
Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Vol. 22, No. 3, July 2023, pp. 519∼528
ISSN: 2476-9843, accredited by Kemenristekdikti, Decree No: 200/M/KPT/2020
DOI: 10.30812/matrik.v22i3.3088 r 519

Evading Antivirus Software Detection Using Python and PowerShell
Obfuscation Framework

Umar Aditiawarman1, Alfian Dody1, Teddy Mantoro2, Haris Al Qodri Maarif 1, Anggy Pradiftha Junfithrana1

1Universitas Nusa Putra, Sukabumi, Indonesia
2Sampoerna University, Jakarta, Indonesia

Article Info

Article history:

Received Juny 19, 2023
Revised July 06, 2023
Accepted July 22, 2023

Keywords:

Evasion
Metasploit
Malware
Obfuscation
PowerShell
Python

ABSTRACT

Avoiding antivirus detection in penetration testing activities is tricky. The simplest, most effective,
and most efficient way is to disguise malicious code. However, the obfuscation process will also be
very complex and time-consuming if done manually. To solve this problem, many tools or frameworks
on the internet can automate the obfuscation process, but how effective are obfuscation tools to avoid
antivirus detection are. This study aimed to provide an overview of the effectiveness of the obfus-
cation framework in avoiding antivirus detection. This study used experimental design to test and
determine the effectiveness of the payload obfuscation process. The first step was generating Python
and PowerShell payloads, followed by the obfuscation process. The results showed that by using the
right method of obfuscation, malware could become completely undetectable. The automatic obfus-
cation process also did not deteriorate the malware’s function. It was proven that the malware could
run and open a connection on the server. These findings required more Python obfuscator techniques
to determine the effectiveness of the obfuscated payload on the target machines using both static and
dynamic analysis.

Copyright c©2022 The Authors.
This is an open access article under the CC BY-SA license.

Corresponding Author:

Umar Aditiawarman,
Department of Computer Science,
Universitas Nusa Putra, Sukabumi, Indonesia,
Email: umar.aditiawarman@nusaputra.ac.id

How to Cite:
U. Aditiawarman, A. Dody, T. Mantoro, H. Maarif, and A. Pradiftha, ”Evading Antivirus Software Detection Using Python and
PowerShell Obfuscation Framework”, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 3,
pp. 519-528, Jul. 2023.
This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Journal homepage: https://journal.universitasbumigora.ac.id/index.php/matrik

accredited by Kemenristekdikti, Decree No: 200/M/KPT/2020
https://creativecommons.org/licenses/by-sa/4.0/
mailto:umar.aditiawarman@nusaputra.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://journal.universitasbumigora.ac.id/index.php/matrik


520 r ISSN: 2476-9843

1. INTRODUCTION
In the world of software development, obfuscation is an action that aims to make an application source code difficult to

understand for humans [1]. Initially, obfuscation techniques were used to protect the intellectual property rights of an application and
prevent outsiders from doing reverse engineering [2].

Nevertheless, in its development, the obfuscation technique is also very effective in avoiding antivirus detection [3]. The
growing attacks of fileless malware that do not exist in the file system indicate that the attackers have used the technology developed
by the vendors to find their own security vulnerabilities, such as the PowerShell script provided by Microsoft [4, 5]. PowerShell script
has been used to exploit hidden information on images by embedding malicious commands using techniques such as invoke-PSImage
[6]. Script-based obfuscation techniques are also used to target IoT devices. This threat arises due to IoT devices’ lower security
level than server security, making them more vulnerable and easily accessible to attackers [7].

Meanwhile, to detect malware, antivirus uses three types of methods, namely signature-based, behavior-based, and heuristic-
based techniques [8]. To avoid detection by some of the methods implemented by antivirus, the most effective way is to create our
own malware. However, this method is quite complex and potentially time-consuming. The simplest way to prevent malicious code
from being detected by antivirus is to use the obfuscation technique.

Along with the development of information technology, obfuscation of malicious code is quite easy to perform. Many open-
source penetration testing frameworks can be downloaded for free and have functions to automate obfuscation techniques [9]. Al-
though there are various tools for malware detection, memory forensic tools, packet analysis tools, and reverse engineering and
debugging tools available online and in apps that can be used to perform a comprehensive malware detection technique [10]. This
paper describes how to automatically obfuscate through the obfuscation framework on malicious code written through the script-
ing/interpreter language such as Python and PowerShell. In addition, this paper also aims to provide an overview of the effectiveness
of the obfuscation framework in avoiding antivirus detection.

