
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2023.4.4.1129
Vol. 4, No. 4, August 2023, pp. 849-855 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

849

SECURE TEXT ENCRYPTION FOR IOT COMMUNICATION USING AFFINE

CIPHER AND DIFFIE-HELLMAN KEY DISTRIBUTION ON ARDUINO

ATMEGA2560 IOT DEVICES

Permana Langgeng Wicaksono Ellwid Putra*1, Christy Atika Sari2, Folasade Olubusola Isinkaye3

1,2Study Program in informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro,

Semarang, Indonesia
3Department of Computer Science, Ekiti State University, Ekiti, Nigeria

Email: 1langgeng86@gmail.com , 2christy.atika.sari@dsn.dinus.ac.id , 3folasade.isinkaye@eksu.edu.ng

(Article received: June 14, 2023; Revision: July 10, 2023; published: August 21, 2023)

Abstract

In an Internet of Things (IoT) system, devices connected to the system exchange data. The data contains sensitive

information about the connected devices in the system so it needs to be protected. Without security, the data in the

IoT system can be easily retrieved. One way to prevent this is by implementing cryptography. Cryptography is a

technique for protecting information by using encryption so that only the sender and receiver can see the contents

of the information contained therein. The implementation of cryptography on IoT devices must consider the

capabilities of IoT devices because in general IoT devices have limited processing capabilities compared to

computer devices. Therefore, the selection of encryption algorithms needs to be adjusted to the computational

capabilities of IoT devices. In this research, the affine cipher cryptography algorithm and Diffie-hellman key

distribution algorithm are applied to the arduino atmega2560 IoT device. The purpose of this research is to

increase the security of the IoT system by implementing cryptography. The method used in this research involves

setting up a sequence of encryption and decryption steps using an affine cipher and diffie-hellman algorithms.

Furthermore, these algorithms were implemented on an Arduino IoT device. Finally, the decryption time based on

the number of characters and the avalanche test were tested. The results showed that on average, Arduino can

perform decryption using affine cipher and diffie-hellman algorithms in 0.07 milliseconds per character. The

avalanche test produced an average percentage of 45.51% from five trials.

Keywords: arduino, affine cipher, diffie-hellman, IoT, cryptography.

PENGENKRIPSIAN TEKS UNTUK KOMUNIKASI IOT MENGGUNAKAN AFFINE

CIPHER DAN DISTRIBUSI KUNCI DIFFIE-HELLMAN PADA PERANGKAT IOT

ARDUINO ATMEGA2560

Abstrak

Dalam sistem Internet of Things (IoT), perangkat yang terhubung dalam sistem saling bertukar data. Data tersebut

mengandung informasi sensitif tentang perangkat yang terhubung didalam sistem sehingga perlu dilindungi. Tanpa

keamanan, data didalam IoT dapat dengan mudah diambil. Salah satu cara untuk mencegahnya adalah dengan

menimplementasikan kriptografi. Kriptografi adalah suatu teknik untuk melindungi informasi dengan

menggunakan enkripsi sehingga hanya pengirim dan penerima saja yang dapat melihat isi informasi yang

terkandung didalamnya. Penerapan kriptografi pada perangkat IoT harus mempertimbangkan kemampuan dari

perangkat IoT karena pada umumnya perangkat IoT memiliki kemampuan pemrosesan yang terbatas dibandingkan

dengan perangkat computer. Oleh karena itu, pemilihan algoritma enkripsi perlu disesuaikan dengan kemampuan

komputasi perangkat IoT. Pada penelitian ini diterapkan algoritma kriptografi affine cipher dan algoritma distribusi

kunci diffie-hellman pada perangkat IoT arduino atmega2560. Tujuan dari penelitian ini adalah untuk

meningkatkan keamanan sistem IoT dengan mengimplemntasikan kriptografi. Metode yang digunakan dalam

penelitian ini melibatkan pengaturan urutan langkah-langkah enkripsi dan dekripsi dengan menggunakan

algoritma affine cipher dan diffie-hellman. Selanjutnya, algoritma ini diimplementasikan pada perangkat IoT

