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Abstract 

 

Data access management in web-based applications that use relational databases must be well thought out 

because the data continues to grow every day. The Relational Database Management System (RDBMS) has a 

relatively slow access speed because the data is stored on disk. This causes problems with decreased database 

server performance and slow response times. One strategy to overcome this is to implement caching at the 

application level. This paper proposed SIMGD framework that models Application Level Caching (ALC) to speed 

up relational data access in web applications. The ALC strategy maps each controller and model that has access 

to the database into a node-data in the in-Memory Database (IMDB). Not all node-data can be included in IMDB 

due to limited capacity. Therefore, the SIMGD framework uses the Euclidean distance calculation method for each 

node-data with its top access data as a cache replacement policy. Node-data with Euclidean distance closer to 

their top access data have a high priority to be maintained in the caching server. Simulation results show at the 

25KB cache configuration, the SIMGD framework excels in achieving hit ratios compared to the LRU algorithm 

of 6.46% and 6.01%, respectively. 
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1. INTRODUCTION 

The presence of internet technology has 

encouraged the emergence of various supporting 

technologies such as access media and internet-based 

devices [1]. In addition, the ease of internet access, 

both through fixed line networks and mobile 

networks, has contributed to increasing world internet 

penetration from year to year. Internet users 

worldwide reach 3.8 billion users from the entire 

human population which reaches 7,497 billion. This 

increase shows that internet users reach 51% of the 

total world population [2] [3]. Meanwhile, the 

internet penetration rate in Indonesia reached 73.7% 

of the total population in early 2022. The total 

population of Indonesia was recorded at 277.7 million 

people in January 2022 [4]. 

Internet infrastructure has an important role in 

national development. It is an enabling tool for 

economic growth and increased productivity [5]. 

Response time on a website is very important because 

it can increase user satisfaction, retention, and 

productivity [6]. A study stated that if the website 

takes more than eight seconds to load the page, 

consumers are much more annoyed and leave the 

portal [6]. 

In general, web pages are divided into two, 

namely static web pages and dynamic web pages. The 

static web is only built from a few HTML objects 

while dynamic web requires access to one or more 

databases to store and display the desired data. 

Response time, or in other research referred to as 

speed, is the time needed to measure how quickly a 

web page is fully displayed in the browser since it was 

first clicked [7]. Response time is a problem that must 

be considered by web application developers to 

reduce user work time to be faster to improve the 

experience and comfort of web users [8]. 

Currently, there are still many website 

applications that use the Relational Database 

Management System (RDBMS) as the main storage 

medium because RDBMS can store structured data or 

relational data properly [9]. RDBMS has a slow 

access speed because the data is stored on the hard 

drive [10]. RDBMS performance will be slower as the 

number of join query executions increases. 

On the other hand, data storage technology 

based on In-Memory Databases (IMDB) is 

developing rapidly. This technology is widely used 

by cloud service providers such as Amazon Web 

Services, Google Cloud Platform, IBM, and 

Microsoft Azure [11]. IMDB no longer stores data on 

the hard disk but in computer memory so it has a 
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much better access speed [12]. IMDB, also known as 

NoSQL database [13], can effectively reduce server 

workload and reduce internet latency [14]. However, 

IMDB has a weakness, namely, it does not provide 

data guarantees on Atomicity Consistency, Isolation, 

and Durability so that IMDB cannot replace RDBMS. 

Therefore, the idea of combining the two IMDB and 

RDBMS database technologies can be used to support 

data transactions that guarantee data availability and 

consistency but still offer high access speed 

performance [15]. 

The exponential growth in the amount of data 

and the need to serve data requests quickly in web 

applications in the big data era cannot be faced by 

RDBMS [16]. One solution to overcome this problem 

is to implement web caching. Web caching is proven 

to be able to reduce bandwidth, latency, and server 

load [17]. Web caching strategies can take advantage 

of IMDB which helps RDBMS performance. This 

study proposes a proof of concept application-level 

caching for web-based applications that still use 

RDBMS as their main database. 

2. RESEARCH METHOD 

Figure 1 shows the research step began with a 

literature study on application level caching models 

using method calls and query parsers that are 

explained more detail in the section 2.3. The next 

research step is to prepare research datasets and a 

virtual private server (VPS) as a simulation tool. This 

study uses the IRcache dataset provided by NLANR 

which contains data access logs from proxy servers 

located in the United States. 

After all the research tools and materials are 

ready, the next step is to start designing the proposed 

SIMGD framework that calculates all cache data node 

distances to the data center (top access data). The next 

step is to test the SIMGD framework by calculating 

the hit ratio and then writing the results. 

