attributes of the “red circle” from the vector F . We can do this using
the method of probing as described in the following section.

2.3.3 Probing

Probing is the processes of checking to see if a reduced description vector contains the probed vector
as a component.

For reduced descriptions created by the binding operation, this is done by binding the reduced
description with the inverse of the role vector (unbinding). The result of this process is the filler and
noise. This noise can be removed by using cleanup memory to retrieve the actual filler, if we have
all the vectors stored in an ISDM. For example, if we want to check the shape of the “red circle” we
could probe its reduced description with the inverse of Shape.

F ⊗ Shape−1 = [circle⊗ Shape⊗ Shape−1 + red⊗ Color ⊗ Shape−1]

Color, Shape−1 and red, when bound, produce noise, and Shape and Shape−1 when bound
cancel out, so we get:

F ⊗ Shape−1 = [circle+ noise]

This noise can be removed by reading this resulting vector from a cleanup memory, so we come full
circle. If F is probed with a role that was not a component, to begin with, then all we get is noise,
which results in an unsuccessful read operation from the cleanup memory.

For reduced descriptions created by grouping operations, probing is done by checking the dis-
tance1 of the probed vector from the group vector. If the distance between a group vector and the
probe vector is less than a threshold, we can say that the group vector was grouped/composed using
the probe vector. This is possible because the group vector is similar to all of its component vectors.

1. Distance between two Modular Composite Representation vectors is defined as an extended Manhattan metric which
accounts for the modularity of dimensions.
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Thus, the distance between the group vector and any of its components is less than the distance
between any two random vectors. Formally, for a vector G with components A and B,

G = [A+B]

distance(G,A) < Threshold

distance(G,B) < Threshold

distance(G,X) ≥ Threshold,

where,

X is any random Modular Composite Representation vector.

Snaider (2012) has this threshold as the Indifference Distance of this Modular Composite Repre-
sentation space, where Indifference Distance is defined as the distance between any two random
vectors in this Modular Composite Representation space.

2.4 Hierarchical Temporal Memory

Hierarchical Temporal Memory is a spatio-temporal pattern recognizer capable of online learning,
proposed by Hawkins et. al. (2011). It is inspired by the computations in the layers of the neocortex
in the brain (Hawkins et al., 2009). It uses activity of a region of columns to represent a given input.
It employs sparse distributed representations for representing input. This means that for any given
input only a few of the columns, out of thousands, in a region are active, typically 2% to 5%. Sparse
representations provide a lot of benefits for representation of a domain of inputs. They are noise
robust. They also allow a lot of freedom and flexibility with which to encode the similarity between
inputs. Thus, it is very expressive. For more details please refer to Hawkins et al. (2011).

2.5 Problem Elaboration

We need to build a Sensory Memory for LIDA that will allow us to leverage the greater expressive
power of the Modular Composite Representation vectors used in the Vector LIDA system, to replace
the earlier simpler feature detectors used so far in the Sensory Memory. For future Vector LIDA
based agents, we can use HTM Regions to build the Sensory Memory. Each HTM Region will
be responsible for sensing an aspect of the environment. For example, one region can be used to
sense the location of the agent from a GPS sensor, another region can be used to sense the motor
commands of the gripper of an arm of the agent. All the benefits of using HTM Regions for this
task is explained in the next section.

We face a few challenges in building the Sensory Memory out of HTM Regions. The first chal-
lenge is that the representations coming out of HTM Regions are sparse distributed representations,
whereas the rest of the system in Vector LIDA is going to use Modular Composite Representation
vectors. Therefore, we need to be able to translate sparse distributed representation vectors into
Modular Composite Representation vectors. We need to do this in such a way that we do not violate
the embodied cognition commitment of the LIDA model. We can do this only by preserving the
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meaning and expressiveness of the sparse distributed representations during translation so that the
rest of the system can understand its environment effectively. Thus, the translation will not violate
embodied cognition.