Python has a simple structure yet powerful functions to develop malware, such as backdoor malware. A previous study
proposed a Python backdoor detection model that could detect obfuscated malware samples represented by its statistical text features
and opcode sequence. The result provides 97.7% detection accuracy using the Random Forest classifier [11]. The security challenges
in the Android ecosystem are also growing despite the introduction of advanced anti-malware tools [12].

Audit and evaluation of the existing Anti Malware Solutions (AMTs) due to the rising sophistication of Android malware
evasion techniques are needed [13]. The research analyzes various evasion techniques and compares the efficacy of current anti-
malware tools against them. Additionally, the paper proposes a more sophisticated evasion technique that successfully evades all
known anti-malware solutions. The suggested technique involves exhaustive obfuscation and remote code execution, highlighting the
importance of enhancing the resilience and effectiveness of AMTs for improved malware detection and prevention.

The evaluation of the effectiveness of antivirus evasion tools such as Avet, Veil 3.0, PeCloak.py, Shellter, and Fat Rat on the
Windows platform has been reported in the previous study [14]. The research aims to test the capabilities of these tools in generating
malware that goes undetected by the best antivirus solutions available. The study was conducted in a virtual lab setup using VMware
Oracle VirtualBox, and the results showed software evasion rates ranging from 0% to 83%. Avet and PeCloak.py were found to be
the best AV evasion tools, while Kaspersky and Bitdefender emerged as the top-performing antivirus software in detecting malware
evasion techniques.

The previous study explores popular techniques and tools used to bypass antivirus programs. It highlights that while most
antivirus programs can detect them individually, combining evasion techniques in complex attack chains can bypass modern and
commonly-used antivirus software [3]. The technique used to avoid antivirus detection is to change the source code of the executable
template [15]. Changes in the source code allow the shellcode to be generated separately so that the shellcode does not touch the
hard disk and runs in memory. This technique drastically changes the signature of the source code. Another study describes an
open-source penetration testing framework that bypasses antivirus detection. Some of the tools described in the research are Avet,
Veil 3.0, The Fat Rat, PeCloak.py, Phantom-Evasion, Shellter, Unicorn, and Hercules [16].

Research on evasion techniques using code obfuscation has been carried out in these several papers. These studies obfuscate
the binary executable payload and are carried out manually. A previous study discusses antivirus evasion techniques that are carried
out automatically using a penetration testing framework, but in general, the generated payload is also binary executable. The current
research is slightly different because it implements obfuscation techniques on script-based malware and is carried out automatically.

2. RESEARCH METHOD
This study used an experimental design where the simulation was conducted in a virtual machine to preserve a safe environ-

ment. Researchers tested two types of payloads written in the Python and PowerShell programming languages.

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 3, July 2023: 519 – 528



Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 521

As seen in Figure 1, the research is started by conducting two stages of testing to determine the effectiveness of the payload
obfuscation process. In the first stage, researchers analyzed the original payload and obfuscated payload using the VirusTotal website.
This stage aims to determine the level of evasion between the original payload and the obfuscated payload. In the second stage,
execute the obfuscated payload on the Windows and Linux-based target machine. This stage aims to determine whether the obfuscated
payload can be run to support the testing process.

Figure 1. Research workflow

There are several software and tools used to conduct the simulation. The virtual machine is used to set up the virtual lab
environment. The framework used in this study was Metasploit, a project that provides comprehensive information about security
vulnerabilities [17, 18]. It is a valuable tool for conducting penetration testing and aiding in developing Intrusion Detection Systems
(IDS) [19]. It can be obtained from its GitHub repository. To Python, Onelinepy obfuscator generates one-liners and FUD (Fully Un-
detectable) payloads. For the Windows operating system, this study used Invoke-Obfuscation. Security researcher Daniel Bohannon
developed the Powershell command and script obfuscator at Mandiant. Lastly, the target Operating System used for this experiment
is Kali Linux, Ubuntu, and Windows 10 to test the obfuscated payload.