 

 
Figure 1. Research methods. 

2.1 Dataset 

This research was conducted utilizing a 

simulation using the IRcache dataset which contains 

a track record of internet access managed by a proxy 

server located in the United States. The IRcache 

dataset was first released in 1999 by Alex Rousskov 

which was then managed by the National Lab of 

Applied Network Research (NLANR) [18]. 

Based on a literature study conducted, the 

IRcache dataset was still accessible in 2013 but after 

that, this dataset could no longer be freely accessed 

[19] [20]. However, in the last five years, the IRcache 

dataset is still being used by Ibrahim et al. in cache 

replacement studies [21] and Li et al. in content 

caching optimization research [19]. The IRcache 

dataset is suitable for use in caching strategy research 

that measures hit ratio performance because this 

dataset provides complete, natural, and dynamic 

access logs for real-world applications. Application-

level caching simulation is carried out using a look-

aside caching topology. 

2.2 Look-aside caching 

The look-aside caching topology works by 

always directing data access requests to the caching 

server first. If the requested data is not found, the data 

request is forwarded directly to the relational database 

used, then stores duplicate data on the caching server. 

Figure 2 shows the mechanism of look-aside caching. 

 

 
Figure 2. look-aside caching. 

2.3 The Proposed SIMGD Framework 

This study proposes a SIMGD framework that 

models application level caching in web-based 

applications. The SIMGD framework adopts the 

Query Parser [22] and Method Calls [23] methods to 

map each Controller-Model that accesses a relational 

database. The query syntax written in the Model will 

be separated based on syntax: where, join, having, 

group by, order by, as well as other SQL functions 

such as sum(), avg(), min(), max() and other functions 

using the query parser, as shown in Algorithm 1. 

This research requires reading access log files 

from the IRcache dataset and then carrying out the 

preprocessing process, namely separating each part of 

the controller, model, and arguments based on a 

known base url() as shown in Figure 3. The Query 

Parser [22] and Method Calls [23] produce the 

expensiveness variable values which are used 

together with the frequency and timestamp variables 
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as the basis for calculating the Euclidean distance for 

each node-data cache. 

Algorithm 1: Algoritme parseQuery(q) 

Input: node,q_cost 

Output: Vexpv 

 

k = [join, where,group by,having, 

distinct, order by, and any SQL function] 

q_cost = showstatus(Q) 

qnode  QueryNode(q, qmeta, qhash) 

 

foreach qnode do 

  kla  pregmatch(k,qnode) 

  switch(kla) 

    case k: 

      k_cost = k_cost+1 

  end 

end 

Vexpv = k_cost/q_cost 

 

 

Figure 3. Method call and query parser. 

2.4 Euclidean Distance dan Hit Ratio 

The Euclidean distance formula basically used 

the concept of calculating the similarity between two 

data. The similarity method is used to assess data 

priority based on the proximity of each data node to 

the top access data on the same Controller-Model 

[24]. Controller design and models in the MVC web-

based application framework play an important role 

in the data access route requested by the user. At the 

beginning of the semester access to 

controller:Student/StudyPlan can be the busiest but 

towards the end of the semester 

controller:StudyResult becomes the most accessed. 

The farther a node-data (similarity: low) is from the 

top access data that exists at that time, the faster it is 

likely to be removed from the caching server. 

Top access data may change according to the 

current trend. Therefore it becomes the basis that the 

data nodes in the caching server can also change 

according to the data access conditions. The caching 

server utility must be able to maximally maintain the 

data nodes that are most frequently accessed to 

remain in the caching server so as to increase hit ratio 

performance. The greater the hit ratio, the faster the 

response time perceived by the user. Equation (1) is 

used to calculate the hit ratio by dividing all available 

data access (N) divided by the number of data 

services successfully provided from the caching 

server (r_i). 

𝐻𝑅 =  
∑ 𝑟𝑖

𝑁
𝑖=1

𝑁
 (1) 

2.5 Node-data Replacement Policy 

Not all data nodes can be entered into the 

caching server because of its very limited capacity. If 

there is a need to store new node-data on the caching 

server, then the node-data replacement mechanism 

must be implemented. The way to do this is to delete 

one or several data nodes that are already on the 

caching server until sufficient capacity is available to 

store the new data nodes. 

The proposed SIMGD framework execute node-

data replacement mechanism by removing the node-

data with the largest euclidian distance from the top 

access data. Equation (2) is used to calculate the 

euclidean distance on n-dimensional data nodes with 

their top access data. The dimensions of the node-data 

in question are: access count (frequency), recently 

access (time stamp), and the expensiveness variable 

from the results of the query parser method. Other 

application architectures can use Equation (3) to 

define the expensiveness variable. Equation (3) 

adopts the key-value formula from the Greedy-Dual 

Frequency Size (GDSF) algorithm which considers 

the access frequency F_((g)), cost C_((g)), and size 

S_((g)) which can represent the value of 

expensiveness K_((g)). 