The second challenge is that we need to allow HTM Regions to employ online reinforcement
learning. This is a challenge because if we want to allow HTM to learn during the lifetime of an
agent we need to adhere to the Conscious Learning commitment of LIDA model, as mentioned
in Section 2.1. To allow conscious learning we will only let HTM learn from the contents of the
conscious broadcast. In Vector LIDA the conscious broadcast will consist of one or more Modular
Composite Representation vectors. We need to be able to retrieve the lowest level sensory content
from these vectors, and further translate them into sparse distributed representations, so that Sensory
Memory Module can map these sparse distributed representations to the respective regions and
columns, and perform reinforcement learning accordingly.

3. HTM as Sensory Memory

We want to build a Sensory Memory that can deliver information-rich representations to PAM so that
Modular Composite Representation based systems of Vector LIDA can exploit Modular Composite
Representation’s power of representation, and thus allow the agent to better deal with complex and
dynamic environments.

LIDA’s Sensory Memory can use HTM Regions as feature detectors. We can envision an agent
having multiple HTM Regions to sense a variety of aspects of its environment. Even though HTM
is not the state of the art in image processing and computer vision, as it improves it can be used
to directly sense the environment through a camera. It has been shown to work for a video game
environment on ray cast image data by Sungur (2017). For now, it can still be used for simpler
agents by doing edge detection and image segmentation in a pre-processing step and feeding in the
segmented filtered image as input to an HTM Region to detect shapes. Another HTM Region can
be employed to detect colors in the segmented filtered image. Benefits of doing this include that
similar shapes and similar colors will have similar representations created by HTM Regions. A big
advantage of using HTM based regions is that they are agnostic of the input modality. We do not
need to hand-craft the feature detectors for every feature and every modality. Unlike many other
neural network models, they employ online learning. Depending on the need of the agent, HTM
can be setup to extract as much granular information from the input as needed. For example, it can
be setup so that it can detect Red and Pink to be similar colors, or very different, as needed by the
agent.

The current implementation of HTM employs Encoders to feed data into the HTM. Encoders
are a preprocessing layer for the input. Numenta has created Encoders for various type of data like
Scalar, Category, Date, Coordinate, Geospatial Coordinate etc2. An agent needing to understand its
acceleration (a three-tuple Coordinate) from its accelerometer sensor, or its location (a Geospatial
Coordinate) from the GPS sensor, can use these encoders to sense from its environment. Here too
we can reap the benefits of similarity in input from the HTM’s pattern recognition. An acceleration
of similar magnitude or direction will have a similar representation by HTM. For example, an accel-

2. Available at https://github.com/numenta/nupic/tree/master/src/nupic/encoders
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eration due North will have similar representation to an acceleration due Northwest, but completely
different representation to one due West. A location near to another location will have a similar
representation, and these are tunable by the parameters of these Encoders to suit the needs of the
agent. In this way, we can have HTM sense a variety of attributes of the environment for an agent
with a high degree of control on the expressiveness.

It is important to note that the LIDA model is a conceptual framework and that agents are
specific implementations crafted from this framework, utilizing some or all the concepts available
in the framework. An agent can use many different HTM Regions based on its need, and the HTM
Regions will be configured so that it can deliver representations that are relevantly information-rich
for its purposes.

The proposed HTM based Sensory Memory allows for flexibility between how much pre-
learned structures are needed and how much can be learned. If we need some pre-learned struc-
tures, we can train an HTM Region before using it for the agent in the same, a simulated or a similar
environment. If we need it to learn everything from scratch while living in the environment, we can
use untrained HTM Regions.

4. Translation Problem

Sparse distributed representations produced by HTM Regions and Modular Composite Representa-
tions, used for representations in LIDA, are both high dimensional vectors but are very different in
nature. Sparse distributed representations are sparse binary vectors, in which only a few dimensions
have 1s and rest are 0s. Modular Composite Representations are integer modular vectors, in which
each dimension can have an integer value between a specified range. HTM Regions will represent a
stimulus in the form of sparse distributed representations. PAM needs to use these sparse distributed
representations to start recognizing relevant objects/percepts in its environment. Since PAM is built
out of Modular Composite Representation vectors, we need to create Modular Composite Represen-
tation vectors out of sparse distributed representations produced by HTM Regions, so that PAM can
use them meaningfully for recognition. This means that similar sparse distributed representations
should produce Modular Composite Representation vectors that are close in Modular Composite
Representation vector space. Thus, their similarity, and therefore meaning, in Modular Composite
Representation vector space is preserved.