Arduino. Terakhir, dilakukan pengujian terhadap waktu dekripsi berdasarkan jumlah karakter serta pengujian

avalanche test. Hasil penelitian menunjukkan bahwa Arduino rata-rata dapat melakukan dekripsi menggunakan

algoritma affine cipher dan diffie-hellman dalam waktu 0,07 milisekon per karakter. Pengujian avalanche test

menghasilkan presentase rata-rata sebesar 45,51% dari lima kali percobaan.

https://doi.org/10.52436/1.jutif.2023.4.4.1129
mailto:1langgeng86@gmail.com
mailto:2christy.atika.sari@dsn.dinus.ac.id
mailto:3folasade.isinkaye@eksu.edu.ng

850 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 4, August 2023, pp. 849-855

Kata kunci: arduino, affine cipher, diffie-hellman, IoT, kriptografi.

1. INTRODUCTION

Along with the advancement of the digital age,

technology has also spread to every field of human

life. An example of this technological development is

the Internet of Things or IoT. IoT is an idea where

electronic devices can communicate with each other

because they are connected to the internet network[1].

The connection of these devices to the internet allows

users to monitor and control devices remotely[2]. In

an IoT system, devices connected to the system

exchange data[3]. The data contains sensitive

information about the connected devices in the

system so it needs to be protected [4]. Without

security, data in the IoT system can be easily

retrieved[5]. An example of hacking is data retrieval

by infiltrating the network or sniffing using the

Wireshark application [6].

One way to prevent this is by implementing

cryptography. Cryptography is a technique used to

protect information with encryption so that only the

sender and receiver can see the contents of the

information contained therein[7]According to

document number 62591 of the International

Electrotechnical Commission (IEC), data encryption

is an important part of IoT [8]. This is because the

encryption process helps maintain the privacy and

security of data from IoT devices that send data over

the network [9]. The application of cryptography on

IoT devices must consider the capabilities of IoT

devices because in general IoT devices have limited

processing capabilities compared to computer

devices[10]. Therefore, the choice of data encryption

algorithm needs to be adjusted to the limitations of

the computing capabilities of IoT devices [11]. In this

research, the algorithm used is the affine cipher

algorithm for the encryption process and the Diffie-

Hellman algorithm for key distribution. The selection

of the affine cipher algorithm is based on the fact that

this algorithm is a development of the simple

cryptography Caesar cipher where the encryption or

decryption step involves multiplying the value and

shifting the plaintext [12]. While the selection of the

Diffie-Hellman algorithm is based on the fact that this

algorithm can generate a sliding key with two private

keys to provide additional security.

The use of affine cipher algorithm has been used

in several studies such as Nasution's research which

modifies the affine cipher encryption algorithm to

better maintain its security [13], Nurjamiyah's

research which uses the affine cipher encryption

algorithm to encrypt email transmission data [12],

and Dwi et al.'s research which uses the affine cipher

encryption algorithm in sending One Time Pad (OTP)

messages [14]. In addition, the Diffie-Hellman

algorithm has also been used in several previous

studies such as in the research of Khairani et al.

together with the affine cipher encryption algorithm

to produce a random and difficult-to-decipher written

message[15] and in the research of Wang & Mogos

who used this algorithm to produce a raspberry pie

system that was not easily hacked[16].
The IoT device used is the arduino atmega2560.

Arduino atmega2560 is an open-source

microcontroller that can be developed freely[17]. For

specifications, Arduino atmega2560 has a 16Mhz

clock, 256kb memory, 54 digital pins, and 16 analog

pins. Developing with this device can be done using

the c programming language and the arduino IDE

[18].