 
𝑑(𝑝, 𝑞)

= √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2 
(2) 

 

𝐾(𝑔) =  𝐿 + 𝐹(𝑔) ∗ 
𝐶(𝑔)

𝑆(𝑔)
 (3) 

3. RESULTS AND DISCUSSION 

3.1 Prepocessing Result 

Table 1 presents two examples of an IRcache 

raw dataset consisting of 8 properties. Based on the 

data sample from Table 1, the preprocessing results 

from the Query Parser and Method Calls are 

presented in Table 2. Basically, IRcache raw data can 
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contain the property: "Elapsed", but based on our 

dataset survey, the value of this property is 

inconsistent. Therefore, the Query Parser method can 

be a solution for calculating the value of this property: 

"Elapsed". 

Table 1. The IRcache raw data example. 

No Properties Example 1 Example 2 

1 iddata 4242106418 434356357 

2 time 1282592384.330 1282654695.614 

3 ipclient 190.151.117.59 161.242.106.167 

4 code TCP_HIT/200 TCP_HIT/200 

5 size 465 559 

6 method GET GET 

7 URL http://1stnatbk.co

m/images/2236int

_r13_c1.gif 

http://1stnatbk.co

m/images/FOM/fo

m_Pers_savings_f

2.gif 

8 type image/gif image/gif 

 
Table 2. The preprocessing result. 

No Properties Example-1 Example-2 

1 Elapsed 11 44 

2 Timestamp 1282592384.330 1282654695.614 

3 Controller-

Model 

/images/ /images/FOM/ 

4 MVC access 1 2 

5 Size 465 559 

6 Access count 10 15 

3.2 Euclidean Distance to Top Access Data 

Each value in Table 2 can be updated according 

to the real data access conditions. In the example of 

Table 2, the value of properties: MVC and access 

count can continue to increase along with 

improvements to the Controller-Model. In addition to 

these two examples of data, there are many other data 

that have different property values. When there is a 

need to store new data but the caching server is full, 

the replacement policy mechanism must work. 

The proposed SIMGD framework will 

determine the top access data based on the most 

recently used data. This needs to be done to determine 

which data node should be removed first if the 

caching server is full. The node-data caching storage 

structure follows the array stack management, where 

the most recently accessed data will occupy the top 

position. Therefore, the data node that will be 

removed first is the data with the furthest distance 

from the top access data. 

Table. 3 Top access data calculation results. 

iddata URL size fx mvc timestamp istop 

494998995 450 2.9981 1 1690699669 yes 

454513888 344 1.4817 1 1690699668 no 

474727860 571 2.0379 1 1690699668 no 

42424182 588 1.6723 1 1690699668 no 

41414189 590 1.0961 1 1690699669 no 

4242114478 510 1.1139 1 1690699669 no 

Table 3 illustrates the results of calculating the 

Euclidean distance for each data-node with its top 

data access. Top access data is marked with column 

istop='yes'. If the caching server has to perform a 

cache replacement mechanism, then each node-data 

istop='no' will calculate its euclidean distance to the 

top access data (istop='yes') which is stored in column 

fx. The data node with the largest fx value will be 

removed first from the caching server indicating that 

the data node has the furthest distance from the top 

access data. 

3.3 Hit Ratio Performance 

Caching strategy researchers generally 

benchmark hit ratio performance with several 

conventional caching algorithms such as Least 

Recently Used (LRU), Least Frequently Used LFU, 

and Greedy-Dual Size (GDS). Each of these caching 

algorithms has a different mechanism for making 

caching decisions. The LFU algorithm gives higher 

priority to data nodes with a high number of accesses. 

The GDS algorithm prefers small data to be stored on 

the caching server. Meanwhile, the LRU algorithm 

will always place recently node-data at the top of the 

caching server. So the process of deleting data nodes 

in the LRU algorithm starts from the bottom of the 

data nodes in the caching server. Based on the 

literature studies that have been conducted, some of 

these caching algorithms can excel in certain case 

studies but can also lose in other cases. 

The benchmarking process is also carried out to 

prepare several caching server capacity 

configurations, starting from small to large cache 

capacities. This study uses 8 caching server capacity 

configurations, with the smallest size being 9 KB 

while the largest cache size is 150 KB. This cache size 

can be adjusted to the actual cache storage conditions, 

even up to hundreds of terabytes. However, due to 

limited research time, the illustration of cache 

capacity in this simulation scenario is made quite 

small. 