We need to create these Modular Composite Representation vectors in such way that we can
get the sparse distributed representation vectors back from the Modular Composite Representation
vectors. We need to do this because of the conscious learning commitment of LIDA model. Since
the HTM Region employs online learning, if we want the HTM Regions in Sensory Memory to
learn during the lifetime of the agent, we need to adhere to the conscious learning commitment,
as also mentioned in Section 2.5, and provide only the contents of conscious broadcast for its use
for learning. The contents of the conscious broadcast from a Vector LIDA based agent will be
in the form of one or more Modular Composite Representation vectors. We need to retrieve the
sensory content (in the form of sparse distributed representations) from these Modular Composite
Representation vectors, and give it to the respective HTM Region from whence it came, for the
HTM Region to be able to learn from it.
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Figure 4. Projected vector of X is Y . Where Y is the sum (as defined by grouping operation) of all the
Modular Composite Representation vectors M i where sparse distributed representation vector Xi has a 1, as
shown by blue boxes. The orange box shows the abstract random projection matrix Rk×d.

Thus, the translation problem is a two-part problem of translating sparse distributed represen-
tation vectors to Modular Composite Representation vectors in such a way that they preserve their
meaning upon translation, and they can be later retrieved back for learning in HTM Regions if
needed. We first describe the solution to translating a sparse distributed representation vector to a
Modular Composite Representation vector in the next Section 4.1. In the following Section 4.2,
we describe how to get sparse distributed representations from Modular Composite Representation
vector based conscious contents.

4.1 Sparse Distributed Representation to Modular Composite Representation

The inspiration for the solution of the problem of trying to convert sparse distributed representa-
tion vectors to Modular Composite Representation vectors comes from a technique in mathematics
called Random Projection (Bingham & Mannila, 2001). Random projection gives us a method of
projecting a high-dimensional vector space to a lower dimensional vector space, in a way which ap-
proximately preserves the distances between the points, as determined by the Johnson-Lindenstrauss
lemma (Dasgupta & Gupta, 1999). In random projection, the original d-dimensional data is pro-
jected to a k-dimensional (k � d) subspace through the origin, using a random k × d matrix R,
where every column is orthogonal to all other columns. If the original data of N points is in matrix
Xd×N . Then we get the projection Pk×N as:

Pk×N = Rk×d ×Xd×N

Here, we store our sparse distributed representations in the matrixXd×N , where d is the dimension-
ality of the sparse distributed representation and N is the number of sparse distributed representa-
tions we want to translate. We generate the random Rk×d matrix, per HTM Region, by generating d
random Modular Composite Representation vectors, of the size defined to be used in the agent, here
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k. Since it is a property of random Modular Composite Representation vectors that they are orthog-
onal to each other, we satisfy the requirement of generating an appropriate R. Thus, by multiplying
the matrices and using the modular addition within a dimension as described in the grouping oper-
ation, we can get the resulting projected data in Modular Composite Representation vector space in
Pk×N , in the form of N k-dimensional Modular Composite Representation vectors.

Abstractly we can describe this process of translation as treating each dimension of a sparse
distributed representation vector as a feature and generating a random Modular Composite Repre-
sentation vector for each feature. This random Modular Composite Representation vector represents
its feature in Modular Composite Representation space. Now, whenever we get a sparse distributed
representation with some features active, we generate a Modular Composite Representation vec-
tor with the grouping of all the Modular Composite Representation vectors that represent all the
active features, as shown in Figure 4. For a sparse distributed representation vector X we gener-
ate a projected vector Y using M , where M is a set of randomly generated Modular Composite
Representation vectors one for each dimension in X indexed by i as M i, as:

Y =
∑
i∈I

M i,

where,

I is the set of indices of dimensions in X with an active bit and

Σ is the grouping operation.

We need to be able to distinguish between Modular Composite Representation vectors generated
by sparse distributed representations from two different HTM Regions co-existing in an agent. For
this reason, we generate a random Modular Composite Representation vector and assign it to each
region, as a Modular Composite Representation vector representing that region. Once we translate a
sparse distributed representation we can bind (using the binding operation defined in Section 2.3) the
resulting Modular Composite Representation vector with the Modular Composite Representation
vector assigned to the region from which the sparse distributed representation came from. Now,
the resulting vector is ready to be used by PAM. Optionally, we can also additionally bind it to
a Modular Composite Representation vector that represents the sensory modality which the HTM
Region is looking at. For example, we may have multiple HTM Regions employed for each of the
various modalities of the agent like visual, auditory, motor, internal environment etc.