The implementation of cryptography on Arduino

has been done in several previous studies. In the

research of Budiyanto et al., the implementation of

the Vernam cipher and Three Pass Protocol was

carried out on the Arduino ATmega328 IoT device.

This algorithm can be implemented by producing an

average encryption processing time of 1.9

milliseconds for 16 characters[19]. In the research

conducted by Nurrohmah et al., the implementation

of Grain V1 and 128-bit was carried out on the

Arduino Mega2560 IoT device. These two algorithms

can be implemented without sacrificing performance

and get the results by analyzing the probability values

of 0.193, 0.835, and 0.036 at 8-bit, 12-bit, and 16-

bit[20].

The purpose of this research is to increase the

security of the Internet of Things (IoT) system by

implementing cryptography. Specifically by using the

affine cipher algorithm for the encryption process and

the diffie-hellman algorithm for key distribution.

2. METHOD

2.1 Encryption and Decryption Process

Workflow

Based on Figure 1 the encryption and decryption

workflow in this research consists of several steps.

First, there is a key using the Diffie-Hellman

algorithm between the system and the Arduino. Then

the system enters the plain text that will be used as the

encrypted message. The plaintext will be encrypted

by the system using the affine cipher algorithm to

produce cipher text. After that, the encrypted text will

be sent to the Arduino and decrypted using the affine

cipher method to produce plain text again.

Figure 1. Encryption and Decryption Process Workflow

Permana Langgeng Wicaksono Ellwid Putra, dkk, Secure Text Encryption for IoT Communication using … 851

1. Key exchange

Key exchange using the Diffie-Hellman

algorithm involves several steps that must be

followed as follows. First, The communicating

parties are the system and Arduino. Initially, the

parties agree to use the same parameters R and G,

provided that R is a random prime number between 1

and 100 and G is a random number whose value is

greater than 1 and smaller than R (1<G<R). Then the

system and Arduino randomly choose a secret

number between 1 and 32. This number will be the

private key for each party. After setting the

parameters and private keys, both parties will

calculate the public key with each party's private key.

The system uses equation 1 to generate public key A,

while Arduino uses equation 2 to generate public key

B. The public keys are then exchanged.

𝐴 = 𝐺𝑎 𝑚𝑜𝑑 𝑅 (1)

𝐵 = 𝐺𝑏 𝑚𝑜𝑑 𝑅 (2)

Based on equations (1) and (2), the system gets

public key B from Arduino and Arduino gets public

key A from the system. Next, each party calculates

the shared key X using the received public key and its

private key. The system calculates with equation (3)

and Arduino calculates with equation (4). The result

X which is a shared key will be used as a shifting key.

The slider key will be used in the encryption and

decryption process using the affine cipher algorithm.

𝑋 = 𝐵𝑎 𝑚𝑜𝑑 𝑅 (3)

𝐵 = 𝐺𝑏 𝑚𝑜𝑑 𝑅 (4)

2. Encryption

The following are the steps in the encryption

process using the affine cipher algorithm. First of all,

parameter a is determined as a random number

between 1 and 26. This parameter must fulfill two

conditions, namely a must be relatively prime to 26

and must have an inverse modulus. Next, plaintext is

determined to be encrypted. Then, each letter in the

plaintext is converted into a decimal number using

ASCII encoding. Each decimal number in the

plaintext will be encrypted using equation (5). In the

last step, the resulting numbers will be converted back

into ASCII characters. Thus, the ciphertext is formed,

which is the encrypted sentence of the plaintext.

𝐶 = (𝑎 𝑥 𝑃 + 𝑋) 𝑚𝑜𝑑 26 (5)

3. Decryption

The following are the steps in the decryption

process using the affine cipher algorithm. First, a

ciphertext is prepared for decryption. Then, each

letter in the ciphertext is converted into a decimal

number using ASCII encoding. Each decimal number

in the ciphertext is decrypted using equation (6).