Based on Figure 4, the hit ratio performance of 

the proposed SIMGD method is quite competitive 

with the hit ratio performance of the best LRU 

conventional caching method. At a cache capacity of 

25KB, the proposed SIMGD method managed to 

outperform the LRU hit ratio performance of 6.46% 

to 6.01%, respectively. Figure 5 also shows that the 

proposed SIMGD method excels in many cache 

capacity configurations, namely 9 KB, 12 KB, 15 KB, 

25 KB, 50 KB, 90 KB from the performance hit ratio 

algorithm based on access count (LFU) and data size 

(GDS).
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Figure 4. Hit ratio performance on SV dataset. 

 

 

 
Figure 5. Hit ratio performance on NY dataset. 

 

Figure 5 shows the hit ratio performance of the 

proposed SIMGD method compared to the LFU, 

LRU, and GD algorithms. At a small cache size, 9KB, 

the LFU algorithm is the most superior with a 

performance hit ratio of 45.2%. But as cache 

allocation increases, LFU performance decreases. 

The simulation results show that SIMGD 

performance starts to increase since the cache 

capacity is 25 KB. At a cache allocation of 20 KB-

150 KB, the proposed SIMGD method starts to be the 

second best after the LRU hit ratio performance. 

In general, the hit ratio performance is strongly 

influenced by the characteristics of data access and 

cache allocation provided. The greater the cache 

capacity, the greater the resulting hit ratio 

performance. But the decision to add or increase 

cache capacity is not a good decision considering the 

price of memory storage is still expensive. Therefore, 

the manager of the cloud server network 

infrastructure really hopes for this caching method. 

Based on the simulation results in Figures 4 and 

5, the IRcache SV and NY datasets have different 

data access characteristics. This can be seen from the 

performance range of the hit ratio which is quite far 

from the two datasets. Simulations on the SV dataset 

show that the maximum hit ratio performance is only 

at a value of 19.52% which is achieved by the LRU 

algorithm. Meanwhile, the maximum hit ratio 

performance in the NY dataset simulation reached 

59.91% which was achieved by the proposed SIMGD 

method and three other caching algorithms. 
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The IRcache SV dataset is very similar to the 

viral phenomenon which only accesses certain data 

nodes until these data nodes experience a significant 

increase in the number of accesses. Therefore the 

performance of the data replacement caching 

algorithm on the SV dataset is not optimal because 

almost all the data requested by the user is already in 

the caching server. The data access pattern on the SV 

dataset is very beneficial for recently used algorithms 

such as LRU. 

4. DISCUSSION 

Web caching research is still a research topic 

that continues to be developed. This study continues 

the results of previous research LRU-GENACO [25] 

which combines the metaheuristic Ant colony 

algorithm (ACO) and Genetic algorithm (GA) to 

optimize web caching. However, this method 

experienced a decrease in hit ratio performance in the 

NY dataset. Therefore, this study proposes another 

point of view on the node-replacement mechanism by 

calculating the distance of each node-data with its top 

data access. 

The data access top acts like a centroid in the 

clustering concept. Based on the evaluation of our 

previous research [26], the LRU algorithm is the best 

in achieving hit ratios. Therefore, the top data access 

that we choose is based on the data node that was 

recently accessed (recently used). If there is a need to 

store new node-data with the caching server condition 

being full, then the node-data deletion process starts 

from the node-data with the farthest distance from the 

top data access. This concept imitates the way 

clustering works with the assessment that the closer a 

data is to the data center, the data is said to be more 

similar (high level of similarity). Data nodes with a 

high level of similarity with top data access are more 

feasible to maintain in the caching server so that they 

are expected to be able to increase hit ratio 

performance. The higher the hit ratio, the faster the 

response felt by the user. This is the main goal of web 

caching strategy. 

5. CONCLUSION 

The hit ratio performance is highly dependent 

on the characteristics of the data access pattern and 

the caching server capacity allocated. The larger the 

capacity of the caching server, the greater the hit ratio 

that can be achieved. However, with a very limited 

caching server capacity, the caching algorithm will 

become the main focus for maximizing the caching 

server utility. This study proposes a SIMGD caching 

method that changes the contents of the caching 

server based on the proximity of the node-data 

distance to the top data access at that time. The 

simulation results show that the hit ratio performance 

of the SIMGD method is able to compete with the best 

LRU caching algorithm. In the IRcache SV dataset 

with a cache size of 25KB, the proposed SIMGD 

method outperforms the LRU hit ratio by 6.46% and 

6.01%, respectively.  
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