4.2 Modular Composite Representation to sparse distributed representation

A LIDA based agent will get a Modular Composite Representation vector or a group of Modular
Composite Representation vectors from each conscious broadcast. A Modular Composite Repre-
sentation vector will be a reduced description of some kind. We can use the unbinding probing
operation to determine if the vector has any content from any of the HTM Regions in that agent.
We retrieve the filler from any successful probes with any HTM Regions. Once we get the filler for
an HTM Region we can then use the grouping probe operation using all M i vectors as probes one
by one. The M i vectors that pass the probing indicate that the corresponding feature of the sparse
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Figure 5. This graph shows the average distance between translated Modular Composite Representation vec-
tors, before and after adding noise to the corresponding sparse distributed representation vectors. Standard
deviation bars are shown on each point at the measured noise level.

distributed representation vector dimension was active. This way we can reconstruct the sparse dis-
tributed representation from the Modular Composite Representation vector. Once we reconstruct
the sparse distributed representation vector X , it can be used by the corresponding HTM Region for
learning.

Formally, to reconstruct each dimension i of X we probe the Modular Composite Representa-
tion vector Y with the corresponding Modular Composite Representation vector M i.

Xi =

{
1 if distance(Y,M i) < Threshold

0 if distance(Y,M i) ≥ Threshold

We use a stricter Threshold of grouping probe operation than used by Snaider (2012). Here we
use µid− k ∗σid as the Threshold, where µid and σid are the mean and standard deviation of the In-
difference Distance between the Modular Composite Representation vectors of the specified length,
and k is a parameter of the method that can be varied to optimize the performance of reconstruction.

5. Experimental Studies

To establish the validity of our method of translation we need to prove two things. First, this method
must preserve the distance between two vectors in translation, i.e. different sparse distributed rep-

14



SENSORY MEMORY FOR GROUNDED REPRESENTATIONS

resentation vectors when projected should be orthogonal Modular Composite Representation vec-
tors, and similar sparse distributed representation vectors, when projected, should result in Modular
Composite Representation vectors that are very close in Modular Composite Representation space.
Second, the reconstruction from a Modular Composite Representation vector back to a sparse dis-
tributed representation vector is of high fidelity and preserves most of the information. We can
tolerate some information loss in the translation back to sparse distributed representation vectors
because sparse distributed representation vectors are very noise robust.

For the first test, we generate 100 random sparse distributed representation vectors, 1024 di-
mensions long and 2% sparse, this is a typical dimensionality for sparse distributed representation
vectors from HTM Regions. We then translate them, as described in Section 4.1, into corresponding
Modular Composite Representation vectors of dimension 1024, also typical for Modular Composite
Representation vectors. We call this set of Modular Composite Representation vectors a reference
set. To obtain similar sparse distributed representation vectors and check the quality of translation
we add some noise to the sparse distributed representation vectors. Less noise means that sparse
distributed representation vectors are similar more noise means they are different to the point where
100% noise means completely different sparse distributed representation vectors. So, we add x%
noise to the sparse distributed representation vectors by randomly changing x% of active bits to in-
active and activating the same number of other randomly chosen inactive bits, thus maintaining the
sparsity at the same level. In other words, adding x% noise to a 1024-dimensional sparse distributed
representation vector creates a new sparse distributed representation vector that has a Hamming dis-
tance of (2 ∗ x/100 ∗ 1024) from the original vector. We then use these noisy sparse distributed
representation vectors to generate a new set of Modular Composite Representation vectors. We
measure the distance of Modular Composite Representation vectors in the reference set to the ones
generated by corresponding noisy sparse distributed representations. Figure 5 graphs the results of
this measurement for the 100 vectors.