𝑃 = (𝑎−1 𝑥 (𝐶 − 𝑋)) 𝑚𝑜𝑑 26 (6)

In the last step, the resulting numbers will be

converted back into ASCII characters. Thus, the

ciphertext is formed, which is the encrypted sentence

of the plaintext.

2.2 Implementation

In the implementation stage, the first step is to

create a code that will run the affine cipher and diffie-

hellman algorithms. This code will be implemented

in the Arduino C and Python as the system. After the

code has been created, then the code will be

implemented in Arduino by connecting it to a laptop

and then uploading the code through the Arduino

IDE.

2.3 Testing

In this study, two tests will be carried out, namely

time testing and avalanche effect testing. The

avalanche effect is a technique commonly used to

describe the security level of a symmetric key

encryption process and hash function [21]. In time

testing, ciphertext data with a varying character count

will be used, and then the average time required by

the Arduino to decrypt for each variation in the

character count will be calculated.

While testing the avalanche effect, the private

key used is in the form of a sentence. Later the private

key will be converted into decimal numbers using

ASCI coding and then added to each decimal number

to become a number-shaped private key. The method

used in this test is to encrypt a plaintext until the

ciphertext result is obtained. Then change 1 sentence

in the private key used in the previous encryption.

After that, encrypt the same plaintext with the

changed private key. The last step is to compare the

results of the two ciphertexts and calculate how many

bits have changed then calculate with equation (7) to

get the avalanche test percentage. If the percentage

result can reach 40% to 60%, it can be said that the

algorithm used has a good level of security

𝐴𝐸 = (
𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 𝑓𝑙𝑖𝑝

𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠
) 𝑥 100% (7)

3. RESULT

3.1 Time Testing

Table 1. Time Trial Results Against the Character Count

Character Count
Total

Experiment
Average Time

100 10 8,6 ms

200 10 15,5 ms

300 10 23,7 ms

400 10 32,6 ms

500 10 38,9 ms

852 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 4, August 2023, pp. 849-855

600 10 47,5 ms

700 10 54,3 ms

800 10 61,8 ms

900 10 68,2 ms

1000 10 76,6 ms

Based on Table 1, the results of experiments

conducted to examine the relationship between

character count and the time taken for decryption. The

experiments consisted of a total of 100 trials, with 10

trials conducted for each variation in the character

count. The table demonstrates that the average time

required by the Arduino for decryption computation

increases significantly as the character count

increases. For instance, in the experiment with 100

characters, the average time was 8.6 milliseconds

(ms), while with 1000 characters, the average time

was 76.6 milliseconds (ms). On average, each

increase in character count resulted in a difference of

7.5 milliseconds (ms) in the average decryption time.

A more detailed calculation reveals that the Arduino

takes approximately 0.07 milliseconds (ms) to

decrypt each character.

Based on Figure 2, approximately 76.2

milliseconds are required for Arduino to decrypt the

cipher text 1000 character count. This data is taken

from a particular experiment involving 1000

character count as cipher text input. The decryption

time data is sent from the Arduino to the system (in

this research replaced with Python) and displayed on

the command line.

3.2 Avalanche Effect Testing

Avalanche tests have been conducted on the

affine cipher and diffie-hellman algorithms on an

Arduino device as shown Table 2. First experiment,

there were 39 bit flips out of a total of 80 bits,

resulting in an avalanche effect presentation of

48.7%. In this experiment, there was a small

modification of the private key from "python" to

"dython". In the second experiment, there were 74-bit

flips or bit changes out of a total of 168 bits, which

resulted in an avalanche effect presentation of

44.04%. In this experiment, there was a small

modification to the private key from "arduino" to

"Nduino". In the third experiment, there were 227-bit

flips or bit changes out of a total of 520 bits, which

resulted in a presentation of the avalanche effect of

43.65%. In this experiment, there was a small

modification to the private key from "udinus" to

"Idinus". In the fourth experiment, there were 230-bit

flips or bit changes out of a total of 536 bits, which

resulted in an avalanche effect presentation of

42.91%.