Table 1. Support Software

Number Software Version
1. VirtualBox 6.1.34
2. Metasploit Framework 6.1.41
3. Onelinepy
4. Invoke Obfuscation 1.8
5. Kali Linux 2022.2
6. Ubuntu 22.04
7. Python 3.10.4
8. PowerShell 5.1.19041.1682

The first step is to generate Python and PowerShell payload, followed by an obfuscation process on the payload. The tools
used to generate the two payloads are the Metasploit Framework, while the payload obfuscation process uses Onelinepy and Invoke-
Obfuscation.

Figure 2. MSFvenom payload generator

MSF Venom command is used to generate the Python Meterpreter reverse shell payload (Figure 2). A reverse TCP connection
from this command will occur from the target machine to IP 192.68.56.102 via port 9876. To obfuscate the Python payload gen-
erated by Metasploit Framework, Onelinepy is used. It can be seen in Figure 3 that Onelinepy has been executed to create a Fully

Evading Antivirus Software . . . (Umar Aditiawarman)



522 r ISSN: 2476-9843

Undetectable (FUD) payload. MSF Venom is also used to generate PowerShell payload (Figure 4). Then the PowerShell payload
was obfuscated using Invoke-Obfuscation (Figure 5).

Figure 3. Onelinepy Python obfuscator

Figure 4. Generate PowerShell Payload

Figure 5. Obfuscated PowerShell Payload

3. RESULT AND ANALYSIS
3.1. Test Result Using the VirusTotal Website

The use of the VirusTotal platform in this study aims to determine the level of evasion of the obfuscated payload. VirusTotal
is a web-based application that analyzes suspicious files to detect malware [10] and can inspect files using more than 70 antivirus
software with the most updated signature database. VirusTotal has been advocated in many security studies compared to desktop
antivirus due to its capabilities [20].

Based on the analysis of VirusTotal on obfuscated Python and PowerShell payload, it is known that the obfuscation process
through the obfuscator tools, namely Onelinepy and Invoke-Obfuscation, is effective in bypassing antivirus detection. Obfusca-
tion through the onlinepy tool, the backdoor file becomes Fully Undetectable (FUD). Meanwhile, obfuscation through the Invoke-
Obfuscation tool, PowerShell payload becomes 98% FUD. Of the 57 antivirus software, only one managed to detect. The following
is a comparison of the results of the VirusTotal analysis. The Python payload that has not gone through the obfuscation process
is detected by 16 antivirus software. Some antivirus specifically mentions that the file is a backdoor generated by the Metasploit
Framework (Figure 6).

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 3, July 2023: 519 – 528



Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 523

Figure 6. VirusTotal detection result for original Metasploit payload

Figure 7. VirusTotal result detection after Python obfuscation

Figure 7 describes the status of the Python payload that has gone through the obfuscation process. Obfuscation results show
that the backdoor file successfully bypassed the entire antivirus software indicated by zero detection.

Evading Antivirus Software . . . (Umar Aditiawarman)



524 r ISSN: 2476-9843

Figure 8. Virus Total result detection of original Metasploit PowerShell payload

Meanwhile, the original PowerShell payload generated by the Metasploit Framework was detected by 29 out of 57 antiviruses
Figure 8. When the obfuscated PowerShell payload was executed, the antivirus detection rate decreased significantly from 29 to only
one detection Figure 9.

Figure 9. Virus Total result detection of obfuscated PowerShell payload

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 3, July 2023: 519 – 528



Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 525

3.2. Obfuscated Payload Functionality Test Result
After conducting the obfuscated process, the author tested the obfuscated payload on two operating systems, namely Linux

Ubuntu 22.04 for Python payload and Windows 10 for PowerShell. After executing on these two operating systems, the payload was
executed successfully and opened a reverse TCP connection. Figure 10 describes how the obfuscated Python payload is executed
on Ubuntu 22.04. The Obfuscated Python payload was executed successfully, and a Meterpreter session Figure 11 opened. After
running on Windows 10, the PowerShell payload successfully opened a reverse TCP connection Figure 12. The obfuscated malware
can also execute C&C commands on the target computer.