For the second test, we take the reference set of the 100 Modular Composite Representation vec-
tors and translate them back to sparse distributed representation vectors using the method described
in Section 4.2. For mod16 Modular Composite Representation vectors with 1024 dimensions µid
was 4095 and σid was 74, computed empirically. Thus, the threshold used was 4095 − k ∗ 74, as
mentioned in Section 4.2. We then compute precision and recall for the number of dimensions of a
sparse distributed representation correctly retrieved for each of the Modular Composite Represen-
tation vectors. The statistics of the precision and recall for 100 vectors for different values of the
parameter k are recorded in Table 1.

We can see from Table 1, that this system is able to reconstruct the sparse distributed represen-
tations with perfect precision and recall for k = 5. We have made the code that produced these
results publicly available.3

6. Discussion

We needed the representations in the Vector LIDA model to be grounded and, we wanted to build a
Sensory Memory that could do justice to the power of Vector LIDA by delivering an information-

3. Available at https://github.com/pulinagrawal/cla-to-mcr/blob/master/cla-mcr.ipynb
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Table 1. This table shows the statistics in the form of mean (±standard deviation) of precision and recall
of retrieval of dimension values of sparse distributed representation vectors from 100 Modular Composite
Representation vectors for various values of the parameter k.

k=0 k=1 k=2 k=3 k=4 k=5

Precision 0.038
(±0.001)

0.110
(±0.007)

0.461
(±0.052)

0.943
(±0.050)

0.999
(±0.006)

1.0
(±0.0)

Recall 1.0
(±0.0)

1.0
(±0.0)

1.0
(±0.0)

1.0
(±0.0)

1.0
(±0.0)

1.0
(±0.0)

rich representation of the environment to the model. We demonstrated how HTM Regions can be
used to build high-quality feature detectors for Vector LIDA model. These HTM Regions can be
configured to be as expressive in capturing the information from the environment as needed by the
particular agent. We also demonstrated how the HTM based Sensory Memory can facilitate suc-
cessful symbol grounding by achieving high-quality translation from HTM representations (sparse
distributed representations) and Vector LIDA representations (Modular Composite Representation
vectors) that preserve the information (therefore meaning) captured by the HTM Regions.

This preservation of information happens in both the directions of translation. In the forward
translation from sparse distributed representations to Modular Composite Representation vectors,
we can see that similar sparse distributed representation vectors remained similar when translated
to Modular Composite Representation space. This is demonstrated by Figure 5, where a sparse
distributed representation vector with less noise, therefore considered similar to the original sparse
distributed representation, had a small distance to the translated Modular Composite Representa-
tion vector of the original sparse distributed representation after translation. A translated sparse
distributed representation vector with more noise, and its corresponding Modular Composite Rep-
resentation vector in the reference set are far apart in Modular Composite Representation space.
In fact, adding 100% noise to a sparse distributed representation, i.e. creating a completely dif-
ferent sparse distributed representation, and translating it to a Modular Composite Representation
vector, made it orthogonal to its corresponding reference vector in Modular Composite Representa-
tion space. In the backward translation from Modular Composite Representation vectors to sparse
distributed representations, we were able to perfectly reconstruct a sparse distributed representation
vector that created that Modular Composite Representation vector as evidenced by the perfect pre-
cision and recall with zero standard deviation for k=5, as shown in Figure 6. This result depends
on the sparsity of the sparse distributed representation vectors because the sparsity directly affects
the number of Modular Composite Representation vectors that are grouped. For a given Modular
Composite Representation specification we can only group a certain number of Modular Composite
Representation vectors at once. This limit can be increased by increasing the integer range of values
that one dimension can hold. For this typical specification of Modular Composite Representation
and sparse distributed representation vectors, we were able to show that all the meaning is preserved
in the backward translation as well.
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Since the meaning is preserved we can say that the symbols used by Vector LIDA in the form
of Modular Composite Representation vectors are grounded in the environment using the HTM
based Sensory Memory. This will allow us to build agents out of Vector LIDA that have grounded
symbols. Also, HTM based Sensory Memory allows the agent to represent its environment richly
and meaningfully using Sparse Distributed Representations and Modular Composite Representation
vectors. Thus, we propose a way to build Sensory Memory within Vector LIDA with HTM Regions
and a method of translation, that we show provides a faithful representation of the environment, as
evidenced by our lossless translation, to compliment the augmented capabilities of Vector LIDA.
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