Table 2. Avalanche Effect Testing Table

Description Experiment

1 2 3 4 5

Plaintext Hello

World

Selamat

datang di

udinus

Mempelajari kriptografi

dengan algoritma affine

cipher dan Diffie hellman

Jalan jalan ke kota

semarang jangan lupa

mampir ke lawang

sewu di deket tugu

muda

Universitas dian nuswantoro
Jalan Imam Bonjol

Pendrikan Kidul Kecamatan

Semarang Tengah Kota

Semarang Jawa Tengah

Private key python arduino udinus semarang informatika

Ciphertext FQZZO

CODZL

XFOLTLC

ALCLYP

AZ

HAZYHX

BNBQNWTMTAH

RAHQKLXATSH

INGXTG TWXLAHKBT

TSSHGN DHQCNA ITG

IHSSHN CNWWBTG

MTWTG MTWTG

RN RLKT

FNBTATGX

MTGXTG WPQT

BTBQHA RN

WTZTGX FNZP IH

INRNK KPXP BPIT

JABOHUZBENZ CBNA

AJZTNAEFUF GNQNA

BVNV SFAGFQ AFVFU

KHACUBLNA LBCJQ

LHXNVNENA

ZHVNUNAR EHARNW

LFEN ZHVNUNAR GNTN

EHARNW

Private key

modification

dython Nrduino Idinus Gemarang Anformatika

Ciphertext

modification

KVEET

HTIEQ

EMVSASJ

HSJSFW HG

OHGFOE

OAODAJGZGNU

ENUDXYKNGFU

VATKGT GJKYNUXOG

GFFUTA QUDPAN VGT

VUFFUA PAJJOGT

ZGJGT ZGJGT EA

EYXG SAOGNGTK

ZGTKGT JCDG

OGODUN EA

JGMGTK SAMC VU

VAEAX XCKC
OCVG

WNOBUHMORAM POAN

NWMGANRSHS TADAN

OIAI FSNTSD NSISH

XUNPHOYAN YOPWD

YUKAIARAN MUIAHANE

RUNEAJ YSRA
MUIAHANE TAGA

RUNEAJ

Total bit 80 168 520 536 808

Bit flip 39 74 227 230 390

Avalanche

Effect

precentage

48,7% 44,04% 43,65% 42,91% 48,26%

Figure 2. Time Testing Command Line Result

Permana Langgeng Wicaksono Ellwid Putra, dkk, Secure Text Encryption for IoT Communication using … 853

In this experiment, there was a small

modification to the private key from "Semarang" to

"Gemarang". The next experiment, there were 390-bit

flips or bit changes out of a total of 808 bits, which

resulted in an avalanche effect presentation of

48.26%. In this experiment, there was a small

modification to the private key from "informatika" to

"Anformatika".

Table 3. Experiment 1 Ciphertext In Biner

Ciphertext in biner Ciphertext

modification in biner

0100011001010001010

1101001011010010011

1100100000010000110

1001111010001000101

101001001100

0100101101010110010

0010101000101010101

0000100000010010000

1010100010010010100

010101010001

The results of converting ciphertext into binary

numbers in experiment 1 shown in Table 3. On the

left side of the column, there are binary numbers

before the modification of the private key, while on

the right side, there are binary numbers after the

modification. In the 4, 7, 13, 14, 21, 23, 29, 31, 35,

52, 59, 68, 71, 77, 79, 83, and 87 binary number

sequences, there is a change from 0 to 1, while in the

5, 15, 19, 20, 22, 27, 28, 30, 36, 38, 39, 54, 55, 60, 62,

63, 69, 75, 76, 78, 84, and 85 binary number

sequences, there is a change from 1 to 0.