Figure 10. Execute Obfuscated Python Payload

Figure 11. Meterpreter Session on Linux

Figure 12. Meterpreter Session from obfuscated PowerShell Payload on Windows

Evading Antivirus Software . . . (Umar Aditiawarman)



526 r ISSN: 2476-9843

The results of this study indicate that the level of evasion achieved through the utilization of the Python obfuscation framework
and PowerShell is consistent with previous studies [12, 16, 17, 4]. The obfuscated Python payload could successfully bypass the
Bitdefender antivirus. However, the obfuscated PowerShell payload was still heavily detected by antivirus software [16, 21], whereas
the invoke-obfuscation employed in this study showed significant success in bypassing antivirus detection. It is important to acknowl-
edge that the antivirus detection method used in this study is static analysis. Static analysis is preferable to test the effectiveness of
obfuscated malware without requiring a heavy payload, as in the dynamic methods. This method involves analyzing the code based
on specific patterns and characteristics without the actual execution of the malware. The VirusTotal used for malware detection in
this study does not count for cloud-based detection.

This research provides an understanding of how to enhance the evasion capability of modified script-based malware running
on Windows and Linux operating systems, allowing it to bypass signature-based antivirus detection. Additionally, it provides recom-
mendations on obfuscation frameworks that penetration testers can use to assess the security level of a system.

4. CONCLUSION
Based on the test results in this study, code obfuscation that is carried out automatically through the obfuscator tool can make

script-based malware undetectable by antiviruses. By using the right method in the obfuscation process, malware can become fully
undetectable. The automatic obfuscation process also does not damage the malware’s functionality, and it is proven that the malware
can run and open a connection to the server. Future research may focus on various detection methods, such as behavioral analysis and
dynamic detection, to enhance the effectiveness in identifying script-based malware and its performance to evade detection through
obfuscation.

5. ACKNOWLEDGEMENTS
The authors would like to thank everyone who contributed to this work until it was published, especially the anonymous

reviewers, the chief editors, and the Matrik: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer.

6. DECLARATIONS
AUTHOR CONTIBUTION

The first and second authors are responsible for the simulations and write-up, the third author advised the framework and method
used in the study, and the fourth and fifth authors are responsible for the formatting dan design of the paper.

FUNDING STATEMENT
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

COMPETING INTEREST
The authors have no competing financial, professional, or personal interests.

REFERENCES
[1] S. A. Ebad, A. A. Darem, and J. H. Abawajy, “Measuring Software Obfuscation QualityA Systematic Literature Review,” IEEE

Access, vol. 9, pp. 99 024–99 038, 2021.

[2] M. Hammad, J. Garcia, and S. Malek, “A large-scale empirical study on the effects of code obfuscations on Android apps and
anti-malware products,” Proceedings of the 40th International Conference on Software Engineering, pp. 421–431, 2018.

[3] D. Samociuk, “Antivirus Evasion Methods in Modern Operating Systems,” Applied Sciences, vol. 13, no. 8, p. 5083, 2023.

[4] J. Song, J. Kim, S. Choi, J. Kim, and I. Kim, “Evaluations of AIbased malicious PowerShell detection with feature optimiza-
tions,” ETRI: Electronics and Telecommunications Research Institute Journal, vol. 43, no. 3, pp. 549–560, 2021.

[5] F. Barr-Smith, X. Ugarte-Pedrero, M. Graziano, R. Spolaor, and I. Martinovic, “Survivalism: Systematic analysis of windows
malware living-off-the-land,” Proceedings - IEEE Symposium on Security and Privacy, vol. 2021-May, pp. 1557–1574, 2021.

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 3, July 2023: 519 – 528



Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer r 527

[6] A. Schaffhauser, W. Mazurczyk, L. Caviglione, M. Zuppelli, and J. Hernandez-Castro, “Efficient Detection and Recovery of
Malicious PowerShell Scripts Embedded into Digital Images,” Security and Communication Networks, vol. 2022, 2022.

[7] F. Antony and R. Gustriansyah, “Deteksi Serangan Denial of Service pada Internet of Things Menggunakan Finite-State Au-
tomata,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 1, pp. 43–52, 2021.