Based on Table 3, 39 bits flip in the first

experiment of a total of 80 bits when the private key

was modified. If we apply the avalanche test formula

that calculates the percentage of bit changes, the steps

are to divide the number of bit flip, which is 39, by

the total number of bits, which is 80, and then

multiply the result by 100. Thus, the percentage of bit

changes is 48.7%. The equation that describes the

above case more clearly is shown in equation (8).

𝐴𝐸 = (
39

80
) 𝑥 100% = 48.7% (8)

4. DISCUSSION

In time testing, it was found that the longer the

ciphertext, Arduino requires more time to perform the

decryption process. This is because as the character

count or bits in the data increases, the mathematical

operations required for encryption and decryption

become longer and more complex. Due to the

computational limitations of the Arduino device,

these longer and more complex mathematical

operations take a longer time to process. Some related

studies also prove this statement, such as in the

research of Joyoputro et al. where the time required

to encrypt 216-bit plaintext is 28225 milliseconds

while the time required for 352-bit plaintext is

49340[6]. In addition, in the research of Mufarokah et

al. [22], the amount of encryption time also increases

proportional to the increasing number of bits in the

key, at a key of 128 bits it takes a total time of 1047.6

milliseconds (ms), at a key of 192 bits it takes a total

time of 1080 milliseconds (ms) and at a key of 256

bits it takes a total time of 1114.6 milliseconds (ms).

In this research, an avalanche test was

conducted by changing one letter in the private key

and comparing the resulting cipher text. In the

research of Nuraeni et al., the avalanche test was

conducted by changing one bit of the letter in the

plaintext. The avalanche test was used in the study to

measure the security level of the AES and super

encryption algorithms in the context of securing land

tax data. The results show that the avalanche test on

the AES algorithm is 6.90%, while the super

encryption algorithm is 11.30%[23]. Furthermore, in

Rizky's and Anwar's research, the avalanche test is

also used to measure the security of the AES

algorithm in real-time chat applications. The results

show that the average avalanche test reaches 50%

when one letter in the plaintext is changed, and 49%

when one letter in the key is changed[24].

5. CONCLUSION

Based on the results of the research and testing

that has been done, it is found that the affine cipher

cryptographic algorithm and the diffie-hellman key

distribution algorithm can be successfully applied

effectively on the Arduino ATmega2560 device. The

combination of these two algorithms results in a

decryption time of 0.07 milliseconds per character. In

addition, in the avalanche test, both algorithms

showed a high level of security by producing an

average avalanche test percentage of 45.51% from

five trials. This figure falls into the category of

avalanche effect percentage that is considered good,

which is between 40% and 60%.

For future research to get higher value,

experiment might be conducted using modern cipher

based on key permutation or randomized in

pseudorandom generator such as Linear Congruential

and Blum Blum Sub Generator. It experiment might

be set in another cryptography media such as image

or audio file.

BIBLIOGRAPHY

[1] I. Ardiansah, N. Bafdal, E. Suryadi, and A.

Bono, “Greenhouse monitoring and

automation using arduino: A review on

precision farming and Internet of Things

(IoT),” Int J Adv Sci Eng Inf Technol, vol. 10,

no. 2, pp. 703–709, 2020, doi:

https://doi.org/10.18517/ijaseit.10.2.10249.

[2] A. R. Kedoh, N. Nursalim, H. J. Djahi, and D.

E. D. G. Pollo, “Sistem Kontrol Rumah

Berbasis Internet of Things (Iot)

Menggunakan Arduino Uno,” Jurnal Media

Elektro, pp. 1–6, 2019, doi:

10.35508/jme.v8i1.1403.

[3] Wilianto and A. Kurniawan, “Sejarah , Cara

Kerja Dan Manfaat Internet of Things,”

854 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 4, August 2023, pp. 849-855

Matrix, vol. 8, no. 2, pp. 36–41, 2018, doi:

https://doi.org/10.31940/matrix.v8i2.

[4] Z. B. Celik et al., “Sensitive information

tracking in commodity IoT,” in Proceedings

of the 27th USENIX Security Symposium,

2018, pp. 1687–1704.

[5] P. Arpaia, F. Bonavolontá, and A. Cioffi,

“Problems of the advanced encryption

standard in protecting Internet of Things

sensor networks,” Measurement (Lond), vol.

161, Sep. 2020, doi:

http://doi.org/10.1016/j.measurement.2020.1

07853.

[6] K. Joyoputro, A. Kusyanti, and F. A.

Bakhtiar, “Implementasi Algoritme

Kriptografi Lizard untuk Mengamankan

Pengiriman Data Menggunakan Arsitektur

Web Service REST pada Mikrokontroler

NodeMCU,” vol. 2, no. 12, pp. 6292–6299,

2018, [Online]. Available: http://j-

ptiik.ub.ac.id

[7] R. Bhandari and V. B. Kirubanand,

“Enhanced encryption technique for secure

iot data transmission,” International Journal

of Electrical and Computer Engineering, vol.

9, no. 5, pp. 3732–3738, 2019, doi:

https://doi.org/10.11591/ijece.v9i5.pp3732-

3738.

[8] A. Zubaidi, R. I. Sardi, and A. H. Jatmika,

“Pengamanan Internet of Things Berbasis

NodeMCU Menggunakan Algoritma AES

Pada Arsitektur Web Service REST,”

Edumatic: Jurnal Pendidikan Informatika,

vol. 5, no. 2, pp. 252–260, 2021, doi:

https://doi.org/10.29408/edumatic.v5i2.4113

[9] F. Wahyudi and L. T. Utomo, “Perancangan

Security Network Intrusion Prevention

System Pada PDTI Universitas Islam Raden

Rahmat Malang,” Edumatic: Jurnal

Pendidikan Informatika, vol. 5, no. 1, pp. 60–

69, Jun. 2021, doi:

https://doi.org/10.29408/edumatic.v5i1.3278

[10] M. Babar and M. Sohail Khan, “ScalEdge: A

framework for scalable edge computing in

Internet of things–based smart systems,” Int J

Distrib Sens Netw, vol. 17, no. 7, 2021, doi:

https://doi.org/10.1177/15501477211035332

[11] M. M. Al-Kofahi, M. Y. Al-Shorman, and O.

M. Al-Kofahi, “Toward energy efficient

microcontrollers and Internet-of-Things

systems,” Computers and Electrical

Engineering, vol. 79, Oct. 2019, doi:

http://doi.org/10.1016/j.compeleceng.2019.1

06457.

[12] Nurjamiyah, “QUERY: Jurnal Sistem

Informasi Implementasi Algoritma Affine

Cipher untuk Keamanan Data Teks,” 2020,

doi:

https://doi.org/10.58836/query.v4i1.8174.

[13] A. B. Nasution, “MODIFIKASI

ALGORITMA AFFINE CIPHER UNTUK

MENGAMANKAN DATA,” Jurnal

Teknologi Informasi, vol. 4, no. 2, 2020, doi:

https://doi.org/10.36294/jurti.v4i2.1345.

[14] B. J. Dwi, M. Joko Priono, A. Suhendri, B.

Dwi Juniansyah, and D. Darwis,

“IMPLEMENTASI KOMBINASI AFFINE

CIPHER DAN ONE-TIME PAD DALAM,”

Jurnal Informatika, vol. 18, no. 2, 2018, doi:

https://doi.org/10.30873/ji.v18i2.

[15] T. Khairani, K. Agung, and A.

Kamsyakawuni, “Pengkodean

Monoalphabetic Menggunakan Affine

Cipher dengan Kunci Diffie-Hellman,”

Prisma (Prosiding Seminar Nasional

Matematika), vol. 4, pp. 553–559, 2021,

Accessed: Jun. 07, 2023. [Online]. Available:

https://journal.unnes.ac.id/sju/index.php/pris

ma/article/view/45027

[16] Y. Wang and G. Mogos, “Diffie-hellman

Protocol on Raspberry pi,” J Phys Conf Ser,

vol. 1813, no. 1, 2021, doi:

https://doi.org/10.1088/1742-

6596/1813/1/012047.