[8] F. A. Garba, K. I. Kunya, S. A. Ibrahim, A. B. Isa, K. M. Muhammad, and N. N. Wali, “Evaluating the State of the Art Antivirus
Evasion Tools on Windows and Android Platform,” 2019 2nd International Conference of the IEEE Nigeria Computer Chapter
(NigeriaComputConf), pp. 1–4, 2019.

[9] A. K. Kayani and M. Q. Saeed, “Comparative analysis of anti-virus evasion malware creator tools of kali linux, with proposed
model for obfuscation,” 2021 International Conference on Cyber Warfare and Security (ICCWS), pp. 24–29, 2021.

[10] S. Talukder and Z. Talukder, “A Survey on Malware Detection and Analysis Tools,” International Journal of Network Security
& Its Applications, vol. 12, no. 2, pp. 37–57, 2020.

[11] Y. Fang, M. Xie, and C. Huang, “PBDT: Python Backdoor Detection Model Based on Combined Features,” Security and
Communication Networks, vol. 2021, 2021.

[12] H. Patel, D. Patel, J. Ahluwalia, V. Kapoor, K. Narasimhan, H. Singh, H. Kaur, G. H. Reddy, S. S. Peruboina, and S. Butakov,
“Evaluation of Survivability of the Automatically Obfuscated Android Malware,” Applied Sciences (Switzerland), vol. 12,
no. 10, 2022.

[13] S. Mirza, H. Abbas, W. B. Shahid, N. Shafqat, M. Fugini, Z. Iqbal, and Z. Muhammad, “A Malware Evasion Technique for Au-
diting Android Anti-Malware Solutions,” 2021 IEEE 30th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), pp. 125–130, 2021.

[14] S. A. Aminu, Z. Sufyanu, T. Sani, and A. Idris, “Evaluating the effectiveness of antivirus evasion tools against windows plat-
form,” Fudma Journal of Sciences, vol. 4, no. 1, pp. 112–119, 2020.

[15] A. Johnson and R. J. Haddad, “Evading Signature-Based Antivirus Software Using Custom Reverse Shell Exploit,” Southeast-
Con 2021, pp. 1–6, 2021.

[16] F. A. Garba, F. U. Yarima, K. I. Kunya, F. U. Abdullahi, A. A. Bello, A. Abba, and A. L. Musa, “Evaluating Antivirus Eva-
sion Tools Against Bitdefender Antivirus,” in Proceedings of the International Conference on FINTECH Opportunities and
Challenges, Karachi, Pakistan, vol. 18, 2021.

[17] M. Tabassum, S. Mohanan, and T. Sharma, “Ethical Hacking and Penetrate Testing using Kali and Metasploit Framework,”
International Journal of Innovation in Computational Science and Engineering, vol. 2, no. 1, pp. 09–22, 2021.

[18] A. S. Adam and Z. Sufyanu, “Performance Comparison of PyRAT and Phantom Antivirus Software Evasion Tools,” SLU
Journal of Science and Technology, vol. 2, no. 1, pp. 65–72, 2021.

[19] S. Raj and N. K. Walia, “A Study on Metasploit Framework: A Pen-Testing Tool,” 2020 International Conference on Compu-
tational Performance Evaluation, ComPE 2020, pp. 296–302, 2020.

[20] C. Leka, C. Ntantogian, S. Karagiannis, E. Magkos, and V. S. Verykios, “A Comparative Analysis of VirusTotal and Desktop
Antivirus Detection Capabilities,” 2022 13th International Conference on Information, Intelligence, Systems & Applications
(IISA), pp. 1–6, 2022.

[21] V. Ravi, S. Gururaj, H. Vedamurthy, and M. Nirmala, “Analysing corpus of office documents for macro-based attacks using
Machine Learning,” Global Transitions Proceedings, vol. 3, no. 1, pp. 20–24, 2022.

Evading Antivirus Software . . . (Umar Aditiawarman)



528 r ISSN: 2476-9843

[This page intentionally left blank.]

Matrik: Jurnal Managemen,Teknik Informatika, dan Rekayasa Komputer,
Vol. 22, No. 3, July 2023: 519 – 528


	INTRODUCTION
	RESEARCH METHOD
	RESULT AND ANALYSIS
	Test Result Using the VirusTotal Website
	Obfuscated Payload Functionality Test Result

	CONCLUSION
	ACKNOWLEDGEMENTS
	DECLARATIONS