[17] A. Alfaris and M. Yuhendri, “Sitem Kendali

Dan Monitoring Boost Converter Berbasis

GUI (Graphical User Interface) Matlab

Menggunakan Arduino,” 2020. doi:

https://doi.org/10.24036/jtein.v1i2.83.

[18] S. R. Ningsih, A. H. S. Budi, A. T. Nugraha,

and T. Winata, “Automatic farmer pest

repellent with Arduino ATmega2560 based

on sound displacement technique,” in IOP

Conference Series: Materials Science and

Engineering, Institute of Physics Publishing,

May 2020. doi: https://doi.org/10.1088/1757-

899X/850/1/012034.

[19] Budiyanto, R. Primananda, and F. A.

Bakhtiar, “Implementasi Enkripsi Vernam

Cipher dan Distribusi Kunci Three-Pass

Protocol untuk Mengamankan Data Chatting

pada ATmega328,” Jurnal Pengembangan

Teknologi Informasi dan Ilmu Komputer, vol.

5, no. 3, pp. 1119–1125, 2021, Accessed: Jun.

07, 2023. [Online]. Available: https://j-

ptiik.ub.ac.id/index.php/j-

ptiik/article/view/8744

[20] A. Nurrohmah, A. Kusyanti, and R.

Primananda, “Implementasi Algoritme Grain

V1 Dan 128 Bit Pada Arduino Mega 2560,”

Jurnal Pengembangan Teknologi Informasi

dan Ilmu Komputer, vol. 2, no. 4, pp. 1436–

1445, 2018, [Online]. Available: http://j-

ptiik.ub.ac.id

[21] C. Umam, L. B. Handoko, C. A. Sari, E. H.

Rachmawanto, and L. A. R. Hakim,

Permana Langgeng Wicaksono Ellwid Putra, dkk, Secure Text Encryption for IoT Communication using … 855

“Kombinasi Vigenere dan Autokey Cipher

dalam Proses Proteksi SMS Berbasis

Android,” Prosiding Sains Nasional dan

Teknologi, vol. 12, no. 1, p. 492, Nov. 2022,

doi:

https://doi.org/10.36499/psnst.v12i1.7108.

[22] Z. Mufarokah, M. H. H. Ichsan, and A.

Kusyanti, “Analisis Performa Algoritme

SPECK Pada Arduino Uno,” … Teknologi

Informasi dan Ilmu …, vol. 3, no. 1, pp.

1085–1092, 2019, Accessed: Jun. 07, 2023.

[Online]. Available: https://j-

ptiik.ub.ac.id/index.php/j-

ptiik/article/view/5124

[23] F. Nuraeni, Y. H. Agustin, A. E. Purnama, D.

Stmik Tasikmalaya, and M. Stmik

Tasikmalaya, “IMPLEMENTASI CAESAR

CIPHER AND ADVANCED

ENCRYPTION STANDARD (AES) PADA

PENGAMANAN DATA PAJAK BUMI

BANGUNAN,” Jurnal Ilmiah MATRIK, vol.

22, no. 2, 2020, doi:

https://doi.org/10.33557/jurnalmatrik.v22i2.

949.

[24] Rizky F and Anwar, “Implementasi

Kriptografi Dengan Metode

Advanced Encryption Standard (AES)

Untuk Realtime Chat Berbasis Mobile Pada

E-Learning Politeknik Negeri

Lhokseumawe,” JAISE : Journal of Artificial

Intelligence and Software Engineering, vol.

1, no. 2, 2021, doi:

http://dx.doi.org/10.30811/jaise.v1i2.2520